HETEROMETALLIC COMPOUNDS: CLASSIFICATION AND ANALYSIS OF CRYSTALLOGRAPHIC AND STRUCTURAL DATA

Clive E. Holloway1 and Milan Melnik2

1 Department of Chemistry, York University, 4700 Keele St., North York, M3J 1P3. Ontario, Canada Department of Inorganic Chemistry, Slovak Technical University, Radlinskeho 9, SL 81237, Bratislava, Slovak Republic

This review covers the heterometallic complexes of aluminium, excluding the many mixed oxides, and complements two companion reviews on the inorganic and organic complexes, respectively. There are nearly three hundred examples with metal atoms ranging from two to eighteen per unit, including aluminium and metals of both the hard and soft classification. Summaries of metal-metal distances are given in each section. The degree of complexity ranges from from dimers to polymers, with a wide range of types and donor atoms. The most common sterochemistry about the aluminium centres is tetrahedral.

CONTENTS 0. ABBREVIATIONS 1. INTRODUCTION 2. HETEROBINUCLEAR COMPOUNDS 3. HETEROTRINUCLEAR COMPOUNDS 4. HETEROTETRANUCLEAR COMPOUNDS 5. HETEROOLIGONUCLEAR COMPOUNDS 6. HETEROPOLYNUCLEAR COMPOUNDS 7. CONCLUSIONS 8. ACKNOWLEDGEMENTS 9. REFERENCES

0. ABBREVIATIONS ac acetate acac acetylacetonate bht 3,5-di-iso-butyl-4-hydroxytoluene Bu Butyl c cubic C„H3S thiophen C5H3 cyclopentadienide C7H13N 1 -azabicyclo[2.2.2]octane C10H3 diphenyl C20H14 triptycene C24H24 [2.2.2]paracyclophane cod 1,5-cyclooctadiene cp cyclopentadienyl cp* pentamethylcyclopentadienyl cpb pentabenzylcyclopentadienyl dchd bicyclohexyl-1,1 -diol dhat 1,2-dihydroxyantrachinoate dhmp 1,4-dihydro-1,4-naphthylenate dme 1,2-dimethoxyethane dmf N,N-dimethylformamide dmp 2,6-dimethylphenolate dmpe bis(dimethylphosphine)ethane dmpi N,N-dimethylpiperazine dmpm bis(dimethylphosphine) dox 1,4-dioxane

411 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds dpb diporphyrin biphenylene eb 1,4-epoxybutane en ethylenediamine Et ethyl giy glycolate m monoclinic Me methyl mes mesitylene (1,3,5-trimethylbenzene) or orthorhombic Ph phenyl Pr propyl tbame 1,1,1 -tris(((5'-bromo-2'-hydroxybenzyl)amino)methyl)ethane(3-) tg tetragonal that 1,2,4-trihydroxyantrachinonate thf tetrahydrofuran tl toluene tmeda tetramethylethylenediamine tr triclinic trg trigonal

1. INTRODUCTION The chemistry of aluminium is an active area of research particularly in the areas of catalytic activity and biochemistry. Up to end of June 1995 there have been numerous studies on the structure of aluminium published in the literature. These include almost five hundred coordination derivatives [1] and almost four hundred organometallic derivatives [2]. This review covers the aluminium compounds that contain at least one other metal atom, transition or non-transition, and they have been classified according to the total number of metal atoms present.

2. HETEROBINUCLEAR COMPOUNDS The crystallographic and structural data for these compounds is presented in Table 1. There are over sixty such derivatives with several types of bridging, of which the distorted edge-shared tetrahedral is the most common. A yellow-brown compound [3] has two centres, C3AI and FeC7 connected only by a metal-metal bond, completing a tetrahedral environment about the aluminium(lll) atom and eight coordination about the iron atom (Al-Fe = 251.0(2) pm). There are two species [4,5] in which three hydride ions serve as a face-shared triple bridge between AIH3CIZN and WH6P3 chromophores [4], or AIH3C2 and ReH4P3 chromophores [5]. The Al-H distances range from 168.4 to 190.8(52) pm in the former and from 176 to 210(8) pm in the latter. The mean AI-H-AI bond angles are 96.8° and 92°, respectively. The ΑΙ-Re distance of 250.1(2) pm [5] indicates a real metal-metal bond, but the Al-W distance [4] is not given. Distorted edge-shared aluminium tetrahedra bridge through several donor atoms, for example: two hydrogen atoms [5-8], two deuterium atoms [9], two O-donor [10-13], two N- donor ligands [14-16], two carbon ligands [17-21], a pair of chlorine atoms [22,23], bromine atoms [24], iodine atoms [25]; hydrogen plus a C-donor ligand [26,27], C-donor ligand plus a chlorine atom [27-30]. The shortest reported metal-metal bond is that of Al-Sm (229.2(6) pm [9], but for many examples the Al-M distances are not given. The mean Al-L(bridge) distances increase with covalent radii of the donor atoms in the sequence: 177 pm (H, 33 pm) <181 pm (LO, 73 pm) < 190 pm (LN, 75 pm) < 210.5 pm (LC, 77 pm) < 221 pm (CI, 99 pm) < 239 pm (Br, 113 pm) < 256 pm (I, 133 pm). There is a geometrical relationship between the Al-M distance and the Al-L-M bridge angle such that as the former increases the latter opens, for example in the series of doubly hydrogen bridged compounds the values are: 250.8(2) pm and 89(5)° [5]; 274.7(4) pm and 99(4)° [7]; 275.5(4) pm and 105(3)° [7], For the doubly oxygen bridged compounds the values are: 277.8(4) pm and 94.3(4)° [12]; 329.8(7) pm and 107(4)° [13]; 341.1(6) pm and 105.5(3)° [13]. The structure of a red (ΑΙ,Νί) derivative [31] is shown in Figure 1. The aluminium atom is 49(2) pm out of the C(1)-C(2)-C(3)-C(4) plane with a dihedral angle of 20.44° between the plane and the C(1)-AI-C(4) plane. The aluminium is tetrahedrally coordinated while the nickel is eight coordinated (Table 1). The Al-Ni distance of 274.8(1) pm indicates a metal-metal bond. There are two derivatives, yellow-green [32a] and yellow [32b] which contain aluminium and magnesium. A tetrahedral Al atom and a distorted trigonal bipyramidal Mg atom are connected through a hydrogen atom plus 9,10-dihydro-9,10-anthrylene [32a], with the hydrogen atom replaced by the oxygen atom of an ethoxy group in the yellow example [32b].

412 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

A five member ring incorporating five different elements has been found in two bimetal derivatives, Al + Li [33] and ΑΙ + Μη [34], In the former, the ring is -LiPCAICI-, and in the latter is -MnCOAIBr-. In both derivatives the aluminium has tetrahedral environments (AIC3CI and AIBraO, respectively). In the former the lithium is four coordinate (LiN2CIP), and in the latter the manganese is six-coordinate (MnC6Br). P h?S

Fig.1 Structure of (cod)Ni^-C4Ph4)AI(Ph)(Et20) [31]

The molecule of another derivative [35] contains two metal centres connected by μ-chloro and μ-butadiene bridges. The chloride bridges Zr and Al unsymmetrically (Zr-CI = 270.6(1) pm and AI-CI = 222.6(1) pm) with a Zr-CI-AI bridge angle of 112.2(1)°. The aluminium atom is close to tetrahedral geometry. The μ-butadiene bonds aluminium via one carbon atom (Al-C = 196.6(2) pm), while the zirconium is bonded by two carbon atoms (Zr-C = 234.8(2) pm and 252.5(3) pm), giving a C-Zr-C angle of 35.3(1)°. In addition, the zirconium carries two rf-cyclopentadienyl rings. The structure of a colourless orthorhombic (Al,Li) derivative [36] contains a six-membered heterocyclic ring, AI(C-P)2Li, in which the chelating CH2PMe2 ligands coordinate to the "hard" lithium atom via their soft Ρ atoms, and to the other "hard" aluminium(lll) atom via their C atoms. A tetrahedral environment about lithium is completed by another chelate, Me2NCH2NMe2, which coordinates through its Ν atoms (LiN2P2). The aluminium atom is also in a tetrahedral environment (AIC4), and the ΑΙ-Li separation of 402.0(5) pm is too large to be considered a metal-metal bond. There are several derivatives in which two metals are bridged by a single atom, for example: hydrogen atom [37-39], O-donor ligand [40,41,43], oxygen atom [42], N-donor ligand [44,45], C- donor ligand [46-48], and a chlorine atom [49-51], The Al-L-M bridge angles range from linear (180°) to 66.7(1)° and correlates with the Al-M distance, such that as the latter increases the angle closes, at least for those examples for which data is given: 273.1(1) pm and 116(1)° (M = Ni) [38]; 264.9(2) pm and 84.65(23)° (W) [46]; 241.1(2) pm and 66.7° (Ir) [45]. The mean Al-L(bridge) bond distance increases with the covalent radius of the bridging atom in the sequence: 164 pm (H) <181 pm (LO) < 194 pm (LN) < 218 pm (LC) < 227 pm (CI). While the Al-O(bridge) distance found in this series is exactly the same as that found for doubly O-bridged derivatives, the values for N, C and CI are longer than those of the corresponding doubly bridged examples (190 pm, 210.5 pm and 221 pm, respectively). By contrast, for the Η-bridged derivatives the opposite is true (164 pm single and 177 pm double).

413 Vol. 19, No. 7. 1996 Hcterometallic Aluminium Compounds

_ CN M· Γ- Η Ο • • CO r- r- in • • Ο in « ο • CN CM rH rH 00 VO CN co 00 rH «. «. » «. , ν «· ·> s rH w — ^ * » ν » rH σ» rH ο σ~> f» rH Γ- r- p* Η Ο Η ^ VO —. CN CO σ» VO vf ο ro co cr> 00 VO CO rH vo in vo τ* r·» ·<* Ο I ο rH CTi CO c^ er,i n CT» in CT» r- r- CO VO CO r- CO σ> rH r- rH ο co ω 00 in r* oo rH Tf r- co CT» CT» rH Γ-- CN rH rH rH rH rH rH rH rH rH rH rH rH VO rH tH rH s X X 1 rH Ol rH rH =1« A IS ft u < U ü X 53 U υ X > 04 a* χ υ U cu X u X 04 ΛΒΙ5ΒΟ » » « » * W X » X * «, W ffi κ * * „ Η * Η ^ s u u u u X χ X a zi. n. X X (h X X u =1 =L =t X X u Χ κ ftKZSO

"β — α CN iH CN co Η CS co m

s J Ο CN Ο Οϊ I I in a\ in co r-H ι-1 CN < <

in - C"* > m rH * co σι - ο .. Λ Λ * rH CN CN CN ^ι VO rH

Λ A d) 0) Λ U Uffi rH « S X Em X Κ U Ο Ο zi. ZU =1« 04 =1 υ IK 04 =L u 1Ä 04 HZ iO

Ο CN S a) α) ιΗ rH CN CO CN CN CN CN U CO 04 04 Ο ο n fa U U Ζ CO Γ- CO 04 CO ^ CN VO CN CN n ο u ο X m W X W a ffi X Λ Λ rH <1> rH ffi rH 0) rH 0) rH •H υ α < fa < Ζ 5 < X < PC <

CN CN CN CN co in CN rH CO w f-» 00 00 in τ* Γ- »^Ο,ο VO cn τ* Ο rH vo O • in • · • CN • rH VO in ο ο CN Ö « σ\ CN rH 00 CT» ο tH σ\ rH ιΗ rH

co CN CN m CN 00 in CO S S Ε ο· α α CN CO σ» vo CO ο in in vo in vo Ο ü ο in er» VO tH Ti in ο ο rH 00 a\ CN rH VO in cn 00 in co ^ O CT» r- CO CO ο •H 10 CN ο in co in in η r- ο rH rH rH ·>* Λ rH rH rH Η rH tH rH rH tH rH rH rH Η tH rH Ol (Ö rH Μ Ο tn Ο CQ « rH >1 Ο rH (Ν h Λ h Μ μ es Ο 6 ο, ρ. Ο Pi CO (β Ε ο· Ol CN 4J Οι CN •U W >, CO Μ CS U w I rH ο _l c α W CS f W S < CN 0 φ φ 0 Φ CS CS •Ρ Q m 0 m • Ά Π p-t μ S ro * S3 rH nä Φ rH ω (0 λ a χι CS φ ΠΓΗ rH "S rH a —• rH Ö φ Οι υ Τ « X — < « φ ~ rH Μί Φ •Η rH Ο • es s m g ϊ CS · cn >1 cs «! rH >. •Η J μ Ol — ~ ο 0 A co ο Λ CS Η CO CS W 3 S •^O rH Οι es Η Ol — Η φ Ol — rH φ cn ,—, 0 J Ο tl U rt COrH rH Φ w ιΗ φ a rH φ w rH u Φ u φ a ι 4J a I I CQ 1 IÖ ί> id a 0 a ® >ι X ι >1 Οι Λ Id α Ol =L α) a =L ο < — tu — — < En

414 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

«-V ,—..—. 0 vo rH (S CO ei σι rH CN Ό 10 r» in ιΗ Η ΟΜ) m f —- —- «. — — * „ "— — —•—• -—- — -—- — •—• -—- CO CO CO α — -—· —• ,—. « in rH ro in rH VO · Ο VÖ οC N co COC S CN CN φ —r*» I ΓΟ CO Ci PI 0 ^< 0 (Νι η CO 0 imrom^corHChr^Tiivoin ro CNC Nr H —«· w — · rH • —- > • • • • · ( -— —- — Ο in 0 00 COV O σ» ·<* Ο •Η 0 0 C-—O C· NCO 0 CS c rH• ID· ·0 Ο· ο • ο· co in in rH• CO· > ο cn COC O * rH σ> CO r* vo f* rH Οo\ vo 00 <11OlHHr i οο cnσ ι CO rH rHΟ co m I CO •H rH rH 0 Q Gl Ο rH Ο 0 Ο Ο Ο ο rH U Ο rH U 0 G =LΟ 5 loon ΙΟ 3.0 υ ΙΟ ι iO HO HO « U 0 ν «. ® a U 0 VX W 55 55 « . »υ Ο » H ·ü. * * ο ν * ΗrH rH » » rH rH Q Q Q 0 s 0 ο ο ο - ο ο * 000 s ό ό > * Ο Ο * ο ο *ο ο * Κ « « U U Κ « W η u U X X Iii Ρ S5 C 11 ΙΟ aio ü a.O a. i η ζί,ο

eg τ* <ο in co in m r- · γ» σ\ r- ο r* (Ν σ»

ΓΟ — *-* cn ß ^ ö ο Λ 0J νο co Ο .Η co ιΛ •ί ο* vo OJ .—. » — CT co - ~ - ·« «Η - ΙΟ τ* τ* vo ^ rH in co ' " ·Η """ Ο * w W W « Μ " Γ*· r- σ\ σι cd σι σ\ σ\ co co 1 H in ν σι v cn m ^ v , w in 10 in co τ* in t- a ID 4J Ο 0 OJ 0 COi d σ\ σι ιο σι ο cn ID rH COrH rH p^ σι 0 CO m σ\ CO rHm [- « ID rHσ ι C·- Ol φ a γη W ÜXH a υ a Sa OD Q Ο rH Ο Ο a ο Ο 0 Ο Ο 3.U Ο ι υ ιυ Ο no a. 0 I Ο 3.Q Ζ iü 3.0 Ο ΙΟ ΙΟ ο ΙΟ IO IO IO IO

* w u a Ο Ο rH α Ο Ο ο ο Ο 0 0 0 Ο rH •rl rH •H rH Ο rH β rH •Η ΓΗ •Η rH Ρ rH 3 < Ο tn «CO tH It £ < U1 << < J < Ο C U

00*ο -» 0r-

^v CO 0 ^ rv cn co r*» rH CO ΓΟ CN VO rH CS CS vo in vo CS O rH vo Η n Γ*· Γ*· t* CO Η CO σ> vo in r*» vo σ\ cn cn 10 ® [* VO τ* VO σ\ in in co r* co ο in co CO 0 rH CT> O es es r* vo 0 t^ vo 00 Η

κ) β ο Ο n e CN n oa ΟΛΗ Ο ft^ ί e p. 6m e jj ftc n

L) α α) CO rH α) 6 ιβ u Χ οι Ό Ü rH CN Φ „ Ο V CN CN ω < ε a rH (0 —. m CN CN a) rH ι-Η CN ν Φ CN U 10 0 10 -—. — rH « U ο ^ CN 0 -—- .— φ 0 φ Φ Ο Ο 0 1 Λ ß Κ ι rH k •H Ο Ο rH "rH φ JQ rH 3 -H •H •H 3. Ο ι a < 0 Ο Ο h J s ~ Μ 0 (0 0} > CN Ό Η Γ- Ο CN CN ro ro s — CNW s ro ro -H •Ρ Ö — Ο ro Μ .—. •P J-> 0 Ο J3 Λ 0 Ü φ φ a) Η Η 0 S rH a Q U Ή Η ω rH CN 0. Λ rH It) S3 35 ρ CN —- Ü CN in I « Λ ι — 0 JJ 1 w 0 0 I '—- rH 0. rH α) α 4J 0 I Ό 4-> I rH 0 Μ I rH 0 n) I rH Λ υ < CQ ο Λ — rtl — — It — <

415 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

CO CD • Ο CO in ^ CN . in · rH Γ- rH rH CS β β CS Λ® «.Λ Η »Λΐη -- * VOrHOOTii'<*^«inrHr-COfr>CO CN CN CN CO Τ* rH CS co in » I > "ί > es C) CS CS Ή Φ Ησιΐ^νοοσι^ιητίΐη^ιιΠιηα) in f η ω o m CO ro rH Η rH CO Η Ona· Οι η ω es ιΗ in ο incocoinrocMr-OTHrHincMcoco 00 rH CM in Γ- CO σι c foiocor-ioco.ut-· tJ σι CS C-« CS COiHiHVOC^COCOrHvHVDC^COc^o (Λ rl Η CD (Λ Η Η ο φ Η ο rH CO Ο PI 0 Η 0 CS ο ο CS CO CO ^ τΗ rH Η Η rH rH > Η Η rH rH Η β Η β rH rH rH rH CS •Η ·— Ο Ο Ζ 55 a υ Ο ft Old Ol cj Ο m Π.Ο ΙΟ =3. =1. 112! =LO ΪΟ 1)1 υ iu iu · OUU » »OOUÜ - * Ο * 55 4-) Ο 4J - > cj CJ υ » - - U ν . σ\ » " »ΟΟ * * * % Ο Ο «· 55 * »S5S500U Ο * 0 ο ο - ο ο α υ « — α ο υ υ υ η OUO ϋΟ Ο υ Ο zLzLO iZ =1 β ο α 11U iiOiü CJ υ ÜU i d.rH Ü55ZOS5CJ

<Μ ιο νο CO — Η rH Η νο «. rH ιη rH in ^ ο in co CO Η (Ν CO ο οο CO Γ*»

^ ο ~ Ή ~ ΙΟ _ — , in Η Tj. τ» ω rH π • Ξ ιο ® ίο Ξ • , w CO CO Ο ο in m τΗ ^ · · ιο c; m^inm01^«!^!--!»01 νο νο in r- (Ν CM rH VO • CS ο CO . \ ιη <Λ Μ I σ\ Η ^ ^ rH τ* Ο ^ C0° O^PovoJJr^rH^iTlLn·^ c* ^ cm cm r- co in r- ro o\ ο -a· 10 CM CS co r- CTl ro g Χλ ρ CS 4J α ω α α) a a Ο SO Ό 4J Ο WO Ό JJ 55 Ζ Ζ «SS Hu ο ο S u o u Su uu So u 3.U3.0 0 CJ ϋ Ο Ο H55 =LK Is ΪΟ Α Ο 1U υ α ο =1 U iu ioioua. ο =s.o u

CS CM CM CM CN CN u U £ Ζ U Ζ CN CN CO η CS CN VO CN CN CN ** rH rH rH rH Ο Ο ο Ο a « 125 Ο 53 u u U υ υ U U U CJ rH Λ rH TJ rH •Η Η •Η rH -H rH 6 rH Λ rH rH k < !Η < » < J < J < J C CO < ίΗ < Ν < Ν

I- Ο CM w rH τΗ rH Λ Λ — — 00 in CO •—· rH r1 H rH rH in •—- m o\ CO — — — •—• Γ- vo CM cn co in in COΟ CM ΙΟ • rH r— m CM in cm in ΟΟ Γ- • • • rH Η CM CO ^ • CO· VO r- ^ • rH· in rH rH cn CTl vo r- vo vo ω 00 cn

^ ^ Λ CO CMCT l Λ ο Ο CO CMC M a\ vo CM Η CM Γ- rH Η r- w — in co co rH CM CM ΓΟ rH CS rH rH VO τη in vo in co in CO rH CM σ\ ο CM cm in r- in 00 VO CO CM Ο CO VO \o σι CS CO COΓ - CO CMο <Λ Η Η VO 00 Γ— CO COC O Γ- iH in vo r- γ- VO in r— CTl Η t^ CO ο vo rH rH σ\ ο ο Ok CM COΓ - r- vo CM VO Ο ο οο σ» oo I- rj· ο lo rH rH CO CMC O CO COC O r- m in rH in CO r- ο in co CT» r- t^· ο <3\vo r- m σι σι CM rH rH CM rH rH Η Η Η rH τΗ rH CO rH rH τΗ rH rH rH rH rH rH rH rH

υ Ν es CS μ a Κ β h «a ε u e u ο & 4 ß o< ε Ο ω *J Ol ΙΟ Ο Οι *J CU ε οι f

CS rs φ φ CS CS CS •Η a χ φ Λ Ό .—- ID J Η ι-Η a >· CS Ζ CS CS CS < , . rH CS dl CS V 4J 's § > HS CS Α ^ s β - s a — ω 3 0 1 0 CO ι 0ι <υ 0 —. s -H φ d υ Φ 1 φ I φ g Λ H •—' . 1 CS >1 J a >1 Μ >1 •Η Μ c w i Λ =1 S "ft Ρ es o, 4J CS CS CS·,, 3 8 rH —' 0. — -Η W 4J '— μ ~ ε 0 — 8 Λ 3 Ζ rH φ Ν ο ι-Η Ν Ο CJ 01 ε ι 0 ε ι Φ < CJ n) Λ — id 3 ι 0 * φ CS CS ι Λ CN CJ 1 •Η Ό dL ο Ό =L H •Η Ζ OD Η a PQ ZS. Ο Ό α α Λ α 0, Φ =1 rH — — J • —• w υ ο — ο Ε —'

416 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

Ο rH CN CO CN CN CN CN CS CS

Λ .—. Ο 0 rH w rH —' •— >—» rH CO CO τ* rH CO eg <Ν CN rH CN CN rH CN CO CO CCNN CN rH •— CN VO rH rH·. rH 00 rH •—· — —' '—' — — —- — w «—· —- — —1 —' "— —' • CN · — —- cn ro 1 0 CO Ο CN co ιη es in co cs in 00 in r- m • • 0 ω 00 Ο • • • • rH rH• CO· a\ rH rH r» rH CO 0 VO 00 • · · · • · LT) CO CT» CO rH σ> cn co CO 00 r» rH CTi α G a\ rH rH Γ» rH rH rH cn rH rH r^ 00 0 0 rH CO CO rH CN 0 0 rH CO fO rH 0) Φ rH rH rH rH rH Ή rH rH rH Η rH rH rH > > rH U U -Η •Η U «H PQ U CQ U u υ U au U Ö> 0) iu Η Η =1« U U U =LCQ U u PQ =1 ο iü ü =tu =LU » U U - CQ PQ PQ « CQ PQ Η ·» *, υ - - Η U * •Ρ 4J rH iH «1 V u U - «. « Μ u ·> « s υ υ - υ υ a υ u «» 0 u 0 0 U ühh PQ η Μ U Μ PQ CQ U u 0 ÜU =1 =1 ü iiü ZL Π α β iiu υ zLzLCQPQ PQ ÜB PQ

00 vo ß • 0) Η in Γ- · rH rH > Η .—. «, CN ν •H CO CS m CN CN Ö> w rH rH •—• — w ι 1 in 1 •— 1 in I Η 4-> in • • ro in • 0 0 vo CO rH CS CN

0 CT IT) ο rH ΓΟ ^ in CO 0 vo ro CN rH vo * rH CS ^ CS —, rH —. ,—. ^ * - * a. ,—. ,-s CS ^ 0 ^ r^· .—. 0 CS η ~ ιη ^τίιη 1 VO r·» vo VO rH Η rH rH CO rH Ο rH rH Η CS rH in rH CS iH rH CO co γ- co cn r- CTi in rH Ο vo VO VO VO ^ CS CS rH ^ CS CS rH rH CN CN CS rH CS rH rH in er» CT» rH £ 0 cn cn 00 r- cn σι ο σ» ^ι 00 0 00 CT» in co r- cs ^ CN VO vo CS (S CS 0 rH rH CN Ο o\ CO TH rH rH vo in CN rH rH Ο c- in Tll 1-4 CiOn CS ΓΟ CS 00 in [->• CS 00 in cs 1-1 rH CN CS CN CN CN CN CS CN CN CN CS CN CS CS CS CS CS CS

ω

rH rH n u u Ο ra Vi ta Ο μ Vi m m CS •qi H ·<» Ο CS a) CS CO II) m OJ -31 rH Η tH rH rH II rH rH H rH Vi a ΙΗ Η Vi Ε Μ ε 0 υ Ο U Ο CJ U S Ο υ m u m -π PQ U Ο -H CQ •Η rH u rH Ή Η Vi rH -rl rH Λ rH Vi rH Ό rH Vi rH Vi Η (S Vi < Ν < « Ν CS < Ό < >< CN < Μ < - < Ν CS < *J < X V

