From a Flatworm, New Clues on Animal Origins

Total Page:16

File Type:pdf, Size:1020Kb

From a Flatworm, New Clues on Animal Origins G ince the turn of the twentieth cen- separate mouth and anus, a central nervous R An obscure group of tiny E B tury, zoologists have set out from system and organs to filter waste. Although L L A W coastal marine stations at dawn to creatures takes centre stage the position of acoels has moved around . sieve peppercorn-sized worms from in a battle to work out the a bit over the decades, a DNA analysis in A Ssea-bottom muck. These creatures, called 1999 (ref. 2) and several since then have acoels, often look like unremarkable splashes tree of life. placed them back in their earlier spot. In of paint when seen through a microscope. But particular, a genetic study of 94 organisms they represent a crucial stage in animal evolu- BY AMY MAXMEN in 2009 solidified the conclusion that acoels tion — the transition some 560 million years belonged at the very base of the bilaterians3. ago from simple anemone-like organisms to crucial intermediate stage of animal evolution. That study, led by Andreas Hejnol, a devel- the zoo of complex creatures that populate the Some researchers complain that the evidence opmental biologist at the Sars International world today. is not strong enough to warrant such a dra- Centre for Marine Molecular Biology in There are about 370 species of acoel, which matic rearrangement of the evolutionary tree, Bergen, Norway, confirmed that acoels and gets its name because it lacks a coelom — the and claim that the report leaves out key data. their kin occupied an intermediate spot fluid-filled body cavity that holds the internal In any case, the vehemence of the debate shows between cnidarians and the more-complex organs in more-complex animals. Acoels also just how important these worms have become bilaterians. have just one hole for both eating and excret- in evolutionary biology. “I suddenly had the feeling that every- ing, similar to cnidarians — a group of evo- “I will say, diplomatically, this is the most thing had finally fallen into place,” says Claus lutionarily older animals containing jellyfish politically fraught paper I’ve ever written,” says Nielsen, an evolutionary biologist at the Natu- and sea anemones. But unlike the simpler cni- Max Telford, a zoologist at University College ral History Museum of Denmark, who has darians, which have only London and last author on followed acoels for 40 years as they wandered an inner and outer tissue the paper. across the tree of life. layer, acoels have a third, “THIS IS THE The debate focuses on middle tissue layer. That is MOST POLITICALLY where acoels fit in the family SHAKING THE TREE the arrangement found in tree of bilaterians, three-lay- But the study by Telford and his colleagues1 everything from scorpions FRAUGHT PAPER I’VE ered animals with bilateral has shaken the tree again and placed acoels to squids to seals, suggest- symmetry. Biologists divide within the deuterostome branches, next to the ing that acoels represent an EVER WRITTEN.” these animals into two echinoderms (which include sea urchins) and intermediate form. branches. The larger group, acorn worms. Their genetic analyses suggest That hypothesis has gained considerable sup- called protostomes, contains invertebrates that the acoels — and a marine worm named port in recent years, but a report published in such as earthworms, squids, snails and insects. Xenoturbella — descended from a more com- Nature this week1 is causing scientists to rethink The smaller group, known as deuterostomes, plex ancestor and lost many of the features seen the storyline. The study by an international includes both vertebrates and invertebrates, in other deuterostomes. team of researchers, who used new analytical such as sea urchins, humans and fish. The researchers used several approaches and techniques and data, removes acoel worms from Zoologists have generally placed acoels examined three independent data sets to come their position near the trunk of animal evolution on the earliest branch of the bilaterians — to their conclusions. First, they reanalysed data and instead places them closer to vertebrates before the split between from Hejnol’s 2009 study3, using 66 species (see ‘Competing views of animal evolution’). protostomes and deu- NATURE.COM instead of 94. Hervé Philippe, a bioinformati- The rearrangement has triggered protests terostomes — because Read Telford and cian at the University of Montreal in Quebec, from evolutionary biologists, who are alarmed the worms lack so many colleagues’ study at: Canada, and first author of the Nature paper1, that they may lose their key example of that key features such as a go.nature.com/brwepf says that the team removed species that had 1 0 F E B R U A R Y 2 0 1 1 | V O L 4 7 0 | N A T U R E | 1 6 1 © 2011 Macmillan