(N

r-

cn ro a> CI CN CN ro in r-

cn r- r- «η» ο νο ο co t-- co

Η [v Μ Ο Η CDOh CO (Ν U5 α> ο ο co CS ^ CS CN rH t^ Γ0 η m η CN C0 ΟΦΗ 00 CN VO CN CD \o σι rH co CO οι ο Ο* eg σ\ ηιησι rH CN rtrid tH cn

β Α -ί 6 ft S ft S ft ^ e ft ^ S ft

CN g> S I ι CJ Vi μ Ο U Ν og (Ν N, CS Ν 1 μ ^ μ u " α rH rH (Ν m rH Β χ «S 1 es •d "rH " I W 0) < ' =L rH ΓΟ«. r-, αι Φ < CO ^ i U3 U S a a es μ •^a—O C0„ r Ε „ μ cn„ m W rH rH Ί - UH « rH υ -» X < cn μ ω « μ 0 .—. CS CS Μ Ν O U rH υ CSO ffi m es Vi VD m m •0 cs ο ι α) \£> KO υ I rH D Ε f> I rH «J Ο 1 rH 0 α ι 2 >i ft CJ O — =1 < μ ft rH υ i < τ) - 5 < μ OS'-' — Ο — — ο υ

417 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

CO m CS \£> CO σι Οι (Λ τί Ν m c- ι» m m ««{SHHH vo γ- > ^ι Η Η ΙΟ Ο (Τι ^ ιο Ol co m η HHri*f®ncoooin ι- ο in οι ID CD m -sf in co r» co r- co es οι ιο MiD^irtiüißr^inH ίΤ) rHr H t- Ο Ο Η Ο γΗ α OlOHCDHn σι ο rH (DHnHOHCOniN Η Η Η Η Η ® rH tH rH rH Η rH Η rH Η Η > •Η Οι « U U UDO iH iH iu au u au iu ο iu au υ ·. ·.t I 4J ν 4J - - u - . - - « U - - - - - u - - Η Η Η Η . Ο ο Ο KU .«KG a u - ««DUO - U U Ül- υ ααΐ ι α α G α1Uiia α au α α α α aU a a

Μ m rH rH

rH Ö CS a — . ^ rn <ü _ „ ο ,—. in ο LT) Λ in > VO U5 in rH co Ol rH Μ rl Η ^ •H in σ\ σ* in CT» CT\i n ΓΟ rH cn ro CT» TH ro Ö) TH VO 01 CN CN iH CN • σ» CS CS m CO CO CO CO CO CO cn in •»ι rH «ί VO VO 1 in ο I CN Ο Η in in VO Ο Ol CO οι ω es σι Ο 00 in CO in •M TH vo Μ Ο CO ^ iH ο ro vo r» Ο CO σ\ rH CN vo r- CO τΗ in 00 vo in in in in r- rH cn σ\ ro rH 0 Η Ο 'J Η CT» CO ^ Η ο CN CT» iH CN oi m w-t rt L95 . 00 Ο rH CS CS oa es Μ (Ν Μ Π CN rH CN CNC N τΗ CN rH τΗ CN CN CN CN CN CN Ο) Φ 3 ft 3 ft 3 ft 3 ft S ® S ft Η Η κ u ma ο ow u «a uu oa u (Da ο uns u «a u ou u So u υ 3.H if a a U α au Ο a a U au ο a a u α au u a a u α au u a a u au au

tN μ χ μ « « w a CD AI » Ο) « CN « CS « CS rH CI Γ-Ι Ο rH (Λ rH co rH U Η -ri Η -Η U u U U υ u u U U U U Η H Η h μ Μ IH Μ Ν < 4J < 4J Μ Ν Ν Ν Ν

es ro es co αϊ ο Ο CS rH Ol CO 00 Η cs in οι es νο CO CN CO f. m CS rH es η ιο Ο CO CO t*- CO rH Η Ο ^ co rH CO ο vo ro ο <Ί <1 ^ CS rH Η CN rH Η CS rH Η

rH Ol CS U Ol CO 6 04 co 6 a

CN CS •Η •Η ι · Λ Ή 3 CS rL w ο 03 3 η 0) η m ω —* GQ .— £ Μ τΗ rH CQ 0) Η CQ 0) rH Ν Η 'Ö Κ 1C Φ a rH αϊ χ < 111 s < CN M φ ι —' ιΗ ι Λ! τΗ ι •—' rH 1 ' • — rH Μ n 00 Μ α μ α μ α 11 .—. VO < •—• « 3 -—- Λ 3 •— a 3 — a 01 ffi — Μ ιχ> 0 n Οι ο μ VD 0 μι vo VO CN vo Μ Ν U ι—t Ν υ rH Ν u rH Ν υ •Η U Η η <0 CN I 0 CS ι u 0 CS ι 0 CS ι Λ — r-l vo Ό 0. α 0 α α Α υ α α υ α α — < u υ * ο — Οι — 0 * ο —

418 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

α) ^ α> CN ο ^ Γ» Λ · OJ 00 «. ^ VO rH -—. ΓΟ • Λ Λ CN rH cs ro cs · — τΗ (Ν — Γ- VO * rH ^ C Nw CN rH «—» * * — — —- rH Η rH — ».·.». Η VO — σ\ rH rH rH•— · rH » <Ν rH r-4 Η r-i Η - VO in 00 ο σ\ •— — — σ\ -— τΗ -- τΗ — —' —' — — — -- — CS coΗ rH <Λ σ\ Ή σι C0 rH U5 LHVO ΓΟ ^ ΓΟ · • · rH ΙΟ ΟτΗ σι ro id hi » τ*• C· 0 Γ^· · CO • ιη · νο vo er* ro od σι σ\ co Ο Ο Η σ\ 00 rH C- COο in • ^ ο 00 rH co. r-· r·^ 0 0 • · · ·ΛΗ \0 τΡ σι Η Η Η rH Ο rHσ » ο VO (Ν «Η rH 00 CN O tms mσι 1σ0ι cmo Η· oo ιο ο η m ν ο β CO Η· Ο rH Η rH rH Ο rH rH rH Η ο CD CS 00 ΙΛ Η ο HI rH rH rH Η Η rH τΗ rH > U» Uκ U«ι PH rH ft rH rH τΗ Η U υ U ü ft ft α y Ο U υ υ υ U ΙΟ - zi. Η u ü i =tu Ο iü ο υ V. U Ν »HU * Η * » % - rH «»>»·» Ο DU» κ υ υ ν - - ο U U * Ο ο u u - U U U ftu u u u u u υ ο - - ο ο ο - ÜU =1 =1 ÜO Λ ZL iu i =1 =1 mu ZL Ο U ο ο ο a ö ÜO

rH es σι rH * CSC M ^— rH Λ (Ν Ο h — CO• — CS • Μ Ο 1 Ο « ro I 00 . · • • σι ο —ι η 4 · CMΓ - Γ- CN ΓΟ Ο rH ro γ* σι f* ΟΟ CN0 0 Η CO CO

Γ- Η· Η Ö in Q) ro 00 m CO ro ro η CTi CNr H CS Η ro rH ΓΟ ΓΟ rH•H> ro η m VO Hi Η Γ0 — r- —- '— ο 0» in • CNC O in vo r- VO CD ΙΟ rH rH ro vo oo Γ- t^ CS r» σι (Ο ΙΟ r^· ro 00 in in r- ο CNV OV O in oo ro 4J in r- t- Η σι ο CS <ο CNc n wCN CN ο ro τΗ in in rH CN σ\ 0 σ\ cn σι CS ο CS ΙΟ ο Ο rH VOΗ rH f- CNC N CS CSC N CN< N rH CN CN CNß rH rH tH CS CS rH CS rH CS G U • Ό u ro· Di rH 3 rH a rH Φ rH Q< Λ 4J 0 4J 4J U

— ro h· ID Η Cl CD Η Η rH (Ν — ΙΟ Η CO — — ^ Cl PI CO οι in io ChOi i nC Ocs rH Γ^ [*· ΙΟ η· r- in t^ in co ^Plri σι σι co r- h· in ιο r- ο ο rH I- CS σι σι r- Οr- ιCοO οrH co r- hi λ in in σι hi σι co σι fs. rH ιο co Η 00 ^ ο cd ο rH rH rH tH

CS CS Β ft f β η. ι» ε ο ω β Pi Hi β 0- Hi β Λ Hl

111 i CS ι Ε JJ ,—. 0ι — CS β W CS —• CS •rl , , ω < Κ 4J Φ Ο w CS —* φ ο ο ι ω Φ ι ω Β CS -—- m Öl Φ rH I CS Λ rH Μ =L rH U « 1 u ö a ο α — < Dl 1 ο Λ rH id ι I — Μ & — —O l ·^< i ο —- η Λ! Μ 5 Λ •Η ·-' a c » 2 Ö — CO *** CS CO 0 55 ~ ro id 0 ro Id 0 •H 0) .—. H Μ rH H Χ — Α Α ~ J3 rH — Λ rH Η X Ό Μ U CJ Η Ό Ν SS Ό Οι Ό ι« Ό rH i« Ό rH ' αι CS -—- 1 Φ CS Οι 0 — Φ Λ ι Φ Λ ι Φ ö rH rH ΙΗ Ol « 4-> ΙΗ a υ 0 ιΗ Η 4J Λ >1 V Α >1 ο υ < υ CJ — π) —' ο u - < —

419 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

λ XI t- Γ--

α) α) — — γο νο νο ιη ο Γ» —· CO CO . S · · · . · • r- rH — — • in CN CN 0* ^ Η ß νο -ö Η • Η σι Η Φ σ» τΗ Λ π Π τΗ CS LnrnmirinvoC^C^HHHHHH > CS ιη ΓΟ οο Tj« ro νο - * ΓΟ rH rH rH 04 •Η ι I - Λ φ νο 01 ιη CO ι "tf CO •— "Οι m » ν σι rH r^ in rH ~ ~ Ο ^ CN > —· ιη η cn Μ• Π· ιη· Wνο τ·ί •η • CS 04 ο m rH ID ID ο σ\ O^HHOCOM^hoOHHcOrn 0 ο C0 Ο rH Ο Ο (Ν in σι rH Ο rH * rH CO en τ-ί rl Η Η τΗ Η Η Η Η Η α rH τ-Η rH χ-\ σ> rH rH Η in rH U rH ρ- ο υ (U ο m u üuh 0ι 0. 0, m σι α «. - - m μ υ γη «• »υυυ ο υ ϋ U Β Ϊ5 υ ΓΗ rH b Μ ·· CQ * U ι-Ι »H ·. * * U Η υ Ζ CU CU s υ - - ·. ·. ΐχΐ J3 h Ο tS ο Ο υ on ^ - ÜÜHHH S Ρ. « -SN ffi ·. a q a a - « α =L lim Ο ffl υ iiUUUU ϋ υ 2 ft 2 iü ο üa « υ cj a cj

CO i in ι co co co id cs cn μ o- rH co rH CN rH

VD _ σι in *co* ID c β CS CN CO CN φ 04 0) 00 CO ,—. - 04 > ID 0- > ι- Ο- ^Ji VD Η rH CN Η CN ; η in m co . „rH ,—. rH CN CO •Η 1 ο -—' Mi - -—- , .• — VD 0-Q (Λ <ΛD l ΠΗ in Ο CN CS ID O- CO CD Ο- η'Ϊ co in Η CS rH iH I COΟ I CO r- JJ ID ID4 J oo in in CN Π ΙΟ Ο C*1 co Η COm Η tH t^ ID CO m rH cs ο 0 co ID 0 Π CO OJ in σι co CN rH σι 0-

rH rH Ο υ CJ CN X Χ S3 CJ U CO « m CN Di a in a Ο a a OO CN μ in rH rH CN CO Η rH OS ΙΟ Ο a « t) u Ο α Ζ υ υ « Ο υ u rH -H rH g r-l μ rH •Η rH μ rH 3 rH •H < < X < Η < J < Ν < J < Ά

es in es

Π IC « HHH miiiH oiio > •ί CO H· in r» co in τ* oo Ο t^ Οί <Λ rH Μ ΙΟ t^ co t^ σι OHIO rH CO m co r- t» es co m Ο ID CD ο- σι σι ID ID f- <λ oo in CO ro CN Η ο Γ- ίο cq h o eg ο oa ο Ο 04 Ο CO Q} to «> IO Oi σι in rH oio« α> ro σι co σι (Ν co rH rH Η rH Ρ) rH rH

« φ ο Ο) n e μ υ Μ Λ 6 Λΐ e Λ» ο υ Ο CU -» 8 ft ι Ο Λ οο

CN rs φ CN X CO rH — r1 0. =1 •P i α ft rH CJ rH >1 04 < d Ο — ο υ < — <

420 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

Ό ~ νο VO Λ —> CO —. . • vo CO · CO Ο [» μ CO CD Ό • CO • « · • · ,— Η «1 σ\ CJ co cj η C CO CN — — α —. c-g r- <π σ\ CO » * * Φ — * -.—- —. CC 00 — 0 . in — - » —- iH rH co to in μ ^ •—• 1-MMrl rH rH tO > rH Μ· > m rH CN CO σ\ •—' · '—' "— — -rl ·. *—· •—'.— -— (s η ^ -rl ^ . to — — — · VO CJ r- t^ 00 CR1 rH1 Γ- en τ* ΜΙ Μ ιη σι Οι to in in • · • — • • Ο rH CO vo eg ^ in m 0 σ>• Ο · |Ν· Π • (Ί• Η Η 4J 0 t»010*ir(CD"*>(0 rH iH TH 0 Η VO rH oof co σι ι^ rH οι ΜΙ αϊ 0 t- oHrgioiovi^co rH rH rH Η β Η τΗ Η β Η Η Η HH

^ μ Ζ U 55 U η η tl ^ =L •ζ * U Ä - U Ο » «υ OBiJua ο - Ο Η UÄHHHÜUZ w - « Ο - » ο ^ - « a - a iU η 55 nu Ο 3.« υ 00000 ο AO =L

CN - ? US CS to

σ\ CJ Ο rH CO rH ΰ rH rH rH 00 I vo σ> CO CO CJ CJ > CJ CO CO in in vo CJ ν !2 Φ — ö rH 0 rn h ® nffi Tf u> to gl ο "* rH Η 00 rH CJ CO CJ VO Ö» σ\ CO o\ ^ rH rH rH rH 0 CO CO

οι η " 10 « J η CO rH (N CO •U vo CO CJ CO rH VO σ» 00 CJ r- l> r- rH CO O Ο Γ- -H σ\ 0 CTi in ο ο ι~. ο «on a r- cj |> «Η 00 σ\ p·» CT\ CO cr> in σ\ 1-1 CO Ο CJ rl Ν ^ Η Μ HD« CJ Η CJ rH CJ CJ rH rH G rH rH rH CJ rH iH rH CJ CJ rH CJ CN CN U El Ο 0) JJ ο· α) α> a ffl« Ο ri C ο Ε ο ο ^ Ο H Ο W ua Sa a S a ill CJ Aa =10 CJ Α ο ο ίο Am AO Β 1Κ ο AO ο ο υ ia Α υ AO tu

r* in Η σι η t»

to in to ΙΟ Μ CO

ο es es ΗΗΙίΊ CO VO CN Μ· r- c- m r» co η σι

in in co 10 10 to Ol Ol MOO f· φ Η ofl cd in co m ο >o in Η p) in α> to σι ο mi 10 r- to in co CO Γ^ r·") OUIO o> f. in 01 co in oo in c^ ο in σι ο in to co Ol ,Η rH τΗ CN Η Η f-H rH Η Η Η Π Η Ο)

α Λ Id rH υ υ π U Λ n es fc Λ β »ι ^ ε οι μ1 Ο Οι α> 1J Ol CS Ο Οι 00 e οι

•Η <Ν 01 Μ — 4J Ο „ CN OJ 0) „ — 0 « 3 0) S3 a m (Ν CQ 4J ι Λ Λ * H® » ° ® » η£ ü a a CJ, Ol- ο ω .—„m. oΟ 3 « 3 Οι a A ffl ΓΟ — Α to-n f« α) 0 Ο- η Η A CS CS •H ι Κ ·~ η UK- Ο) rH ι ι ^ ft I a J — •• Η «Ό -Η Χ, (NO -Η ο u A Ο) Α a 0 — id Α CS 0 — C0 3 m J Χ? — r- w ο — Ρ •—• S w (Ν— a a ν — Ο •rl 3 HÖH- ™ Ο) <Η Ρ) I φ 0ϋ ι-·~ίι οt- · Ηr- ι — υΟ ϊ ι HS (Ν ιΗ φ Φ Οι α «ι Η 4-1 ®Ε φ Α 6 rH «< -4UJ «< Λ ΟΟ Ο 3 — φ * « a S OUÄ »-II S - H) 0ο ΓCΟO 3 CΓS) 0Ο«ι -— μ η Φ £ CS ϋ id 4J rHrH « - Η - ϋ Hμ « η A4Jl ^— φφ Λ -—- Χ Η φ •Η μ — «< ** -- ·~ ο «< «< « — η ω 0< ϋ, < S co Η

421 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

vo r- 00 σ\ ο rH r* ^ in in

vo σι Λ ,—« 0) in in »-N ,—, • · in ο 00 —. vo CO in CN rH • t- · · CS • .·—. ,—. • Λ » s ^ rH VO ^s »Hffl« • CN rH 00 00 (Ν 00· ro cr> Λ rH CN ·« vo VO V «. vo vo CS d) CN CO in ro CN • • •Η •ei t- CN m O rH cn CO• · CO• Γ0· rH CO vo Ο CN rH rH 00 ΓΟ Ο Γ- rH• CN· in CN Ö) ΓΟ t— rH rH Ο rH l> CN vo σ» oo o CO G t^ α Ο rH Η ο σ> er» 00 r- rH rH rH rH Η > 0 ft ft U r-H •H •ri rH c ü ü Zt-H U U 0) 01 υ U rH rH rH * υ Κ " - u ·» rH rH * υ ν υ & U υ Ο * * rH Η rH rH U A κ υ u u υ n CJ •u U * υ * « Η ft U U ft Ο rH U U - « «SS·. 0 V ο cu cu CU ffi =tu 1U ßt ftc u U ü ü =LU =L i(J 04 Ä Ö CJ C

es es en in

Φ ID co β — m c f- Ö Φ Λ Λ σι - QJ .—. » φ vo cs cs > Η in μ ^ Μ ® cs m cs > CS t > •Η ·* ~ οϊ ~ ~ ™ 0) — — -rH •rt hOM Ol • · ^ Ν Μ Μ ι CO ιη ιο ~ t» ο ρ; co ο io cn Ol CO CO Ol Ο CS CO ΙΠ Μ Ol Ρ- Η in in cn io Γ- ο 4J •μ " Ν °10° 2 σι 4J CD m 'S· Ο n« " η 5 nrit~ • cs ο ·* ™ ι-* co co in 0 Ο ΙΟ 0 rH CS CS α (S (S CI Η Μ Μ Μ CS CS CS CS CS Η rH CS α CO CS Ö μη c « 0) Λ ρ, JJ Οι γη a Φ rH rH i-H Ο SrH Ο rH •ÜO Ου HU Ο Ο Μ UH Ο Ο_ IS u Ο rH U Α υ υ iu a AUOAUUAUAUWU ΙΟ AU α A U AU « Ol AU A υ

υ κ υ υ υ ο Ο CS ο Ο Ο -31 CO υ CO •Ί" t-t i-t ιΗ η •ΊΙ Χ ΓΗ υ ο ο υ U U U υ Οι υ ο Οι Λ Λ ι—I n Ö rH ί * t< < Ν CS 03 <

>1 ΟΗ es ro m ιο ·>» es co es m r- ·«» en ro cs CS —*— w σι in in σι eg r^ in ρ- co ο in ρ- en vo oo · · \ο CO ρ* es p- t- m rH • r- σι CO CO Η en cn ro vo co in p. co m cs t^ ·<» ρ. ΙΟ ΟΙ Η ΟΙ co cn es •i cs in m cs σι 00 CS ^ p- CS P- Η Η pi CS rH 01 CS rH

CS Η rH ^ CS CS 6 ft •» 0 Hl 4 6 o. ^i g ο oo e n ι Efti

•31 ΓΟ w φ CN χ U υ γο A ,_, SS 3 U φ A υ η 0 - a CQ ι cn Η Η ΓΗ Ο A — I u M υ ι-Η — CO Α Λ frl rH 0 5 < .—. rH Q» .—, •—• Ο IH < >1 CS Η Φ esc; ϊί W Η Μ r-1 < a c CS — υ 01 1 rH Ol t» CS Ol — CO CS rH Η 0 φ I α •Ί Γ0 U — 0) CN JJ U υ rH a Α 14 CN Η CS rH ω 14 * W ü CS ι d 6 - — CJ

422 C. Ε. Holtoway and Μ. Melnik Main Group Metal Chemistry

ΐ) αϊ αϊ •q tQ u -υ αϊ •q

4J s Ό 4J q MH ΜΗ q <0 q ο CTl α) 0) "H • τΗ Η • νο σ> σ\ CO σ> rH ΓΟ CN CO CS iN rH ο ο to ΓΗ Η (Ν rH t- Γ- ΟΟ VO (Ν ΓΟ ΓΟ ΓΟ Ό eg f» ω CN Η ΓΟ rH in αϊ » Η * Η » a. » Ν * Ό > Η rH Η rH Η rH rH is rH rH rH τ—I rH Η ^ Η rH CN ΓΟ r* CO ΓΟ CS Γ0 CS ti rH rH rH ^ •α 0) σ\ι η CN rH 0) CS α. •Η νο ΓΟ νο σ\r o ΓΟ Ο r- Ο ο Η ιη Γ** CTl CS in ο CS rH CS vo »H vo > tQ «Μ 00 ΓΟ Γ^ τΗ ΓΟ Η σ\Γ Ο νο Η ΓΟ Γ- ΓΟ in 00 ro m Ö) CO ο Ο vo •Η ο CTl νο CO σ\Γ- » Ο rH ΓΟ Γ- CT» 00 CO ο ΟΟ rH rH ο rH ο rH Ο 00 ο σ> rH αϊ υ

rH rH rH rH rH rH rH rH rH rH rH rH i s rH r-i +J αϊ ο, tQ Ο Ol Ol U U - υ Οι Οι U ο 0. 0< Ο a ο υ Ζ Ο Ζ υ ζ Ζ υ Ζ οι υ Οι Μ the Λ Οι Ο Οι" υ υ Οι υ Ζ Ζ ζ ο υ υ υ ο ζ ζ ÜÜUUUÜ bi tQ q •Η (0 tQ "Η Ό ΙΗ q 0 tQ (0 4J "Η bi tQ •Μ <1) Q> αϊ Μ to υ •q ω q 4J In <0 q Q. •u Ol o r „ tQ in ro ΓΟ ro • • CO , CO in Η •H Π3 Φ ro rH ro β ιο Γ- CS CO e « « 01 Ό Οι Μ in Γ- > ΓΟ 0 α. > a\ ΓΟ ro CS in τ* rH rH r- in ιη rH CO rH ** 4J 10 •w Ξ Ο ο CS ^ 00 l£> ο t^ Dt CS ιι> CS ° rH ^ rH in ro ο 01 CS CO ιη Ο) in CS ο rH m u> ro o\ vo in CS CS CO ro ro CT» ιη JJ ο C0 ιη co -^ι vo CO CO to ^ ^ Ο Η2 σι σι co 0 in ο in rH ο ο 0 ο t^ σ\ ^OOl co CS Η rH Η α> rH Ö Η rH CN rH CS CS rH CS CN CS CS CS CS CS α <Ν ri CS CS rH CS Η Ί ι Μ Ο A3 u Q) Λ (1) ω 0, 4-1 3 u w Ο rH u rH S 4J S Ε ο 63 Ol Οι Ο υ =1 U =L U & Ο U u ο cu u U u ο a Ζ υ !5 ο ο Ζ Ο Ζ =LZ υ ΪΟ 0) Μ Ο e CN Ο C 1 & Λ Ο U ro CO ο Ζ a ο Ο Ζ Οι CO rH Λ CN ΓΟ ΓΟ ΓΗ I rf CN in Ο 04 U ro U a ο CJ ο ζ Ζ υ u >1 tQ rH (Ö rH u rH •Η ΓΗ rH φ ιΗ 0 rH Μ « < fH C < J C < h < ο < u Μ M 0) bi CO 01 Ό bi q υ q q •Η •η Ο) •Η in 5 αϊ D, Q) 01 (0 υ 0 Ό Ή q -Η q •Ή r- ο m 0 Μ Q) CO t^ CD Ν •Q U 0) Ό Ό ü tH Ν q 01 •U Ν 0 io υ "4HJ Μ -Η υ 0 ° <Ε0 ιη ιη q Μ Μ Ή rH Μ ^Jt Ο) (0 <0 Μ CS VO CO CO in CS — CO Ό Ο 4J 10 r- in rjf ^ CO ^ •Η •Μ 01 •U ο σι vo σι σι CO rH ιη ιο iß σι r- co the ^ e αϊ ^ι in cd rH σι rH Ο Η US Ο rH Λ CO 00 co Η in D. ^ rH co r· co co νο m es C* rH Ο CO CTl co in Η CO in σι CO VD Η η Μ onm CS CO Ο rH co co Ό rH rH rH Η Η rt rH rH rH 0 Ü "Ί αϊ ^ tQ e XI ° a αϊ Ό Ε- .q -Η αϊ Ό ^ υ 0 rH •u rH Μ CS CS w ea to 0) 4J 6 U ω 6 Ol ε Οι CS Β Οι co «ftp ε λ ι q * φ •Η υ

CO φ ι ΓΟ CD 01 • Ο φ CS — Χ * S αϊ S> « u CS ~ S β XI U vo « J Χ α CS Ο rH Ο CO 00 Λ ™ CN CS CJ «! CQ « •qi 0) « Οι — Λ Λ -—- ω ~ κ X —. r- Ol CS Οι CN Φ ιη IT) rH I « ^ 7! •Ρ Λ u < A Κ λ υ „ ιΗ ' u < ,—. 0. " zl υ η —" -Η CS (d co ο φ Ο U Ό I Λ » Ό — EH ~ υ Ol 10 Οι 3 CO zL Ζ 0 ι Ο H Dl ~ CO ^ CO ο α Ό CS 0 CS w •—- rH a. -υ CJ CO Ο 4J •Ö Φ « Id φ φ rH φ CS (Η — ω in φ Ο Μ α> Χ ι ΙΗ ε Χ 0 -Ρ b. Φ Φ 0 — ~ X •Η Η h Λ a 0 ι υ Ό α χ >1 Ο Η o — 03 Ο, '— — — υ — '—' ~ < U rH — <

423 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

A bidentate carbonyl group serves as a bridge in a red monoclinic derivative [52] (Al-O-C- Ta). The aluminium is tetrahedral and the tantalum is pseudo-octahedral. An orange Al/W derivative 2 [53] has three meridional PMe3 ligands, a carbonyl, a chloride and one r| -HC=COAICI3 unit giving a WC3P3CI chromophore. A colourless ΑΙ/Li derivative [36] utilizes a bidentate Me2PCH2 ligand to form a two atom bridge, Al-C-P-Li, with both metals in tetrahedral geometries. The structure of a yellow ΑΙ/Fe complex is shown in Figure 2. The coordination geometry around the aluminium is distorted tetrahedral The cyclopentadienyl rings in the ferrocene moiety are in the eclipsed conformation.

Fig.2 Structure of cpFe^-Cs^CHjiMez^AIMea [54]

A heterobimetallic cofacial di-porphyrin structure [55] shows no metal-metal interaction (Al- Co = 437.0(1) pm) and both porphyrin moieties are eclipsed (a = 29.8°). The cobalt is four coordinate, square planar CoN4. The aluminium is five coordinate, with an axial ethoxy group located outside the N4 cavity. The aluminium atom lies 36.5(1) pm from the plane of the four nitrogen atoms and towards the direction of the ethoxide ligand. The data in Table 1 reveal that there is only one example in which the aluminium atom is six coordinate [4], four examples of trigonal bipyramidal coordination [5,7-9] and one square pyramidal Al(lll) [55]. The rest all have aluminium with a tetrahedral coordination, which is also the most common for the coordination [1] and organometallic derivatives [2]. The range of heterometal atoms is considerable, including both transition and non-transition metals, with a variety of sterochemistries, often quite complex or unusual. One example has a two coordinate sodium atom, NaN2 [44]; two examples have three coordinate lithium, Li03 [11] and LiN2H [39]; several examples have a four coordinate heterometal atom [6,10,12,14,15,33,36,41,45,55], five coordinate [32,40,42,46], six coordinate [13,16,34, 52,56] and seven coordinate [5,38,50,55]. There are also examples with eight coordinate heterometal atoms, such as WH5P3 [4], ReH6P2 [5] and NiC8. Iron "open sandwich" compounds, FeC5> are also found with two additional ligands FeC5C2 [3]) or three additional ligands FeC5C20 [43] to give seven or eight coordination, respectively. Full "sandwich" compounds are, however, more common [7-9,17-30,35,47-49,54], There is one example with zirconium as the heterometal atom in which it carries three r|5-cyclopentadienyl ligands and is also H- bridged to an AIC3 moiety [37],

424 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

The heterometallic aluminium compounds show a variety of colours, for example: colourless with Li (x3), Zr (x3), K, Sn and Yb (one each); yellow with Zr (x3), Li, Mg, Fe and Re (two each), W, Ni, Cr and Mn (one each); red(orange) with Zr (x5), Ta (x2), Ti, Ni, Sm and Nd (one each); green with Sm; blue-violet with Cu; Brown with Zr; white with Zr. The Al/Zr bimetallic derivatives exhibit the widest range of colours. There are four examples [7,12,27,50] which contain two crystallographically independent molecules in the same crystal, with differing degrees of distortion in the M-L and L-M-L parameters. This is typical of the general class of distortion isomerism [57], The mean Al-L bond distance in the four coordinate examples increases with the covalent radius of the coordinating atom in the sequence: 179 pm (LO) < 188 pm (LN) < 199 pm (LC) <213 pm (CI) < 223 pm (Br, 113 pm) < 250 pm (1,133 pm). The mean Al-L(bridge) values follows also this trend: 172.5 pm (H) < 181 pm (LO) < 190 pm (LN) < 212 pm (LC) < 225 pm (CI) < 236 pm (Br) < 256 pm (I). In general the mean bonding distances for unidentate ligands are shorter than those of the corresponding bridging ligands. The sixty or so derivatives listed here, together with the eighty or so dimeric coordination complexes [1] and over one hundred and sixty organoaluminium dimers [2], illustrate the rich diversity of the aluminium dimeric compounds. In all three classes, four coordinate (tetrahedral) aluminium is by far the most common. A summary of mean Al-L bond distances for the four coordinate hetero- and homobimetallic dimers is given in Table 1A. Only the most common donor atoms in the heterobimetallic series are listed, for comparison. The Al-L bond distances show a tendency to increase in the order:- homo- < hetero- < organo-bimetallic. A summary of the Al-M distances is given in Table 1B. It should be noted that there are several examples for which the full data have not been published. The heterometal atom ranges from the typical transition metal, a number of lanthanides, and a range of non-transition metals. The Al-M distances vary from a definite bonding distance (229.2(6) pm) to a distance that rules out any bonding (458.8(7) pm.

TABLE 1A. Summary of the Al-L(atom) Bond Distances (pm) for Four Coordinate^ Binuclear (Homo- and Heterometallic) Aluminium Derivatives

COORD. Cov. Heterometallic Homometallic Organoaluminium ATOM Rad. Coord. Cpds. Coord. Cpds. Compounds [pm] this paper [ref 1] [ref 2] LO 73 179(11,9) 170(3,3) 189(22,11) μίΟ 181(2,4) 182(6,1) 187(5,9) LN 75 188(10,8) 181(2,1) 191(7,7) μίΝ 190(3,4) 194(4,4) 197(5,24) L(C) 77 199(8,7) 197(14,7) μΙΟ 212(3,13) 221(25,2) CI 99 213(4,4) 210(3,4) 212(10,6) μΟΙ 226(7,9) 226(4,2) 233(8,12)

Br 113 223(8,4) 225(5,5) - μΒΓ 236(5,12) 242(5,9) 249

I 133 250(3,3) 248(1,1) - μΙ 256 265 - μΗ 30 173(18,29) 168(1,1) 179(14,8) Footnotes: a. The first number in parenthesis is the difference between the shortest and the mean values, the second number is the difference between the highest and the mean.

425 Vol. 19, No. 7, 1996 Hetcrometallic Aluminium Compounds

TABLE 1B. Summary of the Al-M Distances [pm].

Al-M Distance [reference] Al-M Distance [reference] -Sm 229.2(6) [9] -Ir 241.1(2) [45] -Re 250.1(2) [5] -Fe 251.0(2) [3] -Li 255(4) [14]; 402.0(6), 458.8(7) [54] -W 264.9(2) [46]; 311.0(3) [8] -Ni 273.1(1) [38]; 274.8(1) [31] -Ti 274.7(4), 275.5(4) [7]; 304.0(1) [28] -Cu 277.8(4), 278.4(4) [12] -Hf 300.4(2) [21] -Yb 301.4(6) [18]; 329.8(7) [13] -Zr 308.2(1) [29] -Lu 323.4(5) [37b] -Nd 341.1(6) [13] -Co 437.0(1) [56]

3. Η ETEROTRI NUCLEAR COMPOUNDS There are forty five heterotrinuclear aluminium derivatives for which the crystallographic and structural data are listed in Table 2. There are two types of compound, one containing two aluminium atoms plus one other metal (30 examples, Table 2A), and the other with one aluminium and two atoms of another metal (15 examples, Table 2B). There are no examples with three different metal atoms present. From the structural point of view the derivatives are complex and difficult to categorize. The MI IV pale yellow AI 2/W derivative [58] has a W-(CAI2Me4CI) fragment involving a V\I=C: unit linked by a + three centre, two electron, bond to the aluminium atoms of the [Me2AI^-CI)AIMe2] moiety. The Al-C distances are slightly asymmetric at 198.4(5) and 204.3(5) pm, with the AI-C-AI angle of 97.06(23)°. While this angle is obtuse, the AI-CI-AI angle is acute (78.88(9)°) and each aluminium atom is tetrahedrally coordinated (AIC?CI). There are several derivatives [59-68] in which a "central" metal atom (Mg" [59-63], Pd" [64], Ti [65], WVI [66] and YIM [67]) edge shares with a tetrahedral aluminium unit on each side. The bridging atoms are varied as indicated: two C-donor ligands [59], two O-donors [60-63], two chlorine atoms [64], or two N-donors [66]. There are also mixed bridges containing O- and N-donors [60], or O- and C-donors [65,67], The most common central metal atom is magnesium and the most common bridge atom is oxygen. The coordination number of the central atom varies from 4 (MgC4 [59], Mg04 [60], Mg02N2 [60], PdCI4 [64] and WN4 [66]), to 5 (Ti04C [65]) and 6 (MgOe [61-63] and Y04C2 [67]). The mean Al-L bond distances, both terminal and bridging, increase with the covalent radius of the donor atom in the sequence: 172 pm (LO) < 197 pm (LC) < 207.5 pm (CI) and 180.5 pm (LO) < 195 pm (LN) < 208 pm (LC) < 221 pm (CI); respectively. As usual, terminal bonds are tighter than bridging bonds. There is a correlation between the Al-L-M bridge angle and the covalent radii of the bridge atom. The angle closes as the radius increases, for example: 93.9° to 103.3° (average 99°) for LO > 88.7° to 90.2 (average 88.6°) for LN > 77.7° to 87.7° (average 83.2°) for LC. The Al-Mg distances range from 270.4(2) to 304 pm, and the Al-Y distance has a mean value of 322.2(3) pm which precludes an M-M bond. Several examples [69-76] have a central "open sandwich" Ti(lll) unit edge-shared with two tetrahedral aluminium atoms in a similar manner to that outlined above. Again, the Al-X bond distances, terminal or bridging, increase with covalent radius of X in the order: 208 and 219 pm (CI) < 223 and 233 pm (Br) < 247 and 257 pm (I). The Al-X-Ti bridge anale closes as the Al-X value increases and as the covalent radius of X: 92.8° and 219 pm (CI) > 90 and 233 pm (Br) > 87.3° and 257 pm (I). An "open sandwich" moiety is linked to two tetrahedral aluminium atoms by bridging methyl and tertiary butoxide ligands in another example [77]. The mean Al-Y distance of 312.7(2) pm indicates there is no direct metal-metal bond. The Al-O-Y and Al-C-Y bridge angles of 98.4(2) and 84.6(2)°, respectively, follow the trend mentioned above. A zirconium sandwich moiety (cp2Zr) and a tetrahedral aluminium(lll) atom are connected by a chlorine atom [78], and also via a both carbon atoms of a -CH2-CH- link to the zirconium atom, giving a five member dimetallocyclic ring. The other aluminium bridged to the ring aluminium via the CH of the ring linkage, and hence also to the zirconium through both carbon atoms of the ring. The AL.Zr separation of 314.5 pm also rules out

426 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry any metal-metal bonding. A sandwiched zirconium in another, yellow, complex [79] is connected to two three coordinate aluminium(lll) atoms, AIC3, by a single two carbon bridge (Zr-CH2-CH(AI)2). The Al..Al separation about the -CH end of the bridge is 312.3(2), which excludes a metal-metal bond. An Al2/Rh derivative [80] has a normal three leg "piano stool" geometry about the rhodium, with an unbridged Rh-AI bonding distance of 245.81(8) pm, which is the shortest Al-M distance in the heterotrimeric derivatives. The aluminium atoms are then connected to each other via a single chlorine atom with non-equivalent AI-CI distances of 241.9(1) and 232.2(1) pm. The AI-CI-AI bridge angle is 113.60(4)° which places the second Al atom at a considerable distance from the rhodium atom. A trimetallic AI2Mn derivative [81] is shown in Figure 3. The molecule was described as a polycyclic heterocycle, incorporating a five member ring fused to a bicyclo-[2.2.2]octane framework. The Al..Al separation is 301.9(4) pm with Al-C-Mn and Al-O-Mn bridge angles of 84.2(6)° and 138.3(4)°, respectively.

Fig.3 Structure of (CO)3Mn{CHOAI(Me2)N(CMe3)PPh2}{Ph2PN(CMe3AI(HCH2)Me [81]

A red Al2/Fe complex [82] has two dimethylaluminium units bridged one chlorine atom (AI- CI-AI = 78.4(1)°) and by one carbon atom of a cyclopentadienyl group of a ferrocene moiety (AI-C-AI = 91.0(3)°). Within the four member ring the bonding exhibits effects which may be attributed to the steric requirements of the ferrocenyl ligand. The angle of tilt of the two cyclopentadienyl rings is 8.3°. No significant Al..Fe interaction is present (310.0(3) pm). The structure of an Al2/Li derivative [83] is shown in Figure 4, where it can be seen that the two Me2AIN(CMe)4 moieties are bridged by the chlorine atom, and both pyrrole rings are penta- haptocoordinated to the lithium atom (Table 2A). There are fifteen derivatives (Table 2B) which contain one aluminium and two other metal atoms, and in these examples the aluminium is at the centre of the system, unlike the AI2M examples (Table 2A) where the aluminium atoms are more a part of the liaands around M. The Sm2AI complex molecule [84] contains two bent sandwich units of (C5H4Bu )2Sm connected by a pair of hydrogen bridges and, in addition, are bridged by another two pairs of hydrogen atoms from aluminohydride groups. The symmetry of this molecule is C2, and it is shown in Figure 5. The aluminium atom bonds to each samarium atom via asymmetric triple hydrogen bridges, one μ-Η and two μ3-Η. The Al-Sm and Sm-Sm distances of 304.4(3) pm and 371.2(1) pm are too long to suggest any metal-metal bonding. The aluminium atom is six coordinate, AIH4N2.

427 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

« to t-i •d

ο &

ο υ CN rH

Β CO CO CN rH • in I rH I CO rH Ol CN CN I •sjiiomTjiTjicococN •η - CO ö oo CN 1; t- σι ι Ο I p- in co ο-tJI Ο ( IDH'JtsinHfflH •Η ι m σ\ 1 1Λ 00 in CN CO ID ι oioc^criinooo β • Η in i o r- CO rH ι- cn ι OOrHHOTjiCOOlin α J Η rH I rH rH Η Η rH Η rH rH 0) 3 I > a •Η I U rH Ο S5 Ο » β rH Οι Ο u u 0 Ο & ο J IC iu lü Ο 333 >t < =L =L Ο Ο u ο ° 01 •U Μ "I m I—1 f, f, *» ο ο ο ο a ο a ο rH Ο rH ο 3. 3. Ο A 3.0 Ο 3rt! 3 3 333333 < a < 3 (d α) ιΗ a ο α CN — S • Η ID α 'i . •αΗ rH — u ^ Ο •υ t- · ο CO CO CO CD Ο σ\ οο ο cn σι CN CO rH cn σι Μ α) •U α> Ο Ο Ρ* ^ p- CO κ CN CN CN Γ- ID CD rH q Ol CD L w in t^ in in u w v in^jHcg ο j a 'S" Η !« ID CN rH O ι a ο , . co id H-J g - rH ~ " Η ' Tf ' s <1 σι CO rH CN , o> co σι σι Η o r* co in • in «JI ο- ο Η Ο CN £ ™ rH 5 CN 01 ' Η Η CN CN οΰ CN CN ν Ο ® (β Η,ο 3«. μ Β Ο SO c-l Ο SO Ο a SO a ο ο Ο SO Ω 3 3.0 3 pro ft 3Ο 3CN 3 Ο 3 3 3 Ο 33 3 Ο 3 Ο 3 Ο 3 Ο

(Ö ο Μ g 0) a Ο Μ Μ (β Ά ο ιη ο ω η in co co in cn ο ιο ιη ΓΙ f Ο Ο) 00 in rH ιη ιο ο t^ CO σι co CN ID Ο ο. τί in co 1 ο ΙΊ Iii f* ID ο Ο co σι σι rH ID tJI CN Ο- Ο w ο f Ο Til CD Η rH Η CN ΗΗη

(Ö a 4J 7υ> μ co • ο >1 CO . tsi U >1 Q. Μ CN CN CN u l·! C U n •Uft C N •Uft C N e ο 6 ft • g ft ΟΙ 0 ft CN

a + ϊ η ^ Ρ ο υ αΓ 0 η CO CO CO Λ CO CO CN 2 a rH ΰ ο CO 'η ϊ! rH 3 Φ 4J φ Ol φ φ 5 Φ ID rH Μ — «Η Η Λ M rH s i rH ο >1 V ^ O-H h ^ ^ (χ) ft «u Ο „ sT ι X ' rt 3 ~ ft ο 3 3 s ο φ 3 rH 3^, 0 3 ft n 0 « O l·! 0 §« 0 ο rH — < — φ rH — a Φ rH Ο ι ft rH rH CO u Χ η id ν ,—, — X 0 - ι χ 0 tn 3 — 0 I Φ 0 c !Tft r H ft Ol CD Ol fH 0 Ol 3rH ο ft —rH Ο 3 a υ EH — < X X X < Χ - < — — Mj — ο

428 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

Λ .—. ,—, Λ» Λ Λ ,—. 00 Λ Λ Λ Λ ιη es ω Η ΓΟ rH ΙΟ CO ιο τΗ CM · Γ- ιΗ . . CO η ιη τ-Η ^ <£> rH ·<* Ηο η co ΙΟ * CD rH CMCM C M Ol Η Ο ^ rH ^ οο σ\σ » VO VO ΓC»0 C O 00rH ΙΟ ΙΟ Γr-» σι Η CO CS ιη COC O ιο νο in ιη ο» ιη CMC S CO 00 τΗCM ΓΟ (Νco es γο r»CS V O rH00 »dm CN ΓΟ τΗ CD ο ο νο ιη CM Ο ο σι <ί Η Oldtfl Γ- r- es in r4 σι esΙ ^ VO ΓΟ Η Η (Νσι σι Γ·) rHα ) β β Ρ* ιη CO CO ΓΗσ » ΓΟr o COσ ι φ d σι rH 00 rHrH r*» σ» σ\C0 00 rHrH h Ο ΙΛ0 0 Η rH φ Φ 00 α) Ol Η 00 rH 00 ο\ CM ο σι rH rH (Λιη rH Η rH Η Η rH rH > > Η Η rH *Η rH rH rH υ ΓΗ υ •Η •Η Ο Ο Ο Ο Π.Ο ι-Η =L α 01 υ ΙΟ =1 Ο HO Α Ο ~ - ο Η υ Ο Ο - Ο Ο Ο rH Η »r H 4J •U s Ζ Ζ ζ Ζ CJ Ο Ο υ ο ο ο - Ο Ο Ο Ο κ Ο Ο » Ο Ο rHC J 0 0 ο S ν ν * Ο υ * ·» =1 =1Ο =1 =2. Ο H HO Ο iiu Λ c C =1 Ζ a a 55 ζ ϋ υ υ Ο υ ο

Λ — rH CO —

* Η κ Μ Μ Ο» CO «-Η Ο CS CS CS CO COV O >α) ΓΟ νο ΓΟ σ1 > Η CT» rH ΙΟ Η J ΓΟ CSC S CSC S in CS —' >— —' »-» •Η> »— w W ^ ^ CS —- CS" — cs in ro ro CSC O•Η ΓΟ ΓΟ Η CS0 0 ο CSΟ CS Η σι J CSC S m CS CSC S CSC S 0» 0) > 00, w rH • - —- — r*-' rH Γ- rH 4-> Γ-ο ν Ο ΓΟ ο σ> νο ΓΟο in •>» . ιη ο > 00 ιη ο rH rH a\ ο ο ο CS o CO 00 0 ΟΟrH 0 ο σι co rH ο 00 rH Η CO 00 Ο ο) Γ- Μ rH CS r- rH CS CS CS CS rH C3rH CS ü CS »H rH CS rH CS rH Η Μ Ο) (Ν C M<*> rH rH CS rH rH CS in ΓΟ Ου rH „ Ο ο Ο S Ο «Ο U WO Ο ζ χζ » σ» rH 55 rH fc Ο Ο ϊ ο υ ω" 5 ΙΟ AO =LO iu ÜO ϋΟ 1U A in υ =1 =LrH υ Π ÜO =i=i.g ο

η η m rH CM .Η η γη η dm© 4 η η m (Ν η co ο\ η (»1 MD ο r» ο CO ιο ιο Μ ιο ιη t^ CO ΙΟ ιο οο σι OHCD co σ\ οο in co ο O) CO CO IOHH ιο π σι » cm rH <Λ cm ιο ιο ι- <ο οι co m cd σι ο ο m ιο ο- os Η Η Η

ü Ö I Ν \ U Ι CM ^ <β CS CS CM H < l·! ϋ S cu S Λ (N S CW eu« ο ι ο 0< ^

Ό ΛΙ Μ φ η ΛΌ ^ο Μ ν Λ — rH υ n "α 3 Ζ £ -0 Ο ^ ό a „ « C φ η π A A 1 ^ ι ο ^ a ~ 01 a — Ο Ο- =1 c la Π '—• 1 η Ü I α ο ο - UJ I Ο ^ rH — Ο 4J Ό α φ id Η μ Η,? αΓ Λ =1 ^ Ο — ι ω Φ — g l! · 3 Φ g 4J — Ό -Η •Η Μ — rH 0 Μ α g ~ Φ rH 04 C Η - < s s — ~ Χ <

429 Vol. 19, No. 7. 1996 Heterometallic Aluminium Compounds

^ ^ cd in λλλΟ CO r- Ol ^ in η cn co · · m (Ν pin« • h ' ' · Μ - »H . .. . m 'rifiH . rH es « ID » * (η η Η « s » » Μ ' '— CN CO >-- CN CO rH ν in co CN Ol rH Η Η Οι Ο — ι . . σι r-· • σι in η ν ΙΛΟΗΜ CO o co · · Q> ΙΛ C* νχϊ η r- · r- • · · co ΟΙ Η CO Γ^ ΟΙ rH σι Η h h Ol ^ O CO · •^t σι m co to vo Η iv η rH cn Hrih h 010H> Ο rH Hd rH Η Η rH rH rH rH Η ο ο υ υ U U υ ο Ο -HO Ο rH Ο Id 3-rH α a. in Ο a. ID lü A Ο « Ο - -ο - ο - ο - » Ο - - - ·. ~ Ο « it) rH * iH Η «Η » rH «Η HUH ιΗ «Η Η Η rH rH ν rH ο i-i ο UHUrl υ ή υ ο - ο U rH U U Ο U U rH Ο a 3 =lu a. =LU 3.CJ iU a. HO =L iu Iii ÜO i

% Ο νο

CS rH Ο ΙΟ ~ ΙΟ 0 σι CO — ^ in m m in CO CO Η CO Η » rH „ rH rH CO rH r- m cn Η rH Η CN ο ο m cn \ ~ CN CN CO rH rH CO C» r- r- in CO CO CN \0 tv rH rH ^ r^. in d" d® ID< •—• ·—- CN •— « co σι ' ' Ο t- CN in 00 cnι ^ rH Η CO CN 10 Tj! rH rH Ol CO •^i CO Ο m m in mm * rH CN . . CO . — w ΙΟΗ,,,^ΙΟΜ ® ^ M oi*® Ol ΙΟ CO CN Ol CO CD Ο Ol r- r- ο ο CO r- ο Η ^Ji m Ol OD O Ol rH Ο in Λ> Ol rH Ο in CO Ol rH Ο CD Ο rH O ID in Ο Η Η ιο Η ο riolilio^ HPi jDfjn CN CN CN „ rH CN CN CN CNΗ CN CN CN CN CN CN CN CN CS CN CN CN CN CN CN CN Ο CN CN CD CN

rH rH rH rH rH rH rH rH Ol Ζ Ο Ο rH Ο U Ο rH Ο Ο rH Ο Ο rH Ο Ο Η Ο •Ol CJ rH So iiu ü iu =s.u 3.0 iü 3.0 ϊυ 3.0 i O ϊυ a.o o it)

Ο ο^ » Η, ον υ cf υ Ο Ο* ο" ο υ Ο ο υ ο" rH Λ ιΗ Ή •Η •Η •Η ι<Η •Η rH -Η c Χ C fr· ΕΗ fr· frl ΕΗ frl

^ CN CN CN — ' — σι o CN CN co CO »H io . . • CO CN CO m O rH Ol rH rH

r- r* ο Η rH CN in cn CN CN Π σι σι m CN CO -41 io in Η CO CN CN

h CO Η Ο Ol Ό Ol Ο in TJ rH σι r* « Ol Ol CO m Ο -41 CO Η Λ «> •ί CO [- r^ r- co ^ ΙΟ Ol CO 09 rH m ΙΛ Η r- co ο t- rH Ό •di m ο co σι t^ CO ο CN CO rH CO 10 CO « Co Ol rH CO CO Ol o co r» es t- Ol ΙΟ CO rH Ol es cn rH Η Η rH

C

cd >H CS CN ^ 09 CN CN Κ CN U Β •p Ol CN e & « 4J Ol CN e »ι n e o- n Ο h 4 Oft«

ο Ό 4J I CD Φ Μ a •Η « X a. Μ rt Ή S3 •H «* „U 1 Η ~ α) > frl ~ r, a. 0 sTrH " »rH »rH *J rH rt -—- fri -- Λ A ^ w Φ ν ιΗ Μ w υ η α ο, Ο c ΓΙ Ο η υ υ SH χ rH SC &H ο ι rH ink 1 ι η ι Η (Η 1 χ Τ 1-1 <— •Η 1 Ο) C0 r =1-0 » iU » a.o γ 3.0 3 A 0) Ρ—rH ΡΓ—ιΗ J —rH ft Λ >11- — >1 — rH sr c "t-* < ρτν < —