Publishers Limited. All rights reserved NEWS FEATURE incomplete genetic data or were ‘fast-evolv- the deuterostomes. But taken together, says is their main evidence. Critics say that the ing’ — meaning that some of their genes had Telford, “the fact that our evidence points in key branches of the tree are not as statistically accumulated many changes, when compared the same direction makes me think it’s right”. strong as they should be. with genes from animal groups that emerged If acoels do fit within the deuterostomes, Because of this, Brian O’Meara, a around the same time. Phylogenetic compu- the worms must have evolved from an ances- phylogeneticist at the University of Tennessee ter programs have a well-known problem with tor with a central nervous system, a body in Knoxville, calls the new tree “suggestive, but these kinds of species and tend to group them cavity and a through-going gut that connected not definitive”. together even though they are not related. an anus and mouth — features seen in exist- The study has also come under fire for leav- Philippe and his co-workers used a more ing deuterostomes. So researchers would need ing out data that some scientists say would sophisticated mathematical model to analyse to explain how acoels and have weakened the research- sequence evolution, which helped to minimize Xenoturbella lost those and ers’ conclusions. An author this problem. Without this model and careful other characteristics. They “I’M SAD ABOUT on the paper had previously species selection, Philippe says, acoels can fall would also be left to search analysed a species of worm at the base of the animal tree. for another primitive-looking THEIR PAPER, BUT closely related to acoels After analysing sequences from nuclear lineage that represents the known as Meara stichopi, and DNA, the group made a separate evolution- evolutionary step between I’M NOT UPSET.” did not find deuterostome ary tree based on genes in mitochondria. jellyfish-like animals and microRNA. But the authors They also studied microRNAs, which regulate bilaterians. (If one even exists. Peterson says defend their decision to keep M. stichopi out gene expression but do not code for proteins. that many complex features may have emerged of their microRNA analysis owing to concerns According to co-author Kevin Peterson, a all at once.) about the quality of those data. palaeontologist at Dartmouth College in Some researchers are not ready to give up on Moreover, not everyone is convinced by Hanover, New Hampshire, microRNAs are the old ideas of where acoels fit. “I’m sad about the power of microRNA analysis, which has particularly useful for studying deep evolu- their paper, but I’m not upset,” says Hejnol. “I’d only recently been adopted for evolutionary tionary relationships. The team found that be upset if their analysis was excellent and it studies. This report marks the method’s most acoels have a type of microRNA known to be meant we lost a representative animal to bridge high-profile appearance yet as a tool to resolve specific to deuterostomes, suggesting that they an important transition in the tree of life.” relationships. Because microRNAs can be lost are related. Hejnol and his colleagues have doubts during evolution, it is possible that the deuter- The authors acknowledge that no single data about the reliability of the tree that Telford ostome microRNA in acoels originated in the set clinches the case for placing acoels within and his team built from nuclear genes, which ancestor of all bilateral animals but was later lost in the protostome line. With so much at stake, researchers are keen to resolve the issue. The US National Science Foundation has been specifically soliciting The traditional view of acoels places them at the base of the bilaterians, before the evolution of animals with a separate mouth and anus. After acoels and Xenoturbella split off, bilaterians diverged into proposals that target deep divergences in evo- protostomes and deuterostomes. lutionary history, as part of an initiative called Assembling the Tree of Life, says Tim Collins, Development of bilaterians — a programme director at the foundation. “We’ve animals with three tissue layers and bodies with symmetrical done a good job within groups, but we’ve had a left and right sides. hard time reconstructing the deepest branches of the tree of life,” he says. “These are the events that happened in a relatively short time com- pared with the amount of time that has passed since then, which makes things hard.” Last summer in Kristineberg, Sweden, Hejnol and Telford shared a room while S U I teaching a class together. They debated their L Like other bilaterians, acoels and E D Xenoturbella have three body layers differences and discussed an ongoing joint N O J but they have only one hole for . project that might settle them: sequencing the U eating and excreting.