430 C. Ε. Hollo-way and Μ. Meltiik Main Group Metal Chemistry

Οί (Ν Η Ol VO rH τ» CN m

in m ιη ιη in m CN η CO ^t CN CO CO -<11 CO rH CO r- CN CO CN rH CN CO CN Η oa cn co co rH C1N CN

Η σι νο CO VO VO 1/1 Η CN Η Ο) Η m iH CN CD m m 00 CO I- Η rH Η rH rH in 'O l ο

00 1Γ> ο ιη 00 CN rH Η r- σι rH VO r- Ο CN CN Ti 00 in rH ο VO CO σι CO C^ CN cιo σι σι »H Ο rH t-^ co CO CS Ol rH t» CO σι Η rH CO · CO in σι Η 00 CO σν Η Γ— CO σι rH Ο Η CO 1 00 Η Η Ή rH rH rH rH rH rH m rH TH Η Η Η Η Η rH ι—I rH h Μ Μ ^ 00 ο Η υ Η η CQ η Μ ffl i =1 i i i u i i u ο iu Η Η Η Η CJ Ο * ι. <• « - CQ «η - ~ ν i i a. i iU Ο i rH Η rH Η rH rH ^ - n· , Vi -H h ho ~ Η ~ Η s » « « ο « υ - υ - U υ η n ο m Μ m m m - Η « Η Η » Η OOt) - Ο 1Η 1Η i i im i im Aüti iH i iH i iiiO il

ιη CO CO VO CO CJ in Η VO •» rH rH CN « ** co CN CN CN — CS CN

I 00 ι r- ι in ι vo 1 rH in VO CN CN CN ο σι rH 00 σι OD σι 00 00 CO co Ο σν U 00

r* VO in rH Η VO Γ- ^ — CN in CN in rH Η CN CN CO CN Η Η rH CO CN CN ο ^ » Ν SU,« * s » » m — rH rH rH rH Λ vo cn CN rH Γ- r- CN CO CO t^ r- τ* r^ - r- rH cn VO

τ» VO Ο Tj· CO ο ο ο CN o\ Γ0 iH VO CT» m ω h η CO vo cn cn η co r- VO •dl 10 rH CN 'ί rH σι m m cn t> ο m CN VO CN ο ιο σι m ο in cn in CO ο cn in vo ^ CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN rH CN cn CN CN ™ CN rH (Τι Η

rH rH Γ- u U U ^ CN U Η Ο vo Η PQ U CQ ffiU ω Η Η Η Η Ο U £ Ο Uu- . CN Η =LZ±H Zl.CN iU im AO ZLCQ il Ο AH =LU IH iU iiU n n

tH Ο m οη Μ , υ U ιΓ υ m ο" U υ υ rH rH -Η -Η -Η -Η •Η rH υ Η η Η Η Η Λ! χ

^ό ^ r - co σ\ co co ΓΊ m CN •ο in m

σι vo co σ\ KD OD σι ο νο cn t-- co

rfi ^ CD in -»at σ» co ο ο VO Η CN r> σι σι «π co rH t^ σι ιο σι οοι σι *o ^ ^ t- σι σι σι co 1 rl Ο co -vj rH O rH 00 Η Η Ν rH Η Η rH CO

•Q Ν <0 u a n ri CS cn O Ch f O A 9 Ε <*· Sat go.-»

Μ ij η α> <0 "-ι S rH i » C0 Ο Χ — κ •Η Ο •Η Λ CI jTH •Η ΙΗ rH » " > 6Η Λ Μ — " •Ρ Λ Η ® ® ™ »4 ο W« Μ 3 «rH Λ! Μ υ U I U η Ο H CJ 1 H Μ υ «ι Υ ΪΟ 41 rH V Η. η) Υ i« CÖ »> ·— ι Χ Ο Ό „ rH Τ3 Ρ— irH υ V* Ρ— < ρ· < — - >. - Λ!

431 Vol. 19, No. 7, 1996 Heteromctallic Aluminium Compounds

vo vo CO vo CN cn CO ο ο COv o 00 CO CO • • • • rH • Λ P- ^ COC N rH rH VO rH « rH• C·N CN C0 rH (Ν Γ0 - «. ν CO - ,-N ««Η >> ο » ·. CO ν » Η * — rH w rHrH CNW rH in in in in r» m in in in in CN COco co ^ CO CMC Nc n ^ — — — —- —' >—· •—-— — — >— —* — — ο ^ *— "— '— -Jdlfldl CO — >— «—» σ\ Ο in CN in CN m m rHin Ο O rH in VO rH CO ^ CO in• cn· CN > Ol (D ° Η Η (S G vo rH• L·O COC Nο rH Ο rHο rH σ\ oo ο ο O rH CNο Η σ»r H rH CT» [-»CD r - ^ vo σ> rHο CN- Η rH rH r- σ> rH rH Η rH rHrH rH rH rHrH Η rHrH rH Η rH rH rH rH rH rH Ö> .HHHH >II rH rH rH CO rH σ> -Η Λ rH vo rH JJ U υ α U & U U U rH Ο U 0 iü - υ U U s Λ - - Ο rH iü £ 2 u a iu Ö » .Hü - Ο ι) » U * rH U rHΡ ί rH rH Ο Λ < * * 55 CJ * «u. a u 04 Β 04 rH U uuu - ο « ο U * U u Ο »U UH Η V Ο Ο ο u ^ - Ο Ο s s κ u ο u η.üu ιυ ö zLU =1 iü ÜU u (U Α iiiiU U ÜU u u Ο u W iiiu

α COr H CO vo Λ •— * CN( N -—- — 5 CO '— ΓΟ ο Ww rH Ο w · (N »— · • COo \ COΙ Ο CT» CO• Ο rH0 0 • • t . CO . er» •J* 00 eg

1 ο » -—. —* rH in in t^ ID rH Γ0 vo ο Γ- rH CO β — C - 00 * Γ0 ,—. . rH ,-N * ·. « rH s * * CN » ο σι Φ σι σι Φ σι in ω ·· rH rH rH τΗ " co CO Γ"» cn CO 00 rl« oo r^ w > σι > w w in — co w rwH rH CN rH CO σ\ γη ·η ιο ο -Η νο ' CO•HfO d (Ti CN CN"— O CNτί · VO C0'— ' CN rH CNv o rH in* — ο ^ • . Ο) • 0) . . CN vo . in . σι CN • rH Ο» rH . .öl· .σι σ> a\ in • rH • CN 00 • m · O CNο · ^ ο m rH in Γ** r·»• c·o • σ\• tj«· σι η 4J tn VD rH CO *σ > -U ΓΟ CrNH CO CO rH CN CO οC O rH oo enm σ\ rH CO O CO ο ο rfnO σι (Ν 4J nie "Λ 1t0H 0 CN CNin CNο CN CNo\ CN CN Η CNrH rH rHCT i CN rH CN CN CNCT » CN CN d rH CSÖ 0 CSΜ OS α CN CN rH CN Η rH σ\ rH « 1-1 ο. Οι rH rH σ\ rH α υ Κ U Sou? U ÖÜ Ο u » U rH a ? Ο U s Ο _ X U u t^ U Ο X Ο =L=LU =1 υ ϋυ iu iu u iU iu ο & u HZ u =1.55 U i« ο rH 04 iiü iü

2 S5 Λ η 0, Ηι Η Ομ υη ΟΓ . Οη Μ Ο ο" U υ u υ υ υ υ ο U υ ο rH Η Μ Η μ γΗ rH Η rH i—i φ < < Ν < < 5 < < < h

es in rH co in m CS CS (S t- oo r- CO Ti· -dt ιο r. οο ιο ρ- Η co vo co ** in ο r~ η m Μ σι vo ι* lü^O ^ σι σι \ο IiSn

<0 ο Μ (Ν ^ CS H Λ tl ti Ο 0ι Ο Οι 6 0.·» Ο 0« CO Ο CH f

Φ S ω • „ rH ^ ιΗ < ~ Χ rH 4 ο υ υ — w W Φ « « φ g a I » η aφ iC. J C« sο. t» U J3 rH n « Λ Ö ~ 0ι Λ! h h 4J ΐ Ή χ ζ α •ο dl V & φ υ φ Οι i >1 ».-Γ α Φ >ι Ο Φ Λ Β .'V.a " υ ~ υ < ο s UStiO fr W- ο _ _

432 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

CO CO ( 0 CO 00 CO VO —· lo^ndou) Η ο •ΊΙ · ο CTi rH Η Η Η rH

*a a a -H 0, •Η Pi aaz a a are az EH ϋ Η ϋ Η υ ζ υ υ ζ υ - fjj * Ζ h* h* *• 4J CU « a υ Κ « w ο fe «> S3 a Ο •H ο •Η a υ ο υ Ζ Ζ υ a a a a a ζ ϋ aa aaaaa aa υ G oT Η υ a a Ε* a ο

CO in rH Λ eg Ö A Φ e> CO Tji CO — in > r· CO CN rH - „ W rH —' •Η —' —- •—' ·» Γ0 I in ι Η ^ CN Ö» CN CT» cn CN • w VO • • • —' ^ r- in vo · cn 4J rH r*· rH CN ο CTi CO Η vo 0 00 CO rH rH rH Η *> CO rH CO rH CT» CN Ö CN in CN rH rH Ο Ο Γ- rH CO Η Ο ιΗ

» OS in in ο rH CO '— CN in CTl CN Ο) «—· OS OS Κ CO — ö s · ,— C - a CO rH - 1 00 cn Ο CN m »—. CT» m 0) TJ" a vo — VO _ > rH » OS * > — CN , * s rH > — fs. VO in w r- CT» rH rH οο σ> ·Η oo in * CO vo •H CN · • (N w Ο co · rH 00 ο CT» , ο οι co in cn in 00 Η r^ CO VO u f ι** in rs vo CTl CO ^ CN CS CT» Ρ- Ο I Η ρ- ; νο u 00 vo ID u ο r- CO CO ΤΗ σ\ Η rH CN Ch CN CN rH ° Η f^ Μ Ν Μ CN CN rH rH i-l 0 o) 0 CN T-i CN rH CN rH fi CN a β

Ή „ rH Μ Ο· υ 2 55 Κ ^a iffi U υ X a a Κ ? « £ W υ n.U Ζ n u 1U =L=±Z a au na ζ .=S.=L U =LtC aa o< ai iü

ο a= Ζ_ z^ « υ" ο a" υ" üT cT -rt ι—I -Η ΓΗ •Η a ο < < J «i CO << Η EH

fl f) Ο

ro vo ο m(N

CO CT» Λ Ο Γ»

α \f) in co r- m rH in CN co m Η fO fO

(Ν ο σι CO Η Ο CO Ο rH τΗ CO in (Λ h

in es σ» co cν σ» Ο CN ^ cd in vo ο τ* CO νο ι> in r» (Ν LT) LD CO CTl CO ^ CO m νο οο νο Ο Η Ο Η VO HO® CO rH CN rH CN Η γΗ (Ν rH rH rH CN CN

Λ Ö Λ Ν T3 \ CN CN CN CN Μ OG ^ CN ß cw ß PQ CO fift'i ß Λ ^ JJ Λ CN Oh®

a (Ν a* — 4J •rl ® Λ ι ~ s „ ι Ζ - < -j" a * h-; β — a5 "Η > 3 ο Οι" » w- or-c Ο Ο ™ ϋ " «ΪΗ! * U U1 Γ-| [J I a « S3 cO υ ί^υ τ w OTbö Η w — φ ι — a ι ο> C I β) t» 5 — 1 " ' W — S 1Ζ — a >1 — a >1 m 1) — a γγ a τ. aas -• — — — ο

433 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

CN vo Η CD 00 f Η O CN CN rH 1 1 I I τΗ I — —' • •—· — •—• —, —. Η η Η Η CN Γ0 CN ΓΟ^ CN ΓΟ τΗ CN in CO Γ0 η Ο ιη CO •CJI ΙΟ in νο •d· ^ι CN α) Ο Ο CT» vo . U3 Ό |> ιη in CM σ\ ΓΟ r^ 0J οα η ΙΟ σ\ α α • • CT» ο σ> CN α • · · σ\ VT) ΓΟ νο ΓΟ ιο r- m ο Φ Φ ® (Ν• ^ · . Γ^· CO > t> ο η t^ η σ\ O I fl Η σ\ Ο 00 ΓΟ Η -Η -H Η rt τΗ Η •Η Ρ. « ft 01 Dl 01 a ft rH ΕΠ ü α υ Ο U ü rH ü « U S Κ - a « ν « 4J *J 4J Ο U =1-0 ο υ iu ·» Ο υ U U * κ •Η α a - * ft 0 0 0 ^ ^ ^ a ft « W ΕΗ Κ ο i»* ο α C S Ο U ο ο Ο Ο Ο Ο ü Ο Ο Ο Ο υ

CN '— in • i-t «Η Η Λ -—· m j) Γ- η fn •Η rj CN rH ^ -- « — « a '—• '—' CN rH Γ0 '—' *— Γ- »hi ο in co Οι ι CN ΟΟ rH r» CO ί- σ\ σιη m in r- co ι σ\ oa I ιη νο ^ Γ- ο Η Hnrom ιη VO rH t-» ιη CO ΓΟ (N rH CN rH η Η PI Η rH ιΗ lO CD τΗ Η rH Η

^ — " ~ Η — Λ ^ CN --«Ή ΓΟ Λ —VIM — ~ ^ in in _ β ^ <*> _ 1 ® Μ « Γ» -—• r- ^ cn m ro ^ ιη — rH CN CN ^ cn λ ο m rH .. Λ Λ β φ * * C « f» « « s CO cn ^ * * in ιη ν ν ^ Η λ η η τη ^ ν ι β u· η αι > to m α) Π ~ <Ν ** τ* »1 ' C^ U) Ή - νο CN Ή *— - ^ Ο Ο ο φ *—> ^ > W I CO w w w ·. CO w α Η Η ι ιο ι * η η rt ιη > ι ιη * οι -3· σι " CO (Ν — CN w τΗ oo in ι w ο CN —. «Η wwwrl. -Η .01 ..01 . Η . . . ο O . . . W νο . ^ W m r- in1— momvn ο öi σι ο in Η m ο ο ' ιη (Ν ο • rH • CO Ο CO ^ τΗ • νο Γ- ΓΟ Η in η co ^ c^cor-ino io co Ό φ ^ ο η η ii CO ^ rH m Γ0 in CO m η in rH · 00 ^ Η Η νο · Hoi Η η HHrin η Η "Η Η η Η Ο ßtin Ο rH σι ΪΝ (Ν Μ CN rH CN CN CN CN Η <3\ CN CN Η oj t-α ο Β ö Η CN rH Ol γΗ CN C CN CN

Ή « rH Κ υ « Κ ? WS« Ο «« Ο ? α ο ίο Ο ο Ο So υ & Ο 5βΟ UΓ t °υ· 1U iü iÄ iü IUI U =ä_ Ο 11U Ο iü ilü U ίο hu υ =LU= L U

γΗ ^ " C <1 Ο U

„ w a ,Γ « γΓ « 0 V Ο Ο Ο Ο Ο Η Ο u υ ' Η κ" υ ο" χ ό ο u ο" ο ο u ο υΗ ι-Η -Η γΗ ·Η ιΗ ·Η rH Η rH U rH μ rH u C fr· < Η CH «C Ν < Ν < Ν < Ν

rH rH τΗ γΗ CO —- — rH Ο) ΙΟ rH in — Γ0 • ro ο Ο Ο ID ΓΟ ΓΟ Ο σι Ο Ο rH CT» ·«* CT»

rH Η tHcaiH mn-^i νο rHoaoa rH CN Οϊ w Γ0 CN W Γ0 ΓΟ www CT» ΓΟ W W ** αο αο ιη σι η ο ι^ η t^iH^i· νο γο CO τ* rH cn Γ^ 00

Η σι Ο τΗ^ίιη Ηθη rH CO tji ι> m νο ο rH CN rH ΓΟ ιη ιη ο m οϊ cn oj co ιη Γ^ CN CN CN CN ohio σι σι cn ίο ο h οπη Ο VO U5 Ο Ο CO Ο ο C0 ΗΗΗ CN CO Η ri Η Η ΗΗΗ rH CN Η rH ^ CN Η

£ ü υ υ Ν. « -< ·κ2) ^ ή <Ν μ α CN μ« CN CN CN Ο ft ^ Oft-^f g u co β Λ e o^f

~ S« - «Ο , ι . ~ ^ 7 „ ,

τ4 υ Η ^ s "ο η no ^ 5- — ο — — =>· S

0 ~ .Η- a NY Μ ™ u 2

ft- 2 o~g Λ ο,J" ä «X- »a® » i -- ^ ig« Jj I _ V JCCT Ε ι Η ΙΩ'-' " | ι Χ rH Ο «• « * Τ Μ ι» rf Ό FS 3 Η mill Η „' ι—I EFI — I« JS 0) — I « Po. ι — φ FU «ϊ Ο FS ι~ Ο =*· Λ ν" =*· Ρ Ό — « Η "iri — FT φ >, Ο vu in υ — ·—— — — — — < .-.„„χ; „ ·~Ό Ο < — "Ο—Ο —

434 C. Ε. Holloway and Μ Melnik Main Group Metal Chemistry

to Βq 3 Ή Λ Λ — CO 0 φο η · ο ηS) <Κμ • · — · 1-Η1 rH ο ^ η Η r» ® ΐ φ ο ^ in ιη η η m Β DQ —ν rH rH1 eg iH CS τΗ CNC N τΗ , —- — — 1 to Ο) Ol •—- —- Λ — rH CN vo OlO ffl Ρί Ο Ο ffl CO t" Q) •η Έ CO τΗ ο • •q Ο iH vo vo ΚΟίΙΗΟΊ") U 4J 1X1 ^ σ\ —- · ΓΟ Ο 00 ro CO Η Η Ο Ο Ol ^ Ό 00 <Τ\ Ο rH r- ro rH rH Ε q rH rH * Ο Ή Ö Οι ü Ο ΒΗ Π8) OUUOU - Ο ο υ Ο U ÄUUÜftft Ό S 5 0) Pi •Η ο ο U Χ Ο ü Κ κ Ο Ο Ο 55 υ a υ ηΤ ο 01 ^ S "Η to 4J υ Q) 10 αϊ Μ a Λ ο, Ο „•ο to 3 Η Η CN rH CN 10 υ « Q) CTi VD CN 00 CO Γ- to Μ Μ Ή Ο σ> Γ- CO Γ- VO CN bi ν m σι vo CN in e rH ro rH rH rH (RΒ Ό~ 'qS η° qοι »η IB ν- i bt ο π) ο m § vo Λ ,—. Η rH ^ .—. ,—. ο •Η m — - m - ro in η m (N σι w §3 Μ ** •α iwn 1 w - (Ν Ο Η CN in 00 rfi 00 in in ' r- co co ΗΗΠ 10 . VD CO a\ . 4J τΗ · rH σι CO Ο Γ- * rHσ ι γ- Η ΙΟ Ο to β> 5 Τ) q co m Ο rH rH rH Γ- ^ Ο η rH Η Η ·Η <Ν σ» Ο Λ C1 Ο q Φ rH cn CN CNC N CN rH Η cn CNC N CN η σ* CN ιΗ 05 •Η Ή •α rH CN rH τΗ •α -U IB q CQ H3 •<1q1 φ 4J "Η Q. 0, 4J Ο W « Ο υ tu Ο »S Ο S ΐ W Ό Is Φ =L U ÜU U liüiiU 1U Φ Q) Φ CS Q> bi Ό Ή 0 q IB <*l •Η q m •u •h · Ο Ο ο Ώ Η CO -υ ^ q — νο Ή υ in — bi Μ vo ro ο\ 1 e «Η ! Ο •η in 00 Ο υ q CN κο •φq Ο σ> σ\ u q I Φ to ΐΒ "Η ο q Ιη ® 4J Γη IB φ ο -η e φq υ . ^ σι CN rH -Η I φ Ή «< fei •8 7 φ φ ü ü ^ 3 ο Ν •— Φ I CN CN οα Φ •£> 1 ΙΒ jq -Η 6 ΟΊ β U 00 S ο< " § Ει «C ££ •U ... ο 1 £1 UO Ο,Φ1^ tj fl Ή ? CQ Ρ 00 ο αΓ 6 — —J. S3 S3 θ CQ ~ W CO 1 1 Φ Μ HJH ι Ο u α 0) 4J ^ u wü =LS =L Ü Η αvorH χ H 0 ^ u =1 ._. ι L> ·— υ «C υ ο 6.

435 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

Fig.4 Structure of [{(MeC)4N}(Me2)AI^-CI)AI(Me)2{N(CMe)4}]Li [83]

A trimetallic derivative with two yttrium atoms [85] has two cp2Y fragments doubly linked by one hydrogen and one chlorine atom. The aluminium (AIH3.NEt3) unit is then linked to each yttrium via a bridging hydrogen, and linked again via the same hydrogen linking the yttrium atoms, creating a μ3-Η linkage at the centre of a six member ring of -AI-H-Y-CI-Y-H-. There are five derivatives [86-90] in which the linkage between the WIV [86] or Ti" [87-90] 1 and the Al " atom is accomplished via a pair of hydrogen bridges, Μ(μ-Η)2ΑΙ(μ-Η)2Μ. The mean Al- l-Abridge) distance of 169 pm is about 3 pm shorter than the Al-H(terminal) distance of 172 pm. The Al-W distance of 269.2(5) pm is the shortest Al-M bond found in this group of heterotrimers. The Al- Ti distance ranges from 277.1(3) to 281.9(2) pm and correlates with the Al-H-Ti bridge angle such that when the bridge opens the distance increases, for example: 277.1(3) pm and 109° [89], 279.0(4) pm and 113° [90], 281.9(2) pm and 117° [88]. In another seven derivatives, three metal atoms, Ti2AI [91] or Zr2AI [92-95], form six member metallocyclic rings with three bridging atoms. The M-L-M bridge angles range from 135° to 156.1(2)°. The mean Al-L(bridge) distances are 170 pm (L = H) and 181 pm (LO). The structure of a red-purple derivative of In^AI [96] is shown in Figure 6. The molecule has a "cradle" type of structure and an apparent Ir-lr bond (278.61 (8). The heterotrimetallic aluminium derivatives contain the following heterometal atoms: Ti (15 examples), Zr (8), Mg (6), Y and W (3 each), Li, Pd, Rh, Ir, Mn, Fe, Yb and Sm (1 each). There are three derivatives [63,66,75] which contain two crystallographically independent molecules, examples of distortion isomerism [57], The mean Al-L bond distances for the four coordinate (most abundant) aluminium derivatives increases with covalent radius of the donor atom in the order: 172 pm (LO) < 190 pm (LN) < 196.5 pm (LC) < 210 pm (CI) < 223 pm (Br) < 247 pm (I). The mean Al-L(bridge) distance follows the same trend: 170 pm (H) < 182 pm (LO) < 204 pm (LC) < 225 pm (CI) < 233 pm (Br) < 257 pm (I). The shortest Al-M, AI-AI and M-M distances in the heterotrimetallic derivatives are 245.81(8) (M = Zr [86]), 301.9(4) pm [81] and 278.61(6) pm (M = Ir [96]), respectively. These forty five examples relate to another fifteen homonuclear examples in the aluminium coordination compounds [1] plus almost thirty in the organoaluminium compounds [2], indicating the rich variety of the trimeric derivatives.

436 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

. Fig.5 Structure of {(C5H4Bu )^}2(μ-Η)μ-{(μ3-Η)2ΑΙ(μ-Η)2(Μθ2ΝΟΗ2Η4ΝΜβ2) [84]

Fig.6 Structure of I r2{(2,6-Me2C6H3N)2CC}AIEt2(2,6-Me2C6H3NC)2(dmpm)2 [96]

The shortest AI-AI distance found in the whole group (291.1(2) pm is much longer than the shortest value noted in this present study of heteronuclear aluminium complexes. Overall, however, it would seem that aluminium is usually found bonded with other metal atoms than with itself in these derivatives.

437 Vol. 19, No. Ί, 1996 Heterometallic Aluminium Compounds

4. HETEROTETRANUCLEAR COMPOUNDS Crystallographic and structural data for this class of compounds are gathered in Table 3. There are seventy derivatives which can be subdivided into three groups: those containing Al3/M (11 examples), Table 3A; AI^M;, (56 examples), Table 3B; A/M3 (5 examples), Table 3C. In the first group there are two derivatives [97] in which the structures are based on a cubane-like [(AIN)3(MN)] framework in which one aluminium is replaced by an alkali earth metal. The distortion of the cubic geometry increases with the coordination number of the heterometal atom (4- coord Mg, 6-coord Ca) (Table 3A). The remaining eight derivatives [98-103] of this group have three tetrahedrally coordinated aluminium atoms, AIC„ [98] and AICI4 edge-shared with a central M(lll) atom [99-103]. The second group (Table 3B) is the most varied and complex from a structural point of view. In one example [104| two dimeric units of cp2TiAIEt2 are linked through a Ti-Ti bond intersecting a twofold symmetry axis. As indicated, each Ti atom is also coordinated to two π-cyclopentadienyl rings and one Al atom. Furthermore, the Al and Ti atoms of one dimer unit are at bonding distances from a carbon atom of each cyclopentadienyl ring of the other dimeric unit. The Ti-AI and Ti-Ti distances are 279.2(11) and 311.0(7) pm, respectively. In a deep brown complex [105] the symmetry of the molecular core belongs to the D2h group, and each benzene ring present may be formally assumed to act as a conjugated diene which is P-bonded to Pd atoms. Two tetrahedral AI(III)CI4 units are held together in the manner CI3-AI-CI- Pd-Pd-CI-AICI3. The Pd-Pd distance is 257.0(13) pm and the Cl-Pd-Pd angles are 177.8(5)°. In an AI2Mo2 cluster compound [106] there is an eight member metallocyclic ring (AIOMoO)2. In addition, two molybdenum atoms are bridged by acetate groups in a syn-syn arrangement due to the existence of a very strong Mo-Mo quadruple bond (207.9(1) pm). All the metal atoms are four coordinate, tetrahedral for the aluminium (AI04) atom and square planar for the Mo atom (Table 3B). A red ΑΙ/Co complex [107] has a planar four member (AICo)2 ring, and all the ligands on the metal atoms are arranged as trans pairs. The mean ΑΙ-Co distance of 233.5(1) pm is much shorter than of AI-AI (266.3(3) pm) or Co-Co (383.5(1) pm). In another (red-brown) cluster [107] two (cpCoH) fragments, each η -bonded to the π-system of the bridging C2 unit, are connected through a di- aluminoethene units over a twofold axis. The non-bonding distance of 350.3 pm between the two aluminium atoms is even longer than the distance between the cobalt atoms (333.8 pm). The mean ΑΙ-Co bond distance of 259.8(2) pm is about 26.3 pm longer than that found in the red cluster [107], The structure of an Al/Zr cluster [110] indicates the presence of a planar central four member ring of two aluminium and two oxygen atoms about a centre of symmetry. Each oxygen coordinates to a bent cp2Zr(Me) metallocene unit. A similar four member (AIO)2 central ring unit was found in a colourless Al/Sn cluster [111], in which both the aluminium and atoms are in pseudotetrahedral environments (Table 3B). A cluster of AI2Ga2 [112] sits about a crystallographic centre of symmetry with a planar AI2N2 ring occupying the central cavity of the [14]aneN4-aza crown ligand. Again, each metal atom is in a pseudoterahedral environment. There are two derivatives [113,114] in which dinitrogen (N2) forms a push-pull stabilized double bond (125 pm) with one end coordinated to CoP3 [113] or WP3CI [14] chromophores and the other end part of an N2AI2 ring. There is a centre of symmetry within the AI2N2 ring. The M-N-N linkage is essentially linear (175.1(4)° [113] and 176.5° [114]). The molecular structure of a yellow ΑΙ/Fe cluster [115] shows dimerisation occurring through a central AI2(NMe2)2 ring which is planar. The aluminium atoms each have two exo substituents, one NMe2 group and one (C0)4FeC(NMe2)0 group with trans orientation across the four member ring. The C(NMe2)0 substituent on the Fe(CO)4 fragment occupies an axial position. The aluminium atoms are pseudotetrahedral (AIN30) and the iron atoms are trigonal bipyramidal (FeC5). An orange Al/Mn cluster [115] also contains an AI2(NMe2)2 ring, but the substituent arrangement on this ring does not parallel the symmetrical arrangement found in the ΑΙ/Fe cluster [115]. One aluminium atom is bonded to two exo-NMe2 groups while the second is bonded to only one exo-NMe2 grup plus a Mn2(C0)9C(NMe2)0 group. The C(NMe2)0 fragment is bonded to one Mn atom in an axial position of the Mn2(CO)9 fragment, and the four equatorial CO groups on each Mn centre form planes which are staggered with respect to each other. The AI-AI distance of 280.6(2) pm is about 10.7 pm shorter than the Mn-Mn distance of 291.3(1) pm. There are several derivatives [87,116-121] in which the linkage between the Μ and Al atoms is accomplished via a double hydrogen bridge M(H)2AI, with the Al centres linked by AI(X)2AI bridges, where X = Ο [116,121], Η [87,117-120], or Ν [121]. In one case [122] the bridges are Li(0)2AI and AI(N)2AI. The coordination environment of each aluminium atom is a distorted bipyramid with three hydride and two O-donor ligands [116, five hydride ligands [87,117-119], three hydride and two O-donor ligands [120,121] or three N-donor and two 0-donor ligands. In each case the set

438 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry of two ligands occurs at the apices of the trigonal bipyramid. The AI-AI distances range from 264.4(14) to 291.1(5) pm (mean value 278.8 pm). The Al-M distances range from 239.3(4) pm (M = Mn) to 282.4(5) pm (M = Ti). An ΑΙ/Cr cluster [113] contains dimeric units lying on an inversion centre. Each octahedral (OC)5CrPPh2 fragment is linked by a -(CH2)40- unit (formed by cleavage of thf) to the two AI(CH2SiMe3)2 fragments. The central AI-O-AI-O ring is strictly planar with obtuse AI-O-AI angles of 100.3(6)° and acute O-AI-O angles of 79.7(5)°. Two cp2TiH2AIH2 units are linked by a tetramethylethylenediamine molecule in another tetramer [124]. The aluminium atom is bonded to a titanium atom by a double hydride bridge and has trigonal bipyramidal stereochemistry (AIH4N). The Al-Ti distance is 278.8 pm and the mean Al-H-Ti bridge angle is 112(5)°. The molecular unit of a yellow orange ΑΙ/Fe cluster [54] consists of two ferrocene moities connected via a N-AI-O-AI-N linkage. The linear geometry around the oxygen atom (180°) is crystallographically imposed since the Ο atom sits at a crystallographic inversion centre. Each aluminium atom is in a pseudotetrahedral environment (AICzON). The Al..Fe separation of 594.4(1) pm is the longest reported for the heterotetrametallic derivatives of aluminium. The structure of a red-purple Al/Ti derivative [91] is shown in Figure 7. The molecule has an 5 1 imposed space group of C2(2) symmetry. Each titanium is r| -bonded to a bridging C5H4, r| -bonded 5 to the other C5H4, and r| -bonded to half of the C10H8 fulvalenide ligand. Both Ti atoms and C5H4 groups are bridged by hydridodiethylaluminium moieties. The Ti-Ti distance of 291.0 pm and the diamagnetism of the cluster point to a Ti-Ti single bond. A colourless ΑΙΑ' cluster [125] consists of centrosymmetric dimer molecules {ορ2Υ(μ3-Η)(μ- H)AIH2(NEt3)2}2. The Y and Al atoms are located in the bisector plane of the cp2Y wedge-shaped sandwiches. The Al-Y distances of 330.8(11) and 410.8(11) pm, Y-Y distance of 370.0(4) pm and AI-AI distance of 678.0(9) pm all exclude any metal-metal bonding. Each aluminium atom is in a trigonal bipyramidal environment. Another colourless Al/Y cluster [125] contains two non-equivalent Al atoms, one tetrahedrally and the other trigonal bipyramidally coordinated. For metal atoms and four hydride anions form an eight member (Y-H-AI-H)2 metallocycle. In addition, one μ3-Η anion bridges three metal atoms (2Y and Al). The Al-Y, Y-Y and AI-AI distances of 320.2(7), 356.5(8), 437.8(8) and 497.2(8) pm again exclude metal-metal bonding. The colourless ΑΙ/Mg cluster [60] contains three orthogonal metal-^-0)-metal planes. The AI-Mg-Mg-AI backbone is almost linear with an Al-Mg-Mg angle of 178.44°. The Al and Mg atoms exist in distorted tetrahedral environments (AI02C2 and Mg04). A similar structure was found in six other colourless ΑΙ/Mg clusters [44,60,127-129]. Here the central Mg2X2 atoms form a coplanar heterocyclic four member ring. Each metal atom is tetrahedrally coordinated. A correlation is seen between the M-M distance and M-L-M angle, the latter opening as the former increases, for example: Al-Mg = 261.2(4) pm and Al-L-Mg = 77.1(2)° [129]; 280.0(2) pm and 86.7(2)° [60]; 289.5(6) pm and 96.2(4)b [60]; 330.7(2) pm and 105.2(2)° [44], For Mg-Mg and Mg-L-Mg the values are: 273.5(3) pm and 82.0° [128]; 290.1(8) pm and 95.2(3)° [60]; 295.7(2) pm and 97.8(2)° [127], There is one exception with an exceptionally long Mg-Mg bond of 410.1(8) pm the angle observed is 2.9(1)° [129] for which there is no immediate explanation. The structure of a colourless Al/Sn derivative [130] is shown in Figure 8. The compound features discrete centrosymmetric dimeric complex units, with each tin atom ^-coordinated to two neighbouring benzene rings of a triptycene ligand, but with different metal-ring distances of 290 and 338 pm. The angle between the two coordinated rings has decreased to 108.2. 6 + The structure of dark red derivative [25] contains the dimeric {(μ-ΒΓ)3[(η -06Η6)ΖΓ(μ-ΒΓ)2ΑΙΒΓ2]2} cation, the dimeric AI2Br7" anion, and three solvating benzene molecules, one of which is on the twofold axis. In the complex cation two bridging bromine atoms are part of the tetrahedral AIBr4 chromophore. Another three bridging bromine atoms are common to the two Zr(lll) atoms. The Zr-Zr distance of 318.8(10) pm is essentially equal to the interatomic distance found in metallic zirconium of 320 pm. 5 Another bright red ΑΙ/Fe cluster [131] involves a cis [(r| -C5H5)Fe(CO)2]2 moiety coordinated to two triethylaluminium acceptors through the oxygen atoms of two bridging carbonyl groups. The Fe-Fe bond distance is 249.1(8) pm. There are two Al/Sm clusters [84,134] which contain a heterocyclic eight member ring (AIHSmH)2. There are also two μ3-Η atoms bridging three metal atoms (2Sm and Al). The mean Al-Sm, Sm-Sm and AI-AI separations are: 327, 413 and 506 pm, respectively. An A/Yb [135] and an Al/Y [136] cluster involve a ορ2Μ(μ3-Η)2Μορ2 metallocycle connected to either AIH3.NEt3 [135] or AIH3.thf [136] groups by both μ3- and μ-bridging hydrogen atoms. The two Al-M distances and the M-M distance have the values: 326.0(2), 372.8(3) and 362.3(1) pm (M = Yb [135]); 324.2(3), 398.9(3) and 375.3(1) pm (Μ = Y [136]. All are too large to admit a metal-metal bond. In another colourless Al/Y cluster [137] both cp2YCI wedge-like sandwiches are connected to each other by a double chlorine bridge, ορ2Υ(μ-0)2Υορ2.

439 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

α>

o ro CO Ο CO CS r- ο ο • ο Η ιΗ τ* CO rH rH co in > Tji ß oo ß ιη rO CO τ* «. Η k » .. 0) «—« * α> «· «· » » CS CS CS ιΗ rH CS rH «H in rH > CS CS > CS CS CS CS ·—' w —- ^ — m w -H — •Η —' β β TJI in rH rH rH CO es m η ο CS CS νο vo Dt m es 0> <0 α) • · I • — > > CO o in a c in in co r» ο CO σ\ in 4J CO •Ρ Γ- •Η -Η > rH rH CO I rH rH rH rH ß β rH rH •Η •Η rH rH ^ S U •U u rH Ο 0» 0» U u I 0 0 H..H β U H =L rH =L U J Λ β - υ 4J u Ζ χ Ζ Ο Ζ Κ ZOO rH » rH rH 0 0 rH rH rH * ν » «. * Ν Ο rH U U β β U rH CJ u ζ ζ ζ Ζ Ζ ζ Ζ Ο Ζ =1 Ο =t =L =LU n ZI

ε a,

< <

CO τ* CO ο CS rH Ο rH rH CO * * «. ο ^ rH Η ιο ιη % * « s ο ο in in Η β rH Η Γ- φ T* Π" ro σ> Ο) ^ ι ^ - > CS ο α) •Η in CO σ> Γ— J ε ο ίί CO CJ ο CS 0> ι Ο co σ\ ro ο σ\ ο Η ^ wi γο Γ- in σι Γ- a - rH Ο α) 00 CO rH ο C0 & ° ο σ\ m ιη 4J CS CS CS CS CS CS CS CS es r-t es Ν 0 β -Q •Μ Ζ 55 Λ rH rH ΓΗ rH rH rH 5 U SU U XÜ Ο ΓΗ υ U Ή υ Ο rH Ο ass no =Γθ Π υ ZL 1U zL iU =1 1U HO 3.0 1U

I Ο Ε α) ο ^ ^ Ο » ιΗ 2 υ ο Λ Λ Οι ιΗ Η U α Λ! Χ

L, 0 c- in

Ö W ?- co io es 0\ CO CS

es in — cn in Η τί η oj TJ rn τ* rO CS CS CS CS ε ε ε CS •— —- a a a ΜΠ Ο —-mm vo m in es io ο CS CS CS V£> vo CS ο τ* m Γ- · · • · Ο Ο CS CO CO rH m es Γ- ο ο 'ί h fN a\ rH CS Ή CS CS CS > Η m

υ ft • β (0 Ο ο ϋ >, · Ν U Λ U Λ U CG CS ft Ο CU CO Ο CU CO g cu co S CU -«ί β cu -ο" •U CU CS e cu «•* ßd.^ Ο CO

Ρ rH «Γ s ζ rH CO m sT 6 < η «5 OQ s D „ ιΗ a Φ Ol ™ - (Ö TS Ο rH rH φ ο Λ 0) X < Σ 0» μ h Σ „ sc ο s · — « rH r-· Λ Κ S χ 3 3 (η ! ta 0 Ο 5 to 10 rH m 0 2 0 a. «S ι « U V Ο υ"·"1 υ U r-t Λ Γ rH — ® Η 1 S >£> — Φ Π. rH (0 , 1 Hfl Τ υ rH Λ 3 0 u 3 0 — a - S rH — Ο rH er au φ Φ — rH 4J Β ü — m 0 Ό <Ί « Ό Η ^ Jj Β rH Λ — — rH l·! "er a W>1 - U — rtl - 1 w w ' ' 2 < « < 2 << — Λ ' " Ό — «

440 C. Ε. Holloway and Μ Melnik Main Group Metal Chemistry

CO CT» rH<Τ » rH CN CN cn c^ in τ* 0 co CO CN CO 10 r» CN rH cn σ> in CN VO CNr H p* in CN VOC N VO CNin 00 vo cn σ\ co σ\ ** in rH in rH CN rH rH vo in CO rH CN CNr H rH CN CN CO ·*» TU CN CNtj » r- r- CO Tjl> ί Η Η CT» rl" VO τ* Ο in in in CO VO Γ- (N CN CN in —• in in CT» rH in 10 CT» 0 νο σ» CO Ο Ή rH CO CT» O rH CO νο Ο rH Γ- Η Η rH Φ 0 CO 00 ο ο *o ο ρ* CN 1 · CN CO Γ·« Ρ* CO Ρ» Γ* Tji CO Ρ ^ Ο CO in ao CN CO VOΟ CO U3C N r- Η CN Ο CO rH r- Ο rH rH CO σ> VO Ο "Ι· CO CT» rH P« σ» Η p- co CT» rHΗ h ΙΊ . CN in CT» rH Η f» CN in • in rH Ο rH rH Ο Η Η ΙΟ Q) fs rH CS VO rH rH rH rH rH rH Η rH rH rH Η CO CO Ο •ΊΙ CO CT» rH rH rH rH rH rH rH rH rH r- rH rH P- rH rH CN rH υ υ U u U rH Ο u rH U rH rH rH rH Ό 3-rH =1 H.rH =t =LrH U =L u irH u n u ft rH U rH 04 ο ο Ο - υ ο - Ο « - u - u » U •H ü < - U Η =10 υ υ Ο rH - rH rH η rH rH » rH rH rH U rH » rH rH rH u « U % » rH - rH - - ο - - ο U rH υ U rH u U rH 0 u Ο - U rH υ υ U u » t· ft-H U rH Ο Ο Ο » Ο Ο - Ο Ο Ή =LU =J.U =1 Ü.U α α 1U au =L H 1U zL u U ü Η =L U A ϋΟ 3.2.0 υ υ <

ΓΟ νο CO νο (Ν (Ν

CN Λ Λ Ο VO in σ\ vo P- ο ο Ρ* CN νο ·<* CO ß cn rH ß ** —«, rH - co CN rH CN ^ - — CN ρ» *<·«<. « * d) « β) - in % rH « A * « »1Λ ιη ιη τ* »1Λ ΙΟ Ο Ο β CO > CO rH > ^ rH CT» rH VO Ρ- 00 σ\ ιη ιη rl Η Ν Η VO rH rH rH rH α) — -H •H —' -— — —- LT1 — ^ w f> > VO 0» VO co in Dl VO CN CO 0 ,π η ιη νο rH τΗ ri Ρ» Γ» VO ρ» rH rH er» CN CN CN CN CN CN CN CN < Oj Η CN Ό CN CN CN <Ν Η Η Η CN CN CT» CN ß CN CN CN ß Ή U Ο ί.υ η υ iO

in co •«» in co ^ «Χ) CO ο CO Ή τ* νο Γ^ rH σ\ ο ω Ηπ<η ο ο ο τ* CN CN p* τ* cn Η h co co ΟΟ r» σ\

ß υ ß ü s. ü CN Μ QQ u Λ CN e 0, co e CcNu ^ •Ρ Λ CN 0 CU ' ßui g CU Cfl £ CH CN

6 , Ο Ό CO 1 Ο ® S 2 rUH — Κ « ^ Ϊ I όΛ „ u° u o αΓ 5 i Η Μ — ®"-Γ ο" 53 •C Λ OS λ * <*» ο Ό ma® V· Ή.» ι υ χ υ •ο' Ο rH fH 3.0 a ι er ι υ β) CM « UJ S0 ) — — υ α μ =L - S.rH >, C· — — «< υ Ό _— ι ο ϋ ι-Ι

441 Vol. 19, No. 7. 1996 Heterometallic Aluminium Compounds

CO σ\ ο τΗ CN CO in ο ο tH tH tH tH tH tH ιΗ τΗ tH «Η tH tH TH tH

tH en CN in VO CN tH tH CT» tH tH m —vo. tH· en^ » CN CN τ* CN tH tH tH CN CN m ο tH «Η tH tH ιΗ ΓΗ tH CN A · tH tH tH tH VO tH (Ν τ* ΙΓ) «J CO σι νο VO CO ß α G ß CO «Η Η cn CO tH cn CN ο tH CO ß ß ß Γ- σ\ CO VO in tH α> α) 0) α) tH «Η tH τΗ tH Η Η Η 0) 0) 0) ΟΟ tH ο tH · vo > > > > > > > tH tH tH in rH •Η •Η •Η •Η •H •H •H CO < Οι οι Dt Dl Ο Ο S Dl Di D> Ζ Χ a. ο υ a υ υ a. υ Ο 12 Ο » « « « χ χ ν ο 4J 4J V AJ - υ ^ υ ·. ν U - -ο 55 AJ 4J •P Ο U irH 0 0 0 0 ο - Ο Ο ο - ο ο ·> Ζ ζ ζ - 0 0 0 Ζ Ζ 53 ß C ß ß υ a. a. au a. a.u a a. au Ζ ß ß ß a. a. a.z υ

CN CN r-t ^ tH tH CN ^ CN tH .—. tH — "— tH -σ — — tH ^ •— —- CN ' tH ^ CN — tH CO — CO CN t^ ^ r»· CO »H — CO — CO —- r> — . vo . • CO · · • · tH · in · CO • in · m vo · m r- tH · rH 1 · tH 1 tH · in a\ co tH VO CN CO ^ r^ in co σ* Η 00 00 CN cn r^ co tH CN cn tH CO CN cn rH CO Η cn cn σ\

β Η Λ ο - Β ~ β (Ν ' ' * οι » η οι Λ co - in t ^ > οι οι η CO CO ^ TT Tl. ν CO w CO ~ ·Η — w r* — CO -Η v w oo Di σ\ Ο — TJ. α) co ιο co -ή οι <η Dl ο σι ιο CO CO • Γ- . ο co .σι . O- . co fi ß ß ß ·*··**· . σι . . 1 co co ; V 0) 0) 0) «ί · co * co ** (η οι τ* CO in ιο οι 00 Ή ίΙ il Η ο ο σι; > > > > ο ο- ° to m o\ CO σι CO Η ® σι ο* γ-

4J 4-> AJ Ο, JjU^ AJ 0 0 0 0 ο 2 ο s äZ ! υ ΐυ ζ£υ a ß ß ß au Λ υ υ au no Ζ ο. au ζ az ο Ο U

υ Ο ο υ ο Ο Ο ο ο ζ" SS ι-ί rH (ΰ ιΗ (0 rH fH < < < υ < υ <

tH CN CN CN CN CN Τ» CO «3· ΟΙ ΟΙ ιΗ tH CO CO t^ Ο Ο ο —. n co ιο o cn cn CN ««» vo 00 ο- οι CO tH in CO ^ rH CO οι σ\ co vo Γ- vo cn vo in t^ ο σι ο- vo CO vo cn

co co CO CD f> —· W Η ΙΟ rH τ* CO CO Ol — —- · Η Ol Ol οι ιι η οι μ η 01 Ol Ol -— ο ο ο Tf cn Ο Ol Ol tH cn ^ Γ- CN tH Γ* Ο CO ΙΟ CO *Jl in co οι r^ •<» οι rH OlOo

CO ΟΙ CM Ο CN tH 00 tH r-

ü β υ \ — « υ η ^ «ώ U CS CN U 52 h XI μ 55 Vi CS S υ jJ tH AJ 0« Η ß ftN 4-1 0. 1-1 S Λ οι Ο Ck co AJ Ol 0· AJ Ol Ol

3 «Γ >1 υ (0 υ υ ar 'τ) ω η β d) ' ÜH H 1 — Ο 3--J ί AJ Ο AJ Ο χ η; o a ο <-ι a μ ο 10 ίτΓ <0 τΓ >H rt) a U rH " ? " Vi rC K — id « Ί o< Λ Λ AJ % Q. Ή β a'V^' 0 2 - κ Ol Ή " Χ ζ « 5 ι ο Ό Vi ο < ζ μ ι 3.U α ιι Φ ΙΛ 1 α> α> Λ £ • « a. υ χ FH Ό fH T3 ^ α a c Ό -Η « — ο < — rtj — — χ: 6.