Recommended publications
  • Xenacoelomorpha's Significance for Understanding Bilaterian Evolution
    Available online at www.sciencedirect.com ScienceDirect Xenacoelomorpha’s significance for understanding bilaterian evolution Andreas Hejnol and Kevin Pang The Xenacoelomorpha, with its phylogenetic position as sister biology models are the fruitfly Drosophila melanogaster and group of the Nephrozoa (Protostomia + Deuterostomia), plays the nematode Caenorhabditis elegans, in which basic prin- a key-role in understanding the evolution of bilaterian cell types ciples of developmental processes have been studied in and organ systems. Current studies of the morphological and great detail. It might be because the field of evolutionary developmental diversity of this group allow us to trace the developmental biology — EvoDevo — has its origin in evolution of different organ systems within the group and to developmental biology and not evolutionary biology that reconstruct characters of the most recent common ancestor of species under investigation are often called ‘model spe- Xenacoelomorpha. The disparity of the clade shows that there cies’. Criteria for selected representative species are cannot be a single xenacoelomorph ‘model’ species and primarily the ease of access to collected material and strategic sampling is essential for understanding the evolution their ability to be cultivated in the lab [1]. In some cases, of major traits. With this strategy, fundamental insights into the a supposedly larger number of ancestral characters or a evolution of molecular mechanisms and their role in shaping dominant role in ecosystems have played an additional animal organ systems can be expected in the near future. role in selecting model species. These arguments were Address used to attract sufficient funding for genome sequencing Sars International Centre for Marine Molecular Biology, University of and developmental studies that are cost-intensive inves- Bergen, Thormøhlensgate 55, 5008 Bergen, Norway tigations.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • BIOSC 041 Overview of Animal Diversity: Animal Body Plans
    BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: § Body symmetry § Tissues § Type of body cavity § Protostome vs deuterostome development v Animal Phylogeny What is an Animal? v Scientists have identified 1.3 million living species of animals v The definition of an animal § Multicellular § Heterotrophic eukaryotes § Possess tissues that develop from embryonic layers v Common characteristics describe the group 1. Common mode of nutrition 2. Cell structure and specialization 3. Reproduction and development 1. Characteristics of Animals: Nutrition v Animals are heterotrophs (“other-eater”) § Obtain nutrition either from other living organisms or from nonliving organic material § Primary consumers (herbivores), secondary consumers (eat herbivores), tertiary consumers (eat carnivores), and/or detritovores (eat detritus- decaying plants/ animals, feces) 2. Characteristics of Animals: Cell Structure and Specialization 1. Animals are multicellular eukaryotes (Note: single-celled eukaryotes with animal-like behavior are grouped as Protists, such as amoeba) 2. Animal cells lack cell walls 3. Bodies are held together by structural proteins like collagen 4. Bodies are organized into tissues, organs, and organ systems § Tissues are groups of cells that have a common structure, and/or function § Nervous tissue and muscle tissue are unique to animals Amoeba: a protist, not a true animal 3. Characteristics of Animals: Reproduction and Development v Most animals reproduce sexually, with the diploid stage dominating the life cycle v Development occurs in specific stages 1. Fertilization to form zygote 2. Zygote undergoes rapid cell division called cleavage 3. Cleavage leads to formation of a multicellular, hollow blastula (ex: whitefish blastula slides from lab, with cells undergoing rapid mitosis) 4.