442 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

( 0 01 CN CN σ» C- CN Ο CO CN CN rH CO Οι CN 0i rH τΗ Ο c^ σ vo O « CN CN CN in m VO UD » —ν —s τί rH rH m —» σ* r* VO rH CN » Λ —. » » —> * - - » — in a r* ^ CN CO - CN ^ » « rH « CN rH CN CNC N CN CN CNCN CN CN CN CN cn rH CN rH PO fO VO CN rH.— , CN rH Ο rH rH rH rH • rH | >— w -—· —» —* ··-» — —' w ro rH — >— —" rH rH —' ·«-' rH —. ·« - CN r- in CN ΙΟ Ο CI VO Ο CN 00 rH in r- Η Ο CN r» CN ·» —' <7\rH VO <Τ\ — 00 CN σ> VO in CO Ο • CN A · • —» U3 · w CO • ΙΟ CN in ro til CO Ο ο rH Ο σ\ CN β VO rH σ\ ο in σ» vo CN • •*!« m ^ CO r- · ro CO r- ο CN TJ· TJ« 00 CO CO rHr H CO rH rHrH σι αο C» a> r- 00 Ο - r- r*» Γ- σι CN VO • CN CO CO CO o ο r» 00 rH r- ro rH rH rH rH rH rH rH > CN 1-1 CO CT» rHf * rH CO en rH rH rH •H Ο cn w CO CN Ol 55 55 D> X Φ Ο Κ Κ ** S cn X X O Ol a.55 3.J5 Ο 3. 3 3. κ · Γ- 3.Ä 3. Χ 3. • υ 55 Ο U U •P Λ (UVO cu % COcu • ZLCO a 55 2 Ζ Ζ » » 0 « cn X Κ Χ Ό ΙΟ Χ - r- Κ Χ X a Ο ο! 3. 3.Z 3. 3. 3.Z υ u ß 3. 3. cu 3. 3.H cn 3.04 τΗ 3. 3. 3. υ 3. ο

— τΗ Τ* τ* VO rH ·. W —- CN CO CO VO . . τ* O CN cn CN T* · CO σ» ro > ο co CN CN rH CO

ß 0) ^,—. Λ CN CN rH •d« φ Tl< CO VO rH ro CO cn CN CO rH CN > CO CN « » ο —Ν— « « —. * Ö rH Λ ß «H β ß Ή Λ ^ - 00 Λ •Η β - rH in in in ro in in - rH rH CO ·. Λ .—.σ « w —· 0) ß Φ - ω 3) - CN COC N Γ- Ο D» 0) rH •—· —' — — > σ ο φ > r- « > > r- CO CNr o CN CO r- CO rH CN ro > in 1 in co CN rHV O VO o rH •Η Γ- > •Η — VO •Η •H φ 4J •H — ß Οι 00 CN •Η D» σ CN Dl Di O CN CN τΗ ^ rH rH rH rH CN in σ\ co 0 Di Γ- r» oo CN Γ-CN ro ο ro d) Dl ß σ\ σ\ r· Γ*· CO ο CO > 4J Ή in JJ ο in 4J V * ^ o CN rH ro rji rH σ> σ\ r» CN 4j in CN tH Η rH rH rH rH CN rH •H 0 ΙΛ 4-1 0 ^ vo 0 0 "Ο vo COv o VO CN vo σ\ in CO CO ο oo σ\ X 0 Ό Ο 0> Ö

ο κ Χ X Χ Χ « 'Z U u ο 04 Χ 04 Χ 04 χ 04 χ u Χ rH rH ß β rH id rH 0 rH 0 rH β ΓΗ •Η rH < < s X < EH < X < χ < χ < Η <

CN CNC N -J· in in in CN ro in Η 00 CN σ CO in rH rjt CO COο rH vo CN co in rH Ο Γ- in τ* CN σ* CO COC O Γ- rH vo r- CO σ\ ο Ο <Τι Οο <3\ Ο Η rH rH Η rH

ro ro τ* (Ν ro ro σ r- σ\ ro en cn ro in cn vo in r- σ» no σ σ» c-- CO CO t"- (Λ Η t>- ο ^ r- CN CT> CO rH in t>. cn in co in σ\ «η cn c- cn r^ σν CO Ο rH CO (SO® cn ro vo Η Ο O vo ^ ro rH CN

ß c \ \ U CG U CG Μ CG CN CN μ υ U CU CN tl 0- Η •U O4 CN Ο Λ 1

443 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

—» Ο rH in · · ro —» · rH in CO CO •<3· CN CN VO • co οι • ^ Η Λ CN rH rH r- ^ rH rH rH r* co A 00 ^ -s A ^ * VO Ο Ο —· — cn «. * — 1 rH CO HrtltNHH -Ί CO ^ 1 Ί m CN CN CN ·C N CN m αο r^ Η in rH d) Λ wrH . „ ( I) — — — c^ rH Η in CO LO •«Π Η vo vo in cn ί fi ^ in C^ CN CN COV O VO in ο t^ vo σο CN rH —- . · τ* · t . r* in in in τ* rH in in . . . rH in in CO o\ 'i h · o oo in oo cn vo co ο cn ρ* Ο Η CN t- VO cn CO β in in tj 00 cn C cn η CN VO rH 00 ^ CO rH CO r- r-> »η «η ο r» co VO CO CO O rH CO CO CD CT» rHv o ο Ο in co co cn κ cn ο Γ» CN rH cn r> VO rH rH CT» Ol Η Η ,Η α) rH o\ t^ rH rH rH rH Η rH rH ^ > Η rH > rH rH CO rH rH 00 •H •Η rH rH Κ Ο Ο χ ο, Κ Ζ 55 Κ Ol ZOO Ο Ζ Ο Ο ^ 0) Ο cn X X o, aaiSü! ι υ 2.3.3.3! Κ 3. ü 3.3. 3. 55 55 3.3.3.™ 3. V » » Ή Ζ Ζ U 3.K Ζ 3. ü - 4J V * u U CU - - X 2 κοκκο» a κ Ζ Κ Κ Ζ Κ 0· 55 O 55 ζ Ο 0 Ζ Ο 2 Ζ Ο 0 ο - Ο X X - Κ 53 ft mi:Li υ aaiiaa ü 3.3. 3. 3. 3. fi 3. 3. 3. 3. 3. Ö 3.U 3.U U 3. 3. X 3.K ü

in ^ ιη CN ro Η Η rH CO cs ΜΠ η τ* Hin^

CO CO CN CO (Ν ι ιη CO CN Γ- CO ο ο Ρ- rH CN CN rH rH (Ν τΗ

10 ß *• ß ^ ο vo in vo rH > 2-Η in vo w -H CO ö> ο ^ vo ^ D) cn co ιο ιη ο CO Ο ^ r» η »h ο in CN CT\ 4J in in ^ in Η CN ιο τ^ι r- co vo r- co co ο vo vo co ο ο co co CO 0 cn Q oo o\ r- in rH vo ro ο rH CN Η Μ Η iH CN CN CS Η Η rH Ü Η Η CN rH CN CN

Κ Ο Κ sü ζ κ Ζ C) Ο 4J 55 Ο U Κ Κ 3. 2. Κ η u 2.U 112 HO 3.3.55 Ο Λ 3.Ä Ζ 3.U

η 9η txf Ο ο" ιΗ U υ" -Η U •Η J U ΕΗ

in vo cn rH ιη •*!· Ο Τ> Π ο οι ο cn cn γ- HO®

CN CN CN (Ν Ί Η vo vo cn in in co co in CN CN CO CN 00 CO co r- oo VO CN τ* cn co (7* Ο ό r-- σ> Ο CN VO cn ^ r- σ\ r» vo cn cn ο ο rH vo CN CO o σ\ o co ο oo η in σι tj· rH CN oo ο in rH vo co rH Ol VO Hrin CD Ο rH

OG Μ Cä β Λ CN β Λ CN ß CK 4J Οι CN β CU CN •U fti CN

a s -Η lö c o ~ -H * * „ « „ — ® Β Ό IH ^ A -S ^,Χ ß ~ α ο. H 33 -r( an «ι 6 ~ QHJ ο oo Ol ?s rH Λ rt Λ — ~ sf ω ^ w (Q JJ Iti 4J Ο J3 Ο Cj (K — — 0. rH • < - — - <

444 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

^ —» —. νο OHOl σ» ο σ> ο CS in σ\ rH rH 0\ VO τΗ rH rH CS CN

CN rH (Ν CS CN w in ci Η (Ν VO rH (Ν rH σ\ co rH CN rH rH rH rH rH rH CO r- in CO CO ^ CO VO CO ^

rH σ\ in r- en m in Ο (Ν rH rH C^ CO rH O CO r- Ο o ^ r- Ο ρ- Γ- CN ο σ> rH rH <7\ ο in 1· r* Ο ιη CO ο »Λ 00 cr> co r-> cs η r- rj in CO CO P* in CS CN ΙΟ > Ο CS σ\ vo rH rH in 00 rH CO CN ^ t-iΟ rH Ο σ\ tn CN r^ CN CN C\OHri CO CO CO C7\ rH rH VO CN VO rH p- CO rH rH CO CS CO rH rH CO CS rH Η rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH

0, υ U κ υ Ο Ο Ο Ο Ο ο U 55 ü =L < au υ a η =L υ =3. Ο Ο η. =L U =3. « υ 55 » >< 55 - U >* Ο - U » » u U Ο - U Ο Ο « - Οι Κ Η - X X u *χ χ Ο Ο Ο Ο Ο Ο ο Ο - Ο Ο η. in" ΪΗ U U ü a. < Ο < U zL =L=LU=L =L 1U η. a. Λ =L U =1 π. 3.U =1

σ> Λ M •σ — CS VO TJ rH rH rH rH rH σ\ σ\ r- αο 00 CO rH rH rH in Ί1 Γ*· f) VO CO CO Ό » »CS τ* CS Γ- Ο 00 CD ο ο es in CS CO 1 CS ^ in CO a\ vo es in CS rH CS ο —' CO TJ • 11 · • . · . Iι · 'ί Ο 1 1 rH rH Ο Ο CD ο ο vo P* r- <7\ VO · rH 1 1 CS ^ 00 ι in co ίο οι vo Ο ΙΛ σ\ co σ\ CO rH > Γ- es m

ο c β S c > Μ ^ rH > (1) -Η > α>> > •Η •Μ ΉrH ΙΟ η ei σ) r- co <τ» I 00 CO rH in Ο CO •H Ο Οι 0> •a .· m t-i σ\ η ΓΝ CN Γ* ιΗ ΓΟ ο τ* co ο { vo in D> Ο co g ±1 4J CO 0 ΙΛ CD οι Ο 1ΤΪ Γ- ι-Ι rH σ\ in ρ- [ σι es r- 4J ( · C ρ- ο ο α) Γ Ο CO νο VO σι ο CD '

ö no t CT» f 0 c ts Β 3 Cα Ό ( vo ο no t CM τ-Ι Γί <Ν Η Ο) Η CS CS (Ν CS Η OJ Η 23 5 rH CS rH VO «s ß 193.6 C Η Β Β Β Β V Ν, Β ^ Ο —. α Β Β α Β Β ^ Ο u Η Μ U H-U Β υ Β ο Ο ο a. 55 u ZI. ZUL a. a. a. a au a au au a au a a 1U a ο

υ U tf U χ ο 0) r-

Ν Ν η τ* τ* CN vo vo m in in τ» vo

00 VO <Τ\ rH 00 in Η ^ vo vo vo r- co

Η (Ν ro KD CT\ m co co σ» ο Τ> Η Ί σ» in m Η CD m ο cd σ> cn co co cn cn CO Γ» CS rH CO CO co ό co CO CO ο «qr CS r-

Λ Λ ß Ν CS CS ^ OG CN β Λ CS EU'» so.'» 6 Λ ^ 4J & Η ß CU ß CU TU

Φ Ε ^ s Β 5, o O.U ~ ® χ X α sf— χ - U -Η μ Ο d w CO ™ co 3 Β ™ ίί α < < U Φ •n - ο a γ- α -,υ u «s •α ι — ι-1 υ φ ι ο α α — So) W ο" Μ υ ο J u 0) — β S

445 Vol. 19, No, 7, 1996 Heterometallic Aluminium Compounds

Λ CO CO cn vo in τί CN VO CN CN · vo CN • τί CN Λ CO — CN m CO in 00 CO rH oo CO rH <3\ rH τ* CN - in rH ro CN (Ν CO VO in rq CO CO CN CO CN CN CN CN Η CN (Ν Μ CN CNC N CN rH CS CN CN rH rH rH« Η rH CN m in rH CN CN 00 — w W νο —rH· f* in ΓΗ οι νο CO rH O CN in ·<* CO CN r- r> vo co rH CT>C N CO o m cn in rH C7\ CN CO CO CT» CN 00 τί σ\ rH rH VO CT» CN ^ Η CN VO CO vo 00 CO CNi n co Tj ^ rH in in vo Ο rH vo <3\ irnH cn Ο rH ^ VO CO Ο CO CO Ο CO VO r-co in ß CO CT> rHr H 00 CO ON Ο rH CO0 0 CN CT» rH Η CO Ο «Η 00 rH rH rH r- Ο CS Ή 00 rH rH Η r- CTl rHm Ο CO ο rH COο Ό a> rH rH rH rH rH rH rH *H rH rH rH rH rH rH rH rH rH Η rH Η rH rH rH rH rH > rH CJ Ζ Η Ο ζ ζ ζ Ζ u u U U Η Η Ζ Η Η Ö» 3. a. U 3.3. Ulan. U 3. 3. 3. Ζ U Ζ 3.3U Ζ U Ζ 33 Η 3 U 3.3. ·» % =L « « « « « « * - ο u V s ·> ü ·> - υ Ο - 3. - υ Ο 3. U » ο 4J rH ζ - a si Η ζ Ζ Ο 2 Ο ζ * ÜS2UZ ζ - Ζ Ζ u Ζ - ζ - Ζ ·» Ζ Η Ζ * Ζ Ζ Η Ζ 0 U 3U 3. 3. 3. am =LU 3. 3. 3. =L 3.U 3.55 13.12 3.U 3 ζ 3. 3. 3. Ζ 1U 3. 3. 3. Ö 3.

COO CST3 —» m CN CN CN —' 1 CO CN CN CN CN CO CN Η CN CN CN rH —. ^ ^ rH rH Ο r- r- co σ\ cn r- co CN co in λ η r- CN VO rH CN cn rH Ο vo VO rH vo 1 CO U) h VO ι σ\ cn σ\ τ» Ο ιι in CO in rH CO I 00 oo a\ 00 CO σ\ CO CO f^ oo t*» CO ο CO 1 vo CT» VO > Η (N CN CN CN CN CN CO rH CN CO 00 CN r* cn

β Φ ^ σι Λ > «η cn VO CO CN CN ιη cn* Π° Η •rt Iii Η Λ * ο * * 01 in γ- τ* m τ* τ» »O en co , π η ro ΓΙ Ό 1Ί π in co ο 00 CN σ\ rH CO , ι^ ^ ιο cn ^ οίο Ο C ; rH Ο vo m ο r- νο σ\ co in Γ·» , OD Η Π CO ^ η cn Cl rf rH 00 σ\ Η γη η rH τΗ (Ν σ\ co . *Η CN CO 00 U> Ol rH CN CN rH CN CN CN CN CN CN η Η η es (Ν ^® "α ϊ c«n cn es οι η

SS ιζ Η a ί ο a a ϊ a α 85 a η a η U a. CJ 3.3. 3. 3. 3.a 3. 3. 3. 3. 3. Ζ. . 3°.

υ υη a™ a a? Ο a a" a a™ a ζ a rH Dl rH α α ι-4 Dl Η Dl rH Dl Λ! S3 2 S s < s £

Γ-· ΙΛ σι ro co Γ- ^ Η ^ ιο cn t» ΝΙΛΙΛ co σι in Ο ΟΙ Η σι ο ο

ο» co in Η tN 1*1 io in co co co CN r- cn cn in in μ Ο Η Ol CO us r- co σι σι as (71 Ol Γ- rH Ol 1/1 Co Ο ^ Ol ο 00 Ol CO CO Ο 04 ΙΊΗη Ο φ Μ ^ ιη Η Mfl (O ® Π «3 co οι co Ol Ο "ί οι w CS ond

C β Ο υ •ν. χ CS CN CN

0.

446 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

RH CN ΙΗ Ο Σ> — M CN CN Σ* • RO ^ ΤΗ .. .. Ο Λ EN · Ο Ο Ή M M Ή CN Ο Μ ·> OJ «. «. —- — « ΙΗ ΓΟ Ι «. Η Η 1 IN (Ν I RH ΙΗ — —» . 00 · I ^ ΙΗ ΑΟ . ΝΟ — — . · •—· Α ' (Ν Σ\ ΑΟ ^ ΝΟ ΝΟ CN ^ Ο Φ . ™ — — ~ ΣΙ ΙΗ Ο σ\ ΙΗ :" <*> S D Σ\ Η Ο > ° Ο Ή > ««ss" Ο'' Η ° '^ . """ ™„ΓΗΟ · •<» ES ' M ES ΙΗ Ο Ή ΤΗ »"· RH •Η C0 ° H S Η ' ΓΗ RH ΙΗ < Μ ^ 0) Π Λ Η 0 Μ 0Q Μ Κ- Ο .. Ο ΟΥ S. Μ M Η •Ρ .. ., CQ Μ --Υ -Ι Q Υ A-«. Υ ^Π.® A 0 ÄÜ« 5.« ® ° Υ * Β * * - « . . ΪΟ A . ~ AO . A. -,Ι Κ Λ - "=*- - Μ C U U U - Ο Υ Ο :O χ χ ΧΧ CQ Μ CQ M Η u % J Υ„Υ, J Ο „ „χχχ ..< ΊΗ Κ A 3. M 3.3. IFFL Υ Υ Ο III 3. S.S. Υ

RH ΝΟ Η CD ΓΟ VO » ^ ^ .. — ΗΐΗ^ Ν H Η Η (Ν Γ- CN CO W . (Τ) — · — · U3 IN · Η Ο Μ ΙΗ · Ο (Ν Ω ΙΟ (Ν ΝΟ ΓΟ ΙΗ Η ΝΟ M M ΙΗ (Ν Σ> CN Ν Η Γ* M Η (Ν Η > EN Η ΓΟ Τ»

VO CN ΓΟ Τ*

ΙΗ (Ν Η Η Η Τ* M ΙΗ

<Ν CN Ι INN OJ ^ ΤΊ (Ν (Ν

Η Ν Σ\ Ο Ι CO Γ*· 00 Ο , IN AO ΣΙ , R- RO ES Γ·* «Ο κο M en CN Σ\ ^ Ο CD R^ ' Ο Σ\ '3' Ι Ο ΣΙ «Ι»Ο 1 Μ CN CN CN CN CN CN (Ν <Ν I9 iMSsr-t

Μ Κ Η Μ Ο M Μ Ο Η Υ Ο Ϊ Κ A.« A. A. A Ο Ο Ο Ο Υ Ο Ο A. A. A A. Υ AU AA Ο

M R^ Η Η ΙΟ ΙΗ

CS ΊΟ ES ΙΗΙΟ Ν

O W Η R- ΙΗ «Η Η « ^ 00 Ο ΗΙΗΠ Ο CN M α\ <*Ι <·Ί Σ\ Η ΟΗΟ Η Η

α

(Ν A 1-1 65 Ε Α Β 8Ϋ< E Ο. Ο V FT JJ ft CS

Φ B

Ό Φ 0) N Μ J-" Ο — A< Φ CO A « ^ — — Μ Ν — " » V « U " * α Κ U »-Ϊ" Θ A A ™ « A 1-1 Φ ~ •"Β »»HU Μ U7 I« RH Υ Υ M Ι <Ο •Η « S Β — „A.C Φ Μ PH CN Τ3 A Λ — Ζ J W <0 — Ν «: · — — < — A- U >I

447 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

— CO .—. ^ » —.

a * κ rH Ο a η χ ο öi a Β U 3. υ ******* . * Χ Β ο υ =lb ζ α KZ a * Β Ζ a a a * * ® ο * - - - ζ · •»Β «. Ζ * Ή a » « * - Β EC a * Β Β - Β - Β U β Β υ A=t=Ls.=L»B=i!A illliSΚ ϋ Iii» =L Λ, Β a. Β zL a.

CN ΓΟ γο ro CN σ\ «. Ο 00 rH CN <η ΓΟ CD Η ΙΟ VO CN CT> CO rH in r» u> σ\ rH m CO lO (Ν Η Ο (Ν > I Η CN CT) CN Γ- rH CN ο ι vo CN CO Ο f) ιη ι ΓΟ CO rH CI fO Η co η CO CO rH τ* Η

VO CO U5 ο ^ ^ ß ß ι* ^ CO ^ CN »H rH ^ » CTi — — α) ~ α) ~ ο Ο >- rH > ,Η > ΙΟ 2 VO C^

Ζ^ χ U rH Λ < ίΗ

νο ιη Γ** Is Ό Η

cn co cn CN CN CN in r^ cn W w o> ο CO CO σ\ Ο Η in ο co Ο CO Γ"* CO Ο vo CN CO co in ο f* ο CO CO ο CO c*» co co in τ» CD rH vo rH CO -"ϋ oj CO CO

U <2 4J 04 G to * β Λ CN β Λ CN

1

a"«.- A«-

α > ν α ι 4J α ι w α ι 4J ft I -u Ü 3. Β Ο 3.Β υ Ü υ 3. Β ϋ 3.B — — ζ — ~ a — ~ S5 >—* — 55

448 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

φ CO φ —" CO rH τ—( rH· Η . . » - ιο —* rH rH rH rH Η rH Λ - Ο -V » * A CO rH ·—» ' cn r» r^ σ> «η ιη I φ ^ rH τ, ^ .. —- ιη οο • Λ W W W — VO 00 rH rH 00 — CO rH r*» η· co rH rH > > •Η υ •Η •Η rH rH tu σ> 13. Ο 0> υ υ Ο α Ol Ol Ο =L «· υ° =LU a. ü ü η. U » 4J rH Χ Κ 4J « Η - - υ - Η » Ο u u - - Cn 0 υ ο 0 0 υ υ υ υ - υ u 0. - ·« - u u n ß Ο χ Κ β β η η ZLU =L ZL υ Ο Ο U =1 A

Φ in Γ- A VO τΗ VO VO CO VO r- rH CN Φ m —· CO C0 τΗ rH r- Φ CO CO CN rH » CO co « Η .—. .. CO « ß ο ·« CO (J) — CN CN CN •«ί w " rH CO •Η σ\ ιη CO CN ι 00 1" 00 ^ > ^ CO « CN Λ σ\ VO —' 00 /»Γ CN Ο VO . CT, 0» •w • a\ -Η ·τ Η CO CO • cr\ rH « CN co · VO ο CN rH ο CN CT» in 00 CO VO • 0» r» — — VO — rH Ο in Ρ* rH r- rH rH AJ rH rH νο σ\ CN in CO r· σ> σ\ •«i a\ Ο ο Ο VO ο rH P- r» τί CO 00 σ\ ·«* Ο rH ^ CN 0 CN CN CN CN CO rH rH rH iH rH rH a\ μ cn r- CN ο CN VO CN Ο CN vo CN rH rH rH CO CN rH CN CN CN β ^ 0 CN CN CN

φ rH rH Ο υ s α • o> • α Ck fc ί υ Ο rH Ο X X u Ζ υ α Ζ Ο υ X U U M e ο υ =LU η u Ο au υ 3.« 55 =LO =LU Ο 1U iü IU au =LU =LU =L Ου

υ On txT υ υ υ X β ι<Η a •H υ ο CO CO £

Tjt (Ν in CN rH CN CO CN Οί CO CO CN ·<* CN ιη

in ^ CN σ\ Η r* r^ co vo c* r- ΜΛ Η ο co νο

rH ΓΟ CN vo τ* in in co α) (ΛΗ Ν vo «Η σ\ vo r* co CN CO VO ο en ο CD CTl CTi Η ft σ* (Λ f VO Η 1/1 ρ» CN in rH Η Η ο CO CO CO o> in in r-1 en rf rH Ο CS CN CN VO (Ν CN Γ- CO ^ CN CN CN

β ϋ \ CN VO U Λ CN β ΛΗ Oft® ß CK ^ β α« cn β Λ β & <Ν eui

449 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

a c •Ή ο Ή

3 "Η- ρ Φ XJ Β 5 Β m 3 β φ Ε Ε Ε "-ι 3 Χ Ή . Ό Ο IT) Α ο 4 Φ Β Ο c Μ 1/1 Ο 1/1 •Β >ν οι r- σι ιο QΦ -Η •Β ft. ο Ο Ο α s -U Q) a. a. a. a. 4J •Β υ ο Β Μ fc. ft. ο ο Ο ο Φ ·ΓΗ 3. a. a. a. a. e ο Ο Β •Η δ «Ο •α α Üφ •Η <0 ο φ φ Φ Μ ·Β ο. by u Β α <0 Ό Β to V, « Ο •η . CS α Ό(0 ο>3 Ο CN Φ Ό 01 Ο Η — ^ m in Η Η Ο · -Η Φ co σι Β « Μ m (0 . Γ4 Η πι (Ν m η w ι/ι ιη '—' co ω γσΗι οΟ σι σι CD rf CO σι Ε C Ο Ο Ο Ο 8 ® a. Β Μ « υ 5θ ο ϊ u « 3. • a.8 a. 3.S5 a.Ο 3.0 υ u8 Β α 10 Φ ·Η Φ Ή •ο & 2 * Φ Ό "Η "2 Ό -η Β a « 5 =3 Ν u Β Ιη -Ι ο ^ ® 0 -Η Μ Jj Ο Ό Μ Ο Ο tri α •Η Β Ο Ή •Ή Β tu Ϊ3 « β co ο ο σι ο ο Ο r-( •Ί Β Ν Ό Ο £ 4J 4J Ο •Η a •s Ο υ Χ ID Β ^ U 1/1 φ Ο η ίο ιη σι m ίο οο es in S » Φ · <Λ (Ν c- σι w ID in CO £Ο · •Β Φ οο σ\ ** m Γ4 ρ- ΊΠΗ σι rH m £ •u U σι m co r- i-t Η *£> σι ri σι Β w t-t ^ HHrt Φ φ s „ - u Β " ^ -Β ο to £11 Ο <Β " S S •Η Ε Φ Ε Η 4J t) Ό 5 Ε 3 ό to •Η C Ο " β C ο φ Ό χ 2 'S· Μ JJ Φ Ο 5 ι «! A\ m (Ν fc as CM .8 3 •CS -Β I Β ' - In (U vo β 0. ^ Eü« 4J 0. Ϊ*· So.'» ö Ει £ Φ Ή -Η 3 Ε U 6. •Q Ο η >Η ηΜ 4J <Μ^ Ü Ό Φ Μ' ÖI tn 9 Η "Si" 0 Α rH t3 m ΓΗ ν ν Λβ - Λ ιΗ Ο Μ Φ << ^ 0! ο _Γ 2- ο >1 Φ a φ ο — 4J U Ο 0 ο Ο) -- 1W ν 0 11 Η,ϋΓ U CJr, Μ" β S Λ Λ υ φ ο < 3 Β — 0) Β — ιβ α υ ö ο s Β t~i 01 Λ φ Λ Μ 0 — •Η — ο -U Λ υ fH 0 ^ (Η ιΗ —• υ Ο — < — — Λ: ο b.

450 C. Ε. Hollo-way and Μ. Melnik Main Group Metal Chemistry

Fig.7. Structure of [(C5H4TiAIEt2(C10H8)]2 [91]

Fig.8. Structure of [(C10H14)SnCI(AICl4)]2 [130]

451 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

The angle between Y-Y axis and the plane passing through the cp ring centres and their respective Y atom is 29.8°. This deflection of the cp ring is no doubt due to the coordination at the yttrium atom of an extra ligand, the Η-atom which is found exactly within the bisector plane of the wedge-like sandwich as a result of its bridging to the aluminium atom. The colourless AL/Zr cluster [138] has two cp*ZrMe units of the dimer linked by two direct fluorine bridges and two 1,3-bidentate F AIMe 6 2 2 groups. A similar structure is found in another complex [139] where two (r| -C6H6Sn) units of the dimer are linked by two direct chlorine bridges and two 1,3-bidentate CI2AICI2 groups (Table 3B).There are four derivatives [6,140-142] which contain a central heterocyclic eight member ring: [AIHLiH}2 [6], [AICCaC]2 [140], [AICYC]2 [141] and [AICSmC]2 [142], Each aluminium atom is in a distorted tetrahedral environment. Lithium in the first derivative [6] also has a tetrahedral coordination, while Ca [140], Y [141] and Sm [142] are sandwiched by pentamethylcyclopentadienyl rings. The Al-X-M bridge angle in this series increases in the order: 157(3)° [6] < 168.2(4)° [140] < 176.5(8)° [142] < 177(1)° [141], The M-C(bridge) as well as the M- C(cp) distances increase with increasing covalent radius of Μ in the order: 266 and 266 pm (Yb(lll), 98.5 pm) < 275 and 267 pm (Sm(lll), 102 pm) < 297 and 270 pm (Ca(ll), 114 pm) [148], all with coordination number eight. In an Al/W cluster [143] the aluminium and tungsten atoms are bridged by carbonyl groups with oxygen bound to aluminium and carbon to tungsten in slightly puckered twelve member rings (Table 3B). The third class of heterotetrametallic derivatives (Table 3C) has the aluminium central atom in a six coordinate environment. The octahedral geometry is significantly distorted, and is surrounded by four member rings (AITiF2) [144], (AICr02) and (AICo02) [145] in a propeller-like manner. The "pitch angle" of the four member rings of the "blades" is 86.9° [144], The Al-M distances are 311.3(2) pm (M = Ti) [133], 295.1(4) pm (Cr) [145] and 288.8(1) pm (Co) [145], The Al- L-M bridge angle closes as the Al-M distance decreases: 105.40(8)° (L = F) [133] < 101.3(4)° (OH) [145] < 98.2(2f (OH) [145], In a light yellow Al/W cluster [146] the almost regular octahedral stereochemistry around the central aluminium atom involves three Al-O-C-W linkages through one of the carbonyls of each of three [W(CO)3cp] moiety. The octahedral aluminium coordination is completed by three tetrahydrofuran ligands in a mer configuration. The three tungsten moieties display approximate mirror symmetry and are very nearly isostructural. The molecular structure of an Al/Μη cluster [147] belongs to the D3 symmetry point group. An octahedral coordination about the central aluminium is created by six OCMe ligands in the manner AI-0-C(Me)-Mn. The four CO groups about each manganese atom completes a slightly distorted octahedral geometry (MnCe). The data in Table 3 indicates some examples which contain two crystallographically independent molecules within the same crystal [60,84,102,117,133,147], These differ mostly by degree of distortion of the M-L distance, L-M-L and M-L-M angles, and represent more examples of distortion isomerism [57], The aluminium atoms are found mostly in a distorted tetrahedral environment, but there are some trigonal bipyramidal examples. As noted above, all of the derivatives in section C of Table 3 have octahedrally coordinated aluminium atoms. The mean Al- L(terminal) and Al-L(bridge) distances increase with covalent radius of the donor atom in the order: 150 pm (H) < 192.5 pm (LN) < 197 pm (LC) < 209 pm (CI) < 224 pm (Br) for the former and 176 pm (H) < 178 pm (F) < 182 pm (LO) < 198 pm (LN) < 208 pm (LC) < 218 pm (CI) < 235 pm (Br) for the latter. The stereochemistry about the metal partners of the aluminium atom varies from three to ten coordination. There are several examples [25,101-104,107,131,138,143,146] which contain "open sandwich" (η5- or η6-) ligands plus other ligands which usually serve as bridges between metal atoms. Another set of examples [54,84,87,104,110 120,121,124,125,130,134-137,140- 142,144] contain rf-sandwiched M, and in one case [139] η -sandwiched tin(ll). In addition, except in two cases [54,134], other donor atoms are present and serve as bridges to aluminium atoms. In the two exceptions [54,104] the r|5-ring serves as the bridge to the aluminium atom. There are twenty three different metal atoms found with aluminium in over seventy heterotetrameric derivatives. These include the non-transition metals: Mg(8 examples) > Li (5) > Ca (4) > Sn (3) > Na, K, Ga (1 each); the transition metals: Ti (9) > Y (6) > Co (4) > Zr, W, Mn, Fe (3 each) > Cr, Mo (2 each) > Ta, Pd (1 each); the lanthanide metals: Sm (8) > Nd, Yb, Lu (1 each; and there is even one actinide example with uranium [99]. A summary of the Al-M, AI-AI and M-M distances are given in Table 3D and 3E, respectively. The shortest Al-M distance four the heterotetrameric derivatives are: 233.3(1) pm (M = Co, transition metal) < 261.2(4) pm (Mg, main group metal) < 319.6 (7) pm (Y, lanthanide metal) < 376.2(4) (U, actinide metal). The shortest M-M distance increases in the order: 207.9(1) (Mo-Mo) < 271 pm (Li-Li) < 361.3(1) pm (Lu-Lu). Finally, the shortest AI-AI distance in the heterotetramers is 264.4(14) pm [117],

452 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

Table 3D. Summary of Al-M Distances [pm] in Heterotetranuciear Aluminium Clusters

Al-M Distances: Μ = non transition, [ref]

-Mg 261.2(4) [129]; 280.0(2) [60]; 285.1(1) [44]; 286.2(2) [128]; 286.9(4) [127]; 288.8(5) [60]; 289.5(6) [60]; 330.7(2) [44],

-Li 262(1,3), 265(1,1) [133]; 299(-,19) [126]

-Al see Table 3E.

-Sn 347.3(1) [111]

Μ = transition.

-Co 233.5(1,2) [107]; 259.8(2,7) [107]; 288.8(1) [145],

-Mn 239.3(4) [118,119].

-Mo 256.5(9) [117]; 257.8(9) [117],

-Ta 271.3(9,20) [116],

-Ti 275.0(3) [87]; 277.9(14,18) [120]; 278.2(2) [121]; 278.8 [124]; 279.2(11) [104]; 282.4(5) [121]; 311.3(2) [144],

-Cr 295.1(4,7) [145].

-Fe 594.4(1) [54],

Μ = lanthanide and Actinide.

-Υ 320.2(7,6) [137]; 324.2(3) [136]; 330.8(11) [125]; 356.5(8,19) [137]; 362 [137]; 398.9(3) [136]; 410.8(11) [125],

-Sm 326.2(1,17) [134]; 327.6(5,8), 328.0(5,3) [84].

-Yb 326.0(2), 372.8(3) [135]

-Lu 326(1), 409(1) [135]

-U 376.2(4) [103] Footnote: The first number in parenthesis is the e.s.d, the second is the maximum deviation from the mean.

5. Η ETEROOLIGO NUCLEAR COMPOUNDS The crystallographic and structural data for these derivatives are gathered in Table 4. There l are five examples containing five metal atoms, and the structure of AI3Mg2(Pr O)13 [149] is shown in

Figure 9 as an example. Each magnesium atom is coordinated to a terminal AI(Pr'0)4 group via double OPr' bridges. The two magnesium atoms are joined by another bridging isopropoxy group and another AI(OPr')4 group, which is doubly bridged (via isopropoxy) to one magnesium and singly

453 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds bridged to the other. The molecule is unsymmetrical, with both a tetrahedral and a five coordinate magnesium. Each aluminium atom is in a pseudo tetrahedral environment (AI04).

Table 3E. Summary of M-M Distances [pm] in Heterotetranuciear Aluminium Clusters

M-M Distances [ref]; Μ = non transition.

AI-AI 264.4(14), 266.1(15) [117]; 266.3(3) [107]; 266.7(1) [110]; 271.1(2) [111]; 272.6(6) [118.119]; 280.0(4) [87]; 280.6(2), 281.7(1) [115]; 288.4(18) [120]; 288.7(3), 291.1(8) [121]; 497.2(8), 678.0(9) [125],

Li-Li 271 [126]; 350(2), 351(2) [133].

Mg-Mg 273.5(3) [128]; 288.6(7), 290.1(8) [60]; 295.7(2) [127]; 410.1(8) [129]

Μ = transition.

Mo-Mo 207.9(1) [106].

Fe-Fe 249.1(8) [131].

Pd-Pd 257.0(13) [105].

Mn-Mn 291.3(1) [115].

Ti-Ti 311.0(7) [104],

Zr-Zr 318.8(10) [25].

Co-Co 333.8 [107],

Μ = lanthanide.

Lu-Lu 361.3(1) [135],

Yd-Yd 362.3(1) [135],

Y-Y 370.0(4) [125]; 375.3(1) [136]; 437.8(8) [125]; 438 [137],

Sm-Sm 406.8(4), 409.6(4) [84]; 422.9 [134], Footnote: (a). The first number in parenthesis is the e.s.d, the second is the maximum deviation from the mean.

The molecular structure of an AI3Mo2 cluster [150] indicates three aluminium environments. One is the predictable dimethylaluminium, in a distorted (AIC2Mo2) environment bridging the two molybdenum atoms (ΑΙ-Mo = 294.4(6) and 300.3(6) pm, Mo-AI-Mo angle of 106.2(2f). The other two aluminium atoms are involved in a unique structural feature of this system. An AIMe group bridges the two molybdenum atoms (ΑΙ-Mo = 265.7(2) and 266.2(6) pm), and at the same time is

454 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

involved in a multicentre bonding arrangement with the two unique carbon atoms of the C5H4 groups (AIC3MO2). This is also linked to the remaining AIMe2 group giving a tetrahedral (AIC4) environment. This compound was also studied by another group [151] and published in the same year (1974), both studies yielding comparable results.

C(13)'

Fig.9. Structure of AI3Mg9(PrO)13 [149]

The crystal structure of yellow Hg3(AICI4)2 [152] contains discrete molecules having a nearly linear CI-Hg-Hg-Hg-CI central skeleton, the chlorine atoms being shared with two nearly tetrahedral terminal AICI4 units. The mean Hg-Hg bond length is 255.7(1) pm, and both the Hg-Hg-CI and Hg- Hg-Hg angles are 174.5°. An AISn4 derivative [153] approaches 3m point symmetry and contains a Sn4N30 cage, the atoms of which occupy the corners of a distorted cube formed by two different size, interpenetrating, concentric tetrahedra of tin and nitrogen or oxygen atoms. The nitrogen atoms carry tert-butyl groups and the oxygen atoms are ligated to an AIMe3 unit. The aluminium is in a distorted tetrahedral environment (AIC30). There are eleven examples which contain six metal atoms, and represent the richest variety in the heterooligonuclear series. The number of aluminium atoms varies from AI4M2 [105,151,154- 156], AI3U [157] to AI2M4 [88,127,158-160]. A colourless (AI4Sn2) cluster [154] contains a folded eight member AI2Sn2CL ring with the two tin(ll) centres linked by two bidentate bridging AICI4 counter ions. Each tin(ll) is η -bonded to a hexamethyl benzene ring and is further connected to another AICI4 group, also acting as a bidentate ligand. A striking feature of the skeleton in an AI4Mo2 derivative [151] is the presence of pairs of Al atoms arranged in a way reminiscent of the trialkyl and triaryl aluminium dimers, with bridging C atoms provided by the adjacent cyclopentadienyl rings which are denoted as C5H4 in the formula (Table 4). The molecule of an AI4Pd2 cluster [105] is centrosymmetric with the centre of symmetry at the midpoint between the two bonded Pd atoms (Pd-Pd = 257(1) pm). The two benzene rings are π-bonded to both Pd atoms, giving rise to a binuclear sandwich structure. Each Pd atom of the Pd- Pd centre is connected by a single bridging chlorine atom to an -ΑΙΟΙ3(μ-ΟΙ)ΑΙΟΙ3 moiety. A centrosymmetric dimer is found in an AI4Pr2 derivative [156a] which is composed of two triangular + [ΑΙ2ΡΓ(μ-ΟΡΓ')4(ΟΡη)4(ΡΓίΟΗ)] units linked by a pair of chloride atoms. The praseodymium(lll) atoms are heptacoordinated and the aluminium(lll) atoms are in distorted tetrahedral arrangements (AI04). The AI4Na2 cluster [156b] is centrosymmetric with two oxygen atoms of water molecules bridging its two halves. The sodium(l) atom is coordinated to two phenolate oxygen atoms from one [Al(btame)] moiety and one phenolate oxygen atom from the other closest [Al(btame)] moiety. Each aluminium(lll) atom is in a pseudo-octahedral environment (AI03N3) created by a hexadentate macrocyclic (btame) ligand, and each sodium(l) atom is pentacoordinate (Na05). In the unique AI3U3 cluster [157] the three uranium(lll) atoms define an approximately equilateral triangle. Three chlorine atoms bridge the edges of this triangle, and two additional

455 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

chlorine atoms cap the U3 fragment on each side by triple (μ3·) bridging. The coordination polyhedron of each uranium atom is a distorted pentagonal bipyramid. The equatorial plane is defined by two CI atoms of the bridges, two CI atoms of AICI4 and one μ3-α atom of the caps. The structure of a colourless AI2Mg4 cluster [127] is shown in Figure 10. It contains two Me3AI^-N(SiMe3)2}Mg{N(SiMe3)2} molecules bound through Mg atoms to the methyl groups of MeMg^-N(SiMe3)2}2MgMe. The compound posses a centre of inversion related to the two equivalent fragments. Colourless [{Sn(NBu')}4{AICI}2] [158] contains a Sn4N4 cage, the atoms of which occupy the corners of a distorted cube. The nitrogen atoms are linked to SiMe3 groups, the tin(ll) atoms of the cage acts as a donor to the AICI3 unit. The aluminium atom is in a distorted tetrahedral environment (AICIaSn). The structure of a black AI2Ti4 cluster [159] is shown in Figure 11. It is polycyclic with two four member, two six member and one eight member ring. The titanium atom framework represents two almost regular isosceles triangles, and including the aluminium atoms produces a gull-like figure with the wings being linked by bridging hydrogen atoms. All the hydride ligands in the structure are bridging. There are two heteroheptanuclear derivatives, (AI6Li) [161] and (AI3Ti4) [162], The molecular structure of the former is a pseudo-hexameric cage consisting of a five member fragment, AI-N-AI-N- Al, crosslinked to a six member, cyclohexane-like, ring, (AIN)3. C32

C62

Fig.10. Structure of [{(Me3Si)2MgMe2}2{Mg(NSiMe3)2)N(SiMe3)2AIMe3}2] [127]

The lithium(l) atom is linked to two adjacent molecules through three Li-H-AI bridges, the fourth tetrahedral position being occupied by the oxygen atom of diethyl ether. The structure of the AI3Ti4 cluster [162] is shown in Figure 12. It contains a Ti metallocycle (Ti-Ti = 275 - 279 pm) coupled through three μ-Ι bridges (Ti-I = 277 pm). The three ΑΙ μ-Ι bridges join three Ti atoms to three Al atoms. The three-membered Ti3 metallocycle is additionally coordinated by a deformed Cg ring, which is also one of the caps of a dibenzenetitanium(O) moiety. The aluminium atoms have distorted tetrahedral coordination (AII3C). There are seven heterooctanuclear examples, AI6Li2 [163] and AI4M4 [128,164-168], The structure of the former example consists of an open cage (AIN)e to which two LiH molecules are linked through Li-H-AI hydrogen bridges. The tetrahedral coordination of the lithium(l) atoms is completed by a nitrogen atom of the cage and two nitrogen atoms of the outer -NMe2 groups. Each aluminium atom has a distorted tetrahedral environment (AIH2N2 (x2) and AIN3H (x4). The structure of a green AI4Ti4 cluster [165] consists of four identical cp*Ti(C5Me4CH2)H2AI moieties bonded by two μ3-0 bridges. The wedge-like cp*Ti(C5Me4CH2) sandwiches have a chess-board conformation. There are two hydrogen bridges in the bisector plane of the wedge-like sandwich, which link the Ti(lll) and the Al(lll) atoms (see Table 4). The structure of a colourless AI4Lu4 cluster [166,167] is shown in Figure 13.

456 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

Fig.11. Structure of [cp2Ti^-H)2AI^-H)(C5H4)Ticp^-H)]2 [159]

Fig.12. Structure of Ti4AI3l18(C6H6)(C6H3) [162]

457 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

Four lutecium(lll) atoms are located in the vertices of an elongated tetrahedron. Over each face of the tetrahedron there is one aluminium(lll) atom. The heterooctanuclear metal core is a very distorted cube with an approximate point symmetry of D2d formed by the bridging hydrogen bonds. Each Lu(lll) atom has the same distorted square pyramidal coordination with the μ5-Γ^ in the apical position and three aluminium atoms plus the nearest lutecium atom in the square base. There are two aluminium atoms in distorted tetrahedra (AIH4) and one in trigonal bipyramidal environment (AIH40).

55

, Fig.13. Structure of {[(Bu 2C5H3)LuH]4[AIH4(Et20)]2[AIH4]}Et20 [167]

Another octanuclear AI4Sm4 cluster [168] has a cyclic metal core which resembles a sitting frog. Samarium atoms are located in one plane (deviations of 1 - 2 pm) in the apices of the tetrahedron with mutually equal edges and one acute angle. At the apex of the acute angle a 5 samarium atom is coordinated to two r| -C5H3Bu'2-ligands. Three other samarium atoms are 5 coordinate to only one r| -ligand. There are two aluminium environments, one AIH4 and the other AIH2N2. There is only one heterononanuclear cluster [138] and its structure is shown in Figure 14. Six metal atoms form an open cube, which is shielded by Al and C atoms. The cluster is capped by CH and CH2 groups, some of the C atoms being hypervalently bound. There are two sets of Al-Zr distances: Al(1)-Zr(1) = 333.0(2) pm; Al(2)-Zr(2) = 333.7(2) pm; and Zr(1)-AI(5) = 288.0(2) pm; Zr(2)- Al(6) = 287.9(2) pm; Zr(3)-AI(4) = 284.6(2) pm. The average AI-AI distance is 268.2(3) pm. The structure of green [Eu(C6Me6)(AICI4)2]4 [169] is shown in Figure 15. The molecule is a 2 cyclotetramer in which four Eu(C6Me6)AICI4 units are connected via four groups of r| -AICI4. Each europium(ll) atom is coordinated by three groups of AICI4" and one C6Me6 group to form a distorted pentagona? bipyramid. There is one example [170] which contains eighteen metal atoms (AI6Nd12) and its structure is shown in Figure 16. The crystal is composed of dimers of (AI3Nd6). The coordination about each aluminium atom is tetrahedral, and that about neodymium is monocapped prismatic.

458 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

OSIS

in co σι ^ V£) CT» CN — CO co G ^ί1 CN CN CTrH Ο -;ο .—. Φ I -—. ^ -- ^r - 00 ^ ^ Ιβ - ^ rH \ VO Γ- σ\ > — CT, r-t τΗ τ—I CN CN CN '— rH — * ' Γ" . """d ι -Η VO — CN σι; Γ- Ο CN σ> cn ο r- ^ Ι CO 00 τΗ »OVOP1H 1 σί ^ " νο VO CN in ^ 1 «•ο 1 0J · VO τΗ ^J CN ΟΟΗΝ " ο ο ^ ο τΗ Ο VO Ο τΗ ο r- ΗΗΗΗΟ •H^^CO rH rH ο rH ιΗ rH rH rH rH tH τΗ C ιΗ J ιη Γ"- in oo I ιη οο u in oo U rH rH 2 ο? η Ο -iri Λ Osu 0 rj 0 rH u'—ι OlU ι 2 * . ο so _ . υ S - - ° ε ο .χ s < Χ A •J -u ο γ u = u -usuuu - "U U == U .-USuuU V ro * "O^^nm^u ο - - ο Ο r-1 υ Ή σι ο ο Σ üu usuuiiu u 2 iiu usuoiiu Σ < au χ χ

Γ» -ςί Ο CO — ΤΗΠ ΓΟ «3* CN ΙΟ er* vi/ ^ VO ' CN l£> V£> ^P tH si CN Τ ^ in r- in νο — VD CO Ol Ο c- . CN cn ro cn "*. < oi ro J [s in in ο ο in in rH ^ in in rH CO cn in oo η CO β in in rH «Η CN CN -S ο ο CN co o ο ο Ο) CN (N CN (N CN CN CN CN CN CN CN

U S Ο Ο Ο Ο w S o s 0, ~ X Ο ε π ε U rH U σι ΙΟ ii S =LU s u AU Σ AU S U LU AU ΑΧ

I Ο ο ο ο I ω 2 Σ^ ο Ο ο ο U u* Ο U u U* υ υ u u ή Di D) «Η rH rH σι .-t rH ιΗ ο rH 01 < < < < ΕΣ < χ < Σ X ο α

0 1 Β«;-

"3· Γ- Γ- τι σ\ (Ν > ιη

ε ε ε r- σι ** co co in CO CO σι 0, α 4 a •—• —' σι η η co in ο cn σ\ m ο co CD co ^ Λ υ in co σ\ en ^r Ή O rH Η Η Η in

& υ ω ο ν ^ (Ν ^ CN 1 CN Ο Οί τί 0 -"S EU» U ui

ι—I <

X 01 o 01 0) <11 2 sT g Μ u ι—I α. u 3 U S rH ζ ο < fi Ή σι rH S ο s α a ο υ ο u υ 0) u — υ 01 < — X 459 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

υ in in ιο cn oo 00 in «ςτ o. . rH .—. , Η CO •—•'—• (Τιoj οι• o· j— σι• ι-' ι cn LD TH IT) rH σι fo Η - * Γ- - r m υ * ΓΟ CN - "(Ν - (Ν ΗΗΗΗΗ τΗ ΙΟ• τ VO voC O rH tn LT» iinn in invo ' '—' •—IN OJ -—' OJ — rH υ o in • .ID .(Τι ο —' σι — .OJ γ - CO id η *τ σι in σι LT)m cd OO 00 I•^Dr rH rH CN LT) rH >XC>O ΓΟ r*v*o σ\ . Γ- ΟΟ n ο (Ν σι η ID Γ*»Γ* "ο ο οοσ » r^ οin m CN «5 Η ei n t1i n ι m γη ο ο σι ΟΗΗΙΟΓΠ rH CNr Hο ο ο r- α\ rH VD cn β β W Η Η HÖH T-Hi n Ι rH rH CO t-H 00 Η Η Η rH rH rHr H ι-Ι rHr H φ α) rH «ΗHH H tHlr >H rH •>Η •>Η rH Ι-( « ö) DI rH Ζ U CJ ΓΟ U rH rH rH ΪΟΗ Λ 0 0 U ο rH AJ 4-) =1.U Ή (J rH U U n - -Ο - S 2 Ο iU 1U < 0 0 - -u - υ rl <—1 rH - γΗ - · S U - β β rH rH - rH - ζ UUHÜ ou^ uu u u - rH UUH Ο rH Λ iu n ÜO n Σ in ΟH i =1. =iU. < ÜU iU cu

VO ^ 0) CT, 00 00 ο vo in CN CT» rHCN rH m rH Γ- rH rH rH ωß 0ß) Ο ο in er» KD T-Hv o CN rH rH m ΓΟ 00 in m (Ν CO > > Η Ή rH inΟ CN rH •Η in in vo m er»0 0Ο o er» vo VO tH rHrH VO rHr H rH CO rHÖ >Γ Οr H CD rH CN CNC NC N CN CN rHr HΓ Ο ^ v£) Ο

Ο~ Χ«! Ο• ·Ζ η ζ υ Ή υ Ο U ϊ υ ϊ Ή Ο υ υ EU υ 2 υ Ό U iU in α ηυ au Σ 1U < ÜU ÜU ΙΟ ΙΟ Λ 1U

ο C. ,—1 u ___ υ Ζ Π Ζ» υ υ ςΓοι υ Οϊ υ (Ν UN Ο υ OJ υ CN CJ Ol r-

•«ί σ\ ο ID •«ί CO in in m σι ιη γο co m οο Ol OJ rt ιη ιη οο 00 CO CN ID CO CO γΗ (Τι vo t^ m r- ίο \o σι ο tn in in in -ί in Η σι in oo Γ*- CO CO CN oj οο οο ** ΙΌ Η CD ^f O t"H ιη oj in o r^ σ» σι σι οο σι τη σι σι σι

υ CN Μ 03 U C2 Vj eo ^ ea ε«·-» HUH JJ Οι τ JJ Cu , JJ OJ rH cn Ol χι® φ s υ ε Φ 03 S ο u U a Ζ u < ν

460 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

CN CT —' CN ro —«ro · • in · CN -—. in Λ .—. —' -—. « • CN « CN CN Ξ 1 • 00 Γ" Ό CO vo -—. · tH ro cn r- tH "C CN —• * ΙΟ • rH · CN · — rH ^ • Γ- —' cn Ο ο rH rH in • in m Λ "Ivo03 — CN rH ro vo ·•* ο rH rH ΓΟ rH ·. κ co Γ- ^ - . . . . rH - . .—. Ak » ·» r- Γ~· I - . in cn θ"\ co Η tri in τ? in -a* 1 1 in 1 —- ' —- •—• tH CN CN · CN I Ζ " rH — ·— -— •—• •—- — Ο —' ^ - r- · —• —• CO •— rH rH - ο OJ CT\ rH ON 00 cn o m m r- m . m 00 > rH CT» CD -Η CN ' ο ο rH -Η ΓΗ r- ι—I rH cn rH σι » cn U Ο CN 00 CN C>J u a 4J AAO -— ·>-' Ο •— 4J rH u U U 2 U rH 0 « % 2 cn ο in o Ο =1 ο Ο =L •Η rH Υ iU U 2 1U =L=L η Ο G rH F-i - c - - »CJ A - · 2 - Ο 2 - 2 · » · Ο > U U =L - =t - - UUO ο Ο - Oo - Ο - - Ο - rH Ο Ο * , - 2ZU - 2 2 -U 2 2 rH AAA A =12 Ο =1 Ο 2 HO cn Λ =Lcn Ο > =X=LU iiiU =1 =L2 =i.=L=L U A

—^ - in — CN CN CN rH Tf Μ U 00 Ο CN G Μ 0) in ^ in in in VO in in in > ro -tf ro r- ro VO cn cn Ο CO CD CN •— —-"— •—• •H « ν s .—. •—- — « .—. •—• .—.•— · ~— Ο ο ro ο r- ro in in CN CN CN 00 rH CD cn rH CN rH rH VO tH VO CO Ö> CN CN CN CN 01 = CN co in cn Ol ro CO 4J ro r- CN Ο in ro VO 00 CN CO VO in 00 CN ro vo CN VO cn' OD CO CO CO Ο CO CO ο ro in o r- cn CN Ο ο 00 rH cn ^ Ο rH CD rH CN 0 = CD cn cn r^· CN CM rH rH CN rH rH CN CN CN c ro CN CN CN CN CN CN rH CN CN CN CN CN CN ro 236 . CN CN rH CN

1-1 U U Ο Ο Ο Ο ο ο ι υ ZOE ζ u Ζ u AO AAO AO ζ AO a Α A iu i A V α au IZ A ω u a.