    [Show full text]
  • Analysis of the Complete Mitochondrial DNA Sequence of the Brachiopod Terebratulina Retusa Places Brachiopoda Within the Protostomes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/12415870 Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Article in Proceedings of the Royal Society B: Biological Sciences · November 1999 DOI: 10.1098/rspb.1999.0885 · Source: PubMed CITATIONS READS 83 50 2 authors, including: Martin Schlegel University of Leipzig 151 PUBLICATIONS 2,931 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Rare for a reason? Scale-dependence of factors influencing rarity and diversity of xylobiont beetles View project Bat diversity and vertical niche activity in the fluvial flood forest Leipzig View project All content following this page was uploaded by Martin Schlegel on 22 May 2014. The user has requested enhancement of the downloaded file. Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Alexandra Stechmann* and Martin Schlegel UniversitÌt Leipzig, Institut fÏr Zoologie/Spezielle Zoologie,Talstr. 33, 04103 Leipzig, Germany Brachiopod phylogeny is still a controversial subject. Analyses using nuclear 18SrRNA and mitochondrial 12SrDNA sequences place them within the protostomes but some recent interpretations of morphological data support a relationship with deuterostomes. In order to investigate brachiopod a¤nities within the metazoa further,we compared the gene arrangement on the brachiopod mitochondrial genome with several metazoan taxa. The complete (15 451bp) mitochondrial DNA (mtDNA) sequence of the articulate brachiopod Terebratulina retusa was determined from two overlapping long polymerase chain reaction products. All the genes are encoded on the same strand and gene order comparisons showed that only one major rearrangement is required to interconvert the T.retusa and Katharina tunicata (Mollusca: Polyplaco- phora) mitochondrial genomes.
    [Show full text]
  • Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide
    EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide BASAL METAZOANS Dirk Erpenbeck Ludwig-Maximilians Universität München, Germany Simion Paul and Michaël Manuel Université Pierre et Marie Curie in Paris, France. Paulyn Cartwright University of Kansas USA. Oliver Voigt and Gert Wörheide Ludwig-Maximilians Universität München, Germany Keywords: Metazoa, Porifera, sponges, Placozoa, Cnidaria, anthozoans, jellyfishes, Ctenophora, comb jellies Contents 1. Introduction on ―Basal Metazoans‖ 2. Phylogenetic relationships among non-bilaterian Metazoa 3. Porifera (Sponges) 4. Placozoa 5. Ctenophora (Comb-jellies) 6. Cnidaria 7. Cultural impact and relevance to human welfare Glossary Bibliography Biographical Sketch Summary Basal metazoans comprise the four non-bilaterian animal phyla Porifera (sponges), Cnidaria (anthozoans and jellyfishes), Placozoa (Trichoplax) and Ctenophora (comb jellies). The phylogenetic position of these taxa in the animal tree is pivotal for our understanding of the last common metazoan ancestor and the character evolution all Metazoa,UNESCO-EOLSS but is much debated. Morphological, evolutionary, internal and external phylogenetic aspects of the four phyla are highlighted and discussed. SAMPLE CHAPTERS 1. Introduction on “Basal Metazoans” In many textbooks the term ―lower metazoans‖ still refers to an undefined assemblage of invertebrate phyla, whose phylogenetic relationships were rather undefined. This assemblage may contain both bilaterian and non-bilaterian taxa. Currently, ―Basal Metazoa‖ refers to non-bilaterian animals only, four phyla that lack obvious bilateral symmetry, Porifera, Placozoa, Cnidaria and Ctenophora. ©Encyclopedia of Life Support Systems (EOLSS) EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide These four phyla have classically been known as ―diploblastic‖ Metazoa.
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J
    Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J. R. Finnerty Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “BILATERIA” (=TRIPLOBLASTICA) Bilateral symmetry (?) Mesoderm (triploblasty) Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “COELOMATA” True coelom Coelomata gut cavity endoderm mesoderm coelom ectoderm [note: dorso-ventral inversion] Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA PROTOSTOMIA “first mouth” blastopore contributes to mouth ventral nerve cord The Blastopore ! Forms during gastrulation ectoderm blastocoel blastocoel endoderm gut blastoderm BLASTULA blastopore The Gut “internal, epithelium-lined cavity for the digestion and absorption of food sponges lack a gut simplest gut = blind sac (Cnidaria) blastopore gives rise to dual- function mouth/anus through-guts evolve later Protostome = blastopore contributes to the mouth Deuterostome = blastopore becomes the anus; mouth is a second opening Protostomy blastopore mouth anus Deuterostomy blastopore
    [Show full text]
  • Genomic Data Do Not Support Comb Jellies As the Sister Group to All Other Animals
    Genomic data do not support comb jellies as the sister group to all other animals Davide Pisania,b,1, Walker Pettc, Martin Dohrmannd, Roberto Feudae, Omar Rota-Stabellif, Hervé Philippeg,h, Nicolas Lartillotc, and Gert Wörheided,i,1 aSchool of Earth Sciences, University of Bristol, Bristol BS8 1TG, United Kingdom; bSchool of Biological Sciences, University of Bristol, Bristol BS8 1TG, United Kingdom; cLaboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR 5558, 69622 Villeurbanne cedex, France; dDepartment of Earth & Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich 80333, Germany; eDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125; fDepartment of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’ Adige 38010, Italy; gCentre for Biodiversity Theory and Modelling, USR CNRS 2936, Station d’Ecologie Expérimentale du CNRS, Moulis 09200, France; hDépartement de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montreal, QC, Canada H3C 3J7; and iBayerische Staatssammlung für Paläontologie und Geologie, Munich 80333, Germany Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved November 2, 2015 (received for review September 11, 2015) Understanding how complex traits, such as epithelia, nervous animal phylogeny separated ctenophores from all other ani- systems, muscles, or guts, originated depends on a well-supported mals (the “Ctenophora-sister”
    [Show full text]
  • The Early History of the Metazoa—A Paleontologist's Viewpoint
    ISSN 20790864, Biology Bulletin Reviews, 2015, Vol. 5, No. 5, pp. 415–461. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.Yu. Zhuravlev, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 6, pp. 411–465. The Early History of the Metazoa—a Paleontologist’s Viewpoint A. Yu. Zhuravlev Geological Institute, Russian Academy of Sciences, per. Pyzhevsky 7, Moscow, 7119017 Russia email: [email protected] Received January 21, 2014 Abstract—Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appre ciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nemato morphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on onto genetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fos sil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fos sils are preserved only as mineralized skeletons.
    [Show full text]
  • Jonsc Vol2-7.PDF
    http://www.natsca.org Journal of Natural Science Collections Title: 100 years of deep‐sea tube worms in the collections of the Natural History Museum, London Author(s): Sherlock, E., Neal, L. & Glover, A. Source: Sherlock, E., Neal, L. & Glover, A. (2014). 100 years of deep‐sea tube worms in the collections of the Natural History Museum, London. Journal of Natural Science Collections, Volume 2, 47 ‐ 53. URL: http://www.natsca.org/article/2079 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. Journal of Natural Science Collections 2015: Volume 2 100 years of deep-sea tubeworms in the collections of the Natural History Museum, London Emma Sherlock, Lenka Neal & Adrian G. Glover Life Sciences Department, The Natural History Museum, Cromwell Rd, London SW7 5BD, UK Received: 14th Sept 2014 Corresponding author: [email protected] Accepted: 18th Dec 2014 Abstract Despite having being discovered relatively recently, the Siboglinidae family of poly- chaetes have a controversial taxonomic history. They are predominantly deep sea tube- dwelling worms, often referred to simply as ‘tubeworms’ that include the magnificent me- tre-long Riftia pachyptila from hydrothermal vents, the recently discovered ‘bone-eating’ Osedax and a diverse range of other thin, tube-dwelling species.
    [Show full text]
  • The Evolution of the Mitochondrial Genomes of Calcareous Sponges and Cnidarians Ehsan Kayal Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 The evolution of the mitochondrial genomes of calcareous sponges and cnidarians Ehsan Kayal Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Evolution Commons, and the Molecular Biology Commons Recommended Citation Kayal, Ehsan, "The ve olution of the mitochondrial genomes of calcareous sponges and cnidarians" (2012). Graduate Theses and Dissertations. 12621. https://lib.dr.iastate.edu/etd/12621 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The evolution of the mitochondrial genomes of calcareous sponges and cnidarians by Ehsan Kayal A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee Dennis V. Lavrov, Major Professor Anne Bronikowski John Downing Eric Henderson Stephan Q. Schneider Jeanne M. Serb Iowa State University Ames, Iowa 2012 Copyright 2012, Ehsan Kayal ii TABLE OF CONTENTS ABSTRACT ..........................................................................................................................................
    [Show full text]
  • Xenacoelomorpha Is the Sister Group to Nephrozoa
    LETTER doi:10.1038/nature16520 Xenacoelomorpha is the sister group to Nephrozoa Johanna Taylor Cannon1, Bruno Cossermelli Vellutini2, Julian Smith III3, Fredrik Ronquist1, Ulf Jondelius1 & Andreas Hejnol2 The position of Xenacoelomorpha in the tree of life remains a major as sister taxon to remaining Bilateria19 (Fig. 1b–e). The deuterostome unresolved question in the study of deep animal relationships1. affiliation derives support from three lines of evidence4: an analysis Xenacoelomorpha, comprising Acoela, Nemertodermatida, and of mitochondrial gene sequences, microRNA complements, and a Xenoturbella, are bilaterally symmetrical marine worms that lack phylogenomic data set. Analyses of mitochondrial genes recovered several features common to most other bilaterians, for example Xenoturbella within deuterostomes18. However, limited mitochon- an anus, nephridia, and a circulatory system. Two conflicting drial data (typically ~16 kilobase total nucleotides, 13 protein-coding hypotheses are under debate: Xenacoelomorpha is the sister group genes) are less efficient in recovering higher-level animal relationships to all remaining Bilateria (= Nephrozoa, namely protostomes than phylogenomic approaches, especially in long-branching taxa1. and deuterostomes)2,3 or is a clade inside Deuterostomia4. Thus, The one complete and few partial mitochondrial genomes for acoelo- determining the phylogenetic position of this clade is pivotal for morphs are highly divergent in terms of both gene order and nucleotide understanding the early evolution of bilaterian features, or as a sequence19,20. Analyses of new complete mitochondrial genomes of case of drastic secondary loss of complexity. Here we show robust Xenoturbella spp. do not support any phylogenetic hypothesis for this phylogenomic support for Xenacoelomorpha as the sister taxon taxon21. Ref. 4 proposes that microRNA data support Xenacoelomorpha of Nephrozoa.
    [Show full text]
  • Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation
    CHAPTER 9 Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation long the evolutionary path from prokaryotes to modern animals, three key innovations led to greatly expanded biological diversification: (1) the evolution of the eukaryote condition, (2) the emergence of the A Metazoa, and (3) the evolution of a third germ layer (triploblasty) and, perhaps simultaneously, bilateral symmetry. We have already discussed the origins of the Eukaryota and the Metazoa, in Chapters 1 and 6, and elsewhere. The invention of a third (middle) germ layer, the true mesoderm, and evolution of a bilateral body plan, opened up vast new avenues for evolutionary expan- sion among animals. We discussed the embryological nature of true mesoderm in Chapter 5, where we learned that the evolution of this inner body layer fa- cilitated greater specialization in tissue formation, including highly specialized organ systems and condensed nervous systems (e.g., central nervous systems). In addition to derivatives of ectoderm (skin and nervous system) and endoderm (gut and its de- Classification of The Animal rivatives), triploblastic animals have mesoder- Kingdom (Metazoa) mal derivatives—which include musculature, the circulatory system, the excretory system, Non-Bilateria* Lophophorata and the somatic portions of the gonads. Bilater- (a.k.a. the diploblasts) PHYLUM PHORONIDA al symmetry gives these animals two axes of po- PHYLUM PORIFERA PHYLUM BRYOZOA larity (anteroposterior and dorsoventral) along PHYLUM PLACOZOA PHYLUM BRACHIOPODA a single body plane that divides the body into PHYLUM CNIDARIA ECDYSOZOA two symmetrically opposed parts—the left and PHYLUM CTENOPHORA Nematoida PHYLUM NEMATODA right sides.
    [Show full text]