α ω

Ζ Zm Ο Ο cT ο ο U cT Ζ CN Ζ CN υ Ζ τ—I Μ ι—( Ι-Η (0 rH U rH Πι & χ rH C < < < < > < Χ < ft ζ Χ — χ —

σ\ r- r- c^ ο ιη

höh Ο C^ r-i

ω η ro CN Π Ρ") [— in vo inoico

τ—1 νο νι> t^ m *£> <Η 00 CO LT) in cn ^

co Η Γ- CN 03 tH CS τί co σ\ oo Η σι η CN) Ο LT! CN (Η CN ΙΟ CN η Η CD ιη σ\ Μ^Ο CN CO CN CN onw CN rH rH Η Ol Μ

υ c υ CN U Λ CN 6Q e ο 0 ft VP ε ft 4J ft rH ε ft τ

r-, rH ο u Μ CN f\ rH υ .υ Φ — 0) u < 04 α 1-1 s s < CO * (0 α> ~ "n V S φ < CO CO ε aj ω α Λ z rH rH ο _ • Η "H ^ 5οο w 21 Μ Μ Τ«ϊ ΓΊ I—ι νο 3 m 3 -ϊϊ •—- α < υ αΓ 2 ·Η 0 0 S ^ w fH c rH < (0 CN ι I πν \Ο — Öl — 0 0 ft 0, — Ζ · > Ρ (Γ u Ol u ^ —ιο

461 Vol. 19. No. 7, 1996 Heterometallic Aluminium Compounds

σ\ ο CD Ο in ι.ο CO ι£>

·— rH '—' ON rH — rH ΓΟ rH ro •Ό νο ΓΟ m rH ^ w o (Ν σι — ' „ —, —• —- •— •—• — rH •—· 00 σ> I rH I CO vo r-i Ο in I CN m cr> . . rH VO m CD Γ*· Γ- ο LD Γ- • cr, U • in . σι ιη ο CN Ή "531 TH τΗ rH rH σ\ rH Γ- rH σ\ ο r- ο Ο ,Ησιοι Γ-» VO 00 Γ-i m 00 rH rH rH 2 rH •^r χ U X X κ χ A —' I dL Λ. CN ao U Eh t zL η. η zL η in 2 2, υ ι =Γ κ X κ Χ κ 3C 00 CO χ ι ro „Η Μ CO H =1 =1. =L =L =L =£ ε- ΐ

οιη —- 0> rH Γ- 0) .—. « rH — —« VO — rH CN CN CN Η Η tn rH rH rH t- . CN - CO rH CN CN r- rH rH r- Γ- rH CT» rH rH·· er» m , (Ν CJl IT ο ιη σ\ CN Γ- oo cd m m r- CO cn r* m : ιο ** 2 -3> [— CO Γ- rH rH CO (N ro rH CN CN cn rH CN rH rH CN rH CN ; £Ν ΐΝ £ IN ΓΜ <Ν <Ν

2 Χ U χ υ χ χ υ χ 3τ- m Χ u ϋ ÜU =LU ϊ± =icj ix ζί i ΙΟ 111· zLzLA iü

X υ υ ο U χ" CJ f) U OJ χ" u* 2 η Χ m χ Μ U f*i Ο -Η <-Η •Η Χ •fH i-l •Η X •rt X r

ι/ι r- £Ν r*l r*> f*l w *—ι Ο (Ν 0*3 ι—I CN m σι γ^ in σ in ιη ίο ιο ΙΟ 00 Ο co CN c- ρ- γ- σι m η ο Γ^ 1*1 ΙΟ r*i r^ ο Ηΐηη Η η ιο moic <π σι CD Η Η Η

C C β ΓΜ c ΐΝ £ α* Eft« Ο CU Ε0··»

Χ i χ ZL. <-ι Χ^ «Η < χ r

462 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

CM οι <"") oj cn m m m rN -H σι o j in 2 2 U 1 Χ 2 X <-> ο 1 U =1. . iuχ Ο Π Χ 2 2 2 i Ή -U - ' a 2 - 2 2 Ζ Ε χ ° Χ Χ 2~ Χ 2 α) 12 2X2 1U Λ iiiii =1

VO κο VO , (Ν (Ν CN , [-> CN LO τ , •— - φ - — \ C0 Ο CT» [ j ο m co m |0(N cn uo m ^ in cn ' mm ο CN CN CN (Ν CN CNJ ' oj rnM r- , Η Ο] OO Η Η CN

X* X X 2 s 2 U x° X ü A i i ΐζ iu Λ Λ zl üu =L i Ii i α =L

VO rH CJ^ 2 _ X X^ CJ U u Ο X DTcn 2 ^ ·£ U CNU CNU CN υ CN χ" l ' X rH X •H «H ü) rH Xr H X c X c X rH < — < < < —< —0 1 CO < Ε-

m m «H rH Ο Ο tHο CTi o cr> Ο tH tHrH H t—1 '~

in in m m ro CN CNCN CO CTi ^ CN cr\ο CNi n tH rH (J\ COm Ol Γ- 00 co CT» Γ- rH Η O CT»Γ - CN r- CO vo imn Ο CNC N VOΟ Γ- CN ^ΓC N ^ vo η tH tHrH CNt H CN rH rHrH CN CN rH

υ «3 ε CN vj oa Μ c Ε U oo 4-t (X . Ο ü- co

463 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

CM rH οηΝ'ί oo Γ- CN σ» V • .—. 00 •.—. Ό ····«—»· .—. • · . vo rH Ό 00 cn in If) ^ CN VO rH VO ^ ,-H ·» • —«. VO » » « rH CN » «. ο CN -9 - ~ Ο r- VO rH CN CN r- CN CN CN CN CN CN ι ι I • rH ι I CN CN CD C~) —' rH rH rH 1 1 Ο Ο er» σ\ vo ο vo ο cn CN CN VO σ\ m ^ m vo 1 1 „ 00 CN Γ* 00 CN LO CN [— Ο ΙΠ CD in in o »vo oo σ\ m in VO Ο Ο rH m in cn cn vo o in ο r- en Γ- O rH co cn vo vo ro ο rH CTi rH rH rH rH rH rH rH rH rH rH rH ο r>- CO vo 00 X _ X _ 3 3 rH Ε α |J 3J J < X u X υ J - Χ Χ Ζ Ζ X κ «χ«®«®3; - » rH - 3 rH rH « d ά χ < Ο J < < 3C Χ Ζ X X υ π: υ

•H •H Ο in U-l vo rH rH CN vo' σ» >Q) in ΓΟ ο Ο in ο Ο -H in CN rH ο Μ CN Μ in m m 00 in m 00 rH in (j) —• CO CN ϊ ο ο ^ 00 cr\ rH rH CN CN a> m — VO cn t^rOH ι" 1 (N LD J*" I Ο | 1 m CN I . , - rH —- ο Ο * ο - , •—' — — —' -—- 00 '—' m rH vo rH CN rH rH rH m rH ο in CN LD CO ο ci — — — •—• •— in in Ο ο OO in CO CN —· — — vo ο cn CTi 00 CN ο Γ- in CN co CN G CN ro 00 ο Ο Ο VO cn O CN in ισιοσι CN rH CN rH rH m rH CN CN ΓΠ in m cn CN in m CN r- m in ο rH rH ο > ** ο ^ r-H CN CN τ CN in vo mCN CN cn TH CN CN ro rH CN CN m 1 (Ν CM CM χ^ X «„a «Χ m ηϊ Χ iiO ÜU ΪΟ Λ ϋυ ιυ

Χ CM Χ CN Χ CM Χ* Χ χ Χ χ" Χ χ rH Χ rH Χ 3 Χ ιΗ rH < — < ~ •—I 3 t-i ε Ε J — < < J < < ω ω

ϊΗ σ> Γη ΙΠΗΟ in in co CM σ\ Γ^ ο in <Ν σι LD 01ο Γ- CT» CT* ο

(Ν cn in ^r τ in VO ro VO (Ν vo Ο r- rH CTV CTV rH CM ro o -a* vo VO CD tN vo r^ cn CO VO Τί rH -<3· r-t OVVOH HHP) HHM CN rH CM

<13

>H CQ u efl CN 4_> CU CN J-> Cu CM Ε α. -o·

χ rH X " C χ X QJ CO ε Ό 1 * 1—< ,

464 C. Ε. Holloway and Μ. Meltiik Main Group Metal Chemistry

Φ tQ Φ q * q 5 g to 4J

4J % cn q Ό CN rH s · Ό m cn 5 to I 1 I (U vo CO ® · σ\ σ\ η Ή σι ο m 03 co r-" CN CN CN ο ^ cn in co r- cn oo en Φ o to 9) q 0. to 4J J-1 ο ο < β u u υ u ® to υ - C - u - - u - υ < uuυ uuu η HJ to Ό q 10 ϊΙ bi 4J

υ ® S q ^ Ε Η CN CO νο Ο ~ « S. I U Οι R 00 Ρϊ c c β - (Ν CN r- c^ c φ φ Φ αϊ *• to s £ ß « ·* _ βφ •^ιη cn C I (U ·> - ω > > > ή •He® 03 φ •Η ·Η •Η ^ Ό q ^1 V > ^ νο > > . ·Η —' -Η > Ol Di Dl σι CN •u Ο) m m σι -Η Γ- <Τι " -α· r- Di •D 4-1 xj σι CN c ; CN CN J, Η CN 0\ co ro 4J Ο 0 Ο Ο ' ο r- ο CO 00 η ^ CM 4J CN CN CN CN CN CN R a) Φ . SS ο » " Ή Ο Ο β β β Μ §•0 c 28 6 υ Φ (Ν β 22 5 21 6 no t u υ 2 ® CI Μ a. α ί 1 ϋϋ ϋϋ U U ο. ** <0 ιο t» * ο UOHU CJ q •u q ίΐυ =13.0 üu iü ΙΟ A3. ϊΐϋ Ss to (0 a 13 2 0 Ό & •η Q ) tmo U Ο * * Ο . "H Ο rH u* υ " CJ —• —- CO fH ι-—» r-To rH Ή (J CJ CN U Ο υ cT U vo U rH U CN φ ΓΗ Χ ι—I Χ U rH Ή ^ fH Χ T5 Χ Ό X <0 ® q q < — — < ω 2 — 2 — < < < Ο S •u •h . . is "M q q ο LO (N ro ro 0 d. τΗ rH (Ν in Ε Ό I Ο ο VO Ο rH νο u σ\ 00

® q •q φ φ ο νο ιη • γΗ ** V q » 4J (Ν 00 (Ν νο m <Τι Φ νο CN to to Φ Ü φ • — ~ in t—ι in σ\ νο ^ •Η q φ Ü ιη ΓΟ ΓΟ νο σ» γ» rH (Ν Γ- •1 q r- ιη bi to Γ- in co in ιη ΓΟ 10 of (Ν ΓΟ ιη q JJ b>

«· «ζ 55 U υ Ό Φ bi - αϊ w Η £ rH φ U I S ι Ä α— — Ν Μ jj Ν ΌΗΗ .—. ZU — α ή ο ι-) ι ei "Μ υ ~ " .υ 3 ι—I ,—1 α. ~ „ cn ω < < iu ο — — ω •—•

465 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

Fig.14. Structure of (cp Zr)3AI6Me8(CH2)2 [138] (Η-atoms not shown)

In the almost thirty heterooligonuclear clusters, aluminium is found mostly in a distorted tetrahedral environment, but there are some trigonal bipyramidal examples. The mean Al-L bond distances in the four coordinate situations increase in the order: 148 pm (H) < 165 pm (LO) < 198 pm (LN) < 198.5 (LC) < 210.5 pm (CI) < 249 pm (I). The mean Al-L(bridge) distances are: 166 pm (H) < 175 pm (LO) < 204 pm (LN) < 206 pm (LC) < 224 pm (CI) < 262 pm (I). Both sets of distances increase with the covalent radius of the donor atom, and the terminal bond distances are shorter than the bridging ones. These clusters can be found with main group metal, transition metals and lanthanide metals. While the former prefer lower coordination numbers, mostly four and five, transition metals are often found as sandwich or "open" sandwich moieties, often with other ligands serving as bridges between the metal atoms. The metal-metal distances found in these clusters are summarised in Table 4A. The shortest Al-M, AI-AI and M-M distances are: 265.0(4) pm (M = Mo) [151]; 256(1) pm [168]; 255.7(6) pm [152],

6. HETEROPOLYNUCLEAR COMPOUNDS Crystallographic and structural data for almost eighty derivatives of this class are summarised in Table 5. Aluminium(lll) atoms are found in either a distorted tetrahedral or a pseudo-octahedral stereochemistry. In two colourless MAIH4 derivatives (M = Li [171] or Na [172]) each aluminium atom is surrounded by four hydrogen atoms at the vertices of an almost regular tetrahedron.

466 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

Fig.15. Structure of [Eu(C6Me6)(AICI4)2]4 [169]

C(ai) "(SA) |0<«7A)

C

C(97 A)| Q(4 A)i

% Al(4)

JO(AA)

C<66 A) a(JA)

01(>A)

C| OC»^)

CC«A)C OOaV

C(«l A)

AI(4A) , |C(MA)

Fig.16. Structure of [AlaNdeClziEt^^Pr'o)^ [170]

467 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

Ή Φ Γ- r- Γ- Γ- Ρ* Γ- Γ** A ιΗ «Η «Η t-( rH Η tH τΗ «Η

υ CN Γ- -—- <—• »• ·—» —. .—. τ CN —« Τ m .—. s ιΗ τ Τ σ» —» CN · · ID τ τ σ\ co -—• Τ • LT) Ο Ο τ Τ Γ- CO • rH tH VO rH CT* VO tH νο Ο * Ο —- ~ * tH ιΗ ιη ro . (Ν Τ (Ν CN CN ΓΟ rH tH η rH τΗ VO er» ΓΗ —' ιη C LN C in Ο ° co ο in σ\ β Ö ιη ιη ο in ιη CN CN 0) ω Ι—I " .—. · α>Ό Φ «—· •—• cn > σ» > CTI V. ιη ΙΟ <Ό CD Η ΓΗ > (Ν > σι σ» τ Σ» ER» σ» σ\ ο •Η ο -Η ο u ^ . VO ino^'j γΗ -Η ΓΊ -Η ο ο γΗ ο ο ο ο tH ο> tH CT» rH τ—I γΗ tH γΗ 0) rH 01 ΤΗ rH «Η rH «Η ΓΗ γΗ er» « •U 4J « (Ν 4J JJ , „ 0 0 a Ό CN 0 0 co Κ C Χ C Ο — Ο ιη Β G ο ζ 2 — ζ Ζ I νο η η. CO J =1 =L ο α =1 :± Ü =1 =L * » • νο Ο «. » * · Χ π: Ο co Ο tH ο ο ζ Ζ ro 2: ζ" ζΐ Π. =1 σ» =1 rH α Ο =L H ΛΟΟ η Α Λ =1

in ο in in ΓΟ VD X X m iH in er» ,—. co Ln .—. 00 ro m rH TJ« CN —> in rH vo vo iH « « νχ> CO .—. Λ —^ ». - - .—. ο C *. - ο ο Csj CN CN r- r- UD KO KD CO VO rH ΓΟ Φ ΓΟ r- CN CN CN CN CN > rn CD CN ο ^ ΓΟ VO rH r^ I 1 ο •Η ιΗ rH CO τΗ in 1 m 0) ι ^ji ^ in m er» ο ^ ο σ\ σ\ vo in r- in CN VO Γ- ^ s ^ (Ts r-ii n in h O VO r- 00 r- 4-) 00 rH CO 00 00 ^ rH CN r-i CN CN rH CN ΓΟ CN tH CN rH Ο rH CN rH CN tH CN τΗ c Λ OC X X X Ο Ο Ο Ο Ο Ζ Ζ Iii Λ Λ =1 α Ο =1 =L zL zi. =1 zl =1 Λ

ι Ο Β Ο) Ο Μ 1 «0 χ» μ ο πΓχ Χ Χ ο" ΙΟ ο" Ζ Ο Ζ ζ" Ζ Ζ ζ Ζ ζ' C0 Λ Λ rH -Η rH (0 ι—| ο rH Ο Οι ΓΗ •Η r-t Ό -Η ι—ι υ α < A < ζ < < Χ < Ε < α < ζ < ζ <

OJ tH tH in r^ VO d CO CN Ο ο ο Ο Τ ΰ <λ Ο cr\ CT» τ σ\ er»

, ,, ,, , CN η m e ε Β CN ΓΟ νο — -— « rH rH tH CN CN ΓΟ vo in a α a '—' -— — — —- CMCOID — — ·—• — ·— — — — .—. Λ. . 1—11 —11— · in LO Ο Ο in η Η OlOlfM CO rH CO CO Γ- rH Τ Ο Η Η Η Η (ΟΛΟ CM rH CN ΓΟ ΓΟ rH 00 m co rH rH rH Γ-* in σ\ CN τ Ln CN in co Ο ο CO CO Ο ΓΟ er* in vo CN Ln Ο CN CN Ο τη η noH ΓΟ Ο rH Ο CO Η Μ« r- r- ιη ι rH tH VO ro Ο Γ» Ο Ο Ο Ο cr> r- Γ*"· VO rO νο ro ο ιη ο tH HHH rH rH rH rH rH tH tH rH tH

Λ CN Χ «Η (Ö C \U υ S CN oa CN \ \ (Ν «Η CD rH CN σι U CN U Λ rH CN CN CN U CN & wft iJ Μ 0 CU 0 < Μ» £ Η rH ε cu Ε Λ τ OUT 5 Ν 5 CU u Ο ft Q 1 c &Ζ 01 to ~ 01 w ω U) ^ Dl S ω CO w " CO Ο 0) Ο J* 0) " ω ** Ν 0) ft „V Μ rH ®rH «H tN rH Χ Ή s χ 0< »H ο u ft ^ rc u Κ ^ χ 2 U ο « Ο o S Ζ. 3 — 3 2 3 2 3 2 — 3 χ 0 0 0 — 0 — 0 γΗ Ο ο «Η =L rH Ο v» rH rH rH fH rH ι—ι < rH < Ο < α, — 0 rH 0 0 < 0 < 0 < « 0 •η υ <ΰ — rH U < ü rH U •H υ CO U 03 ι υ •4 — 2 — < X — < — 2 — 2 ö —

468 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

ο CO

. . „rH ~CN in —- —, •31 — σ> τΗ VO " -"3· • er» ^ ro CO vo rH • σν VO . O) 'CO ΓΟ · es · r-4 CN · in · CN VO VO LD CN ^ in CN υ » « » ^r »in ο - « *> % a, rH f-t rH in CN VO ΓΟ ΓΟ rH CN CN CN 1 1 1 00 VO m η — — rH — rH -— •—' •—- •—' —- —— •—- — •—• in ιη CM rH rH VO VO CN r- 00 in in in • CN ιη CM VO 1 σν CT» η ' ο• % ιο ο ·- ο CN ο VO ro VO er» er» er» CT» 00 σν σι Γ- ΓΟ C G G C CS G ο ο 00 · CD · σ\ CO rH in ο φ ο ο ο ο Γ-· σν αϊ ω αϊ αϊ αϊ 01 τΗ τ—) rH rH rH rH rH > rH rH rH rH rH rH •Η -ι>Η •>Η •>Η •>Η •>Η > -Η rH rH Ö> ÖI Di σι Dl Dl Dl rH ΓΗ rH rH rH υ U u u U 4J Ζ Ο υ 4-1 4J 4-> 4-1 υ 4-1 Π a. Λ Ο =LrH H 0 -Η rH st st α 0 0 0 0 0 0 u G U u U G C α C G G rH rH rH rH OOHi rH Ζ υ 6 U ο U U - u » U rH rH >—ι st ι Λ st S. st Ο Ο =LO =1 U U CJ

in ,— vo ΓΟ «H Ο 00 VO O vo — co vo — ^ cr> — r^in CO .— in co CTi in .—. ο »H ο Ο \—t r- vo rH in r- rH CO VO vocor-cocr>cocr>cr>cr\ iH in in ro rH in CT» iH CN iH

Γ- VO CN Γ- Γ- CN in in rH VO VO CNrorocNrorocN^·«^ ro τ in ^j» σ*> Γ- 1 1 1 1 I

r- ro VO CN in rH Ο in CO ΓΟ Ή ror^mojr—voenoen CO CN rH Γ"- in rH CO CT» vo Ο ro VO CN

co CN CsJ ο ο ro CM CO ro ΓΟ ro ro Ο rOVOOOfOr^OCNOOrH CN CN vo co in σ\ CN CN ο Γ- vo vo in CO VO ο ΓΟ rH in r*- rH in r- rH in 00 HCDOHCDHHCDH rH rH 00 ο ro ro cr\ rH CN rH Ο rH ο vo rH ro CN CN CN CN CN CN CN CN CN CN CN CN CMCNrOCNCNfOCNCNfO CN CN CN ro CN CN CN CN ro CN CN CN CN CN

Ζ 2 U Ο υ ο υ υ υ ο υ U U U υ U U υ CJ t—ι (_) ι—ι U St si A υ υ ο υ 11 ist st=L =L=L st st st Ο st 1 st Π. Ο st Ο =t

Ο ·» VO so VO >o „ vo rH rH rH rH ι—| vo rH rH rH rH rH rH rH rH rH rH r-T rH r—1 rH ζ ζ u U υ u

—. .—. —. —» —» —. .—. .—- .—. .—-.—. —>.— . .—. .—. ΓΟ rH — —« .—. —» -—- r- in in CO vo CT» Γ- vo er» r* vo er» 00 CD vo σ\ co vo CT» 00 vo ro rH 00 rH CN rH CN rH rH CT» in iH iH ro vo rH vo ο ro -tf in Γ- in CN ro ro CO ^ vo 00 VO o CT» Γ- Γ- CN rH

r- Γ- er» rH Ο Ο CT» τΗ cn ro cn m rH ΟΟ vo 00 ro oo ο vo er» CT» τ* Γ- VO VO ΟΟ Ο in in iΙ ro CT» ο in CT» Ο in ο ο in ο ΓΟ CO iH ro CT» rH CT» rH ιη o co rH rH CN CO VO Ο r- in CT» ι in Γ- vo CN vo ρ-) r- vo ro Ο er» vo ο CT» vo ο er» vo rH ο vo Γ- o CT» CN VO Γ- rH rH rH rH rH rH ΓΟ rH rH rH

0 ^ (0 Di^s· Di^· ^ CN CN (Ν rH 4.J CU OJ u 0< Urs Ε Λ IN Oöif1· Ε ο, -τ Ε ο- τ Ε CM (Ν

03 (0 4-) Ο 01 ω a t a t co W ω W 01 ω w w ω <η I1 " (1) cu φ QJ ,Γ ω c*rH rH rH rH •»Ή Χ 1-1 ^ u «iH ^ V-i ^ rH ^ Ζ 3 rH 3 rH « rH υ 3 — Ο ω ο υ o U Ο ro u ι—I Ο rH ι-Ι rH rH rH rH ^ X. rH ^ er» rH < rH < Ο < 0 < 0 < ΓΟ 0 ro ro < < — Ο 01 υ •H υ •η υ cO er» U vo 4J (0 η) Ό ϋ υ — J — a — 2 CN ro cO 2 ο U —

469 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

rO -31 in

υ υ tH CO ο CO — C- Γ- cn t— ^ rH vo TT cn cn in cn Γ- cn • CN • .—. • CN · Ο CN tH όη rH cn in tH CN ro tH ΓΟ CN in tH * ro rH in ΙΟ rH 1 η rH rH iH tH CN CN CN I I CO CN rO CT» ^ ^ tH rH CN rH tH (J Ο "— ο CN rH ~ LO LD LD Ο CT» cn ο ro CN ^ — Ο ο in 00 rH CN tH ° in in ΙΟ I c tH CN ' · • ·—- -—- .. 1 · CT» er» a; er» ο ο c CO tH O CO fN — ο σ cn in ro er» υ ο er» ro cn Ο ro ο > ο σ\ t— ω Ο tH tH cn ο cn co ο (N cn ro ο '-ν ro co ο cn ο r- tH «Η •H tH — tH > HHH rH rH rH — tH rH · tH rH UD 01 Γ- •Η cn LD υ • ο CO D) 00 ro r— 4J ΟΟ ro CN 0 CO 4-) rH «Η rH G ιΗ rH Ο rH '—1 rH rH rH tH CO rH rH —' ^H rH rH rH u U L> U u G U U U U Ο u u co o U (J u » «. » «. « Η in - U • - U % * rH rH rH rH rH rH «H rH rH «Η (N rH rH O rH - rH rH rH U V Ο u U U U U U υ tH U U U cn u U u U Ο

ro in ο — cn cn — CN CN tH — r- rH in [— -—-CO ΗΠΗ ΓΟ tH ro -.—· - r- tH - — tH rH [- CN vo er» ro Ο ro ι ι 1 ^ ^ η η Η tH tH tH rH rH rH ro ro co oo U-4 CN CN CN ι ro ro cn ro rH in tH ο CN ο in cn in ιο ro o io n« r- oo in ro ro ro Ο Ο Γ— CN 00 c— ο vo tH tH r- r- in tH rH Γ— vo in tH ο in rH tH rH ro tH ο ro er» tH ο ro in cn tH tH CO in rH rH Ο Ο Ο CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CNC N CN CN CN CN CN CN CN ro ro

rH rH rH rH rH iH rH rH rH rH rH rH tH rH rH rH rH rH rH U rH Cj rH Ό UH UHO UHU U rH Ο Ο u U rH u UHU υ U u U Ή u iu iu υ IU =1CJ U IU =L iu =1 =1 =LU IU =1 U =L =LU IU IU

Ό T5 ot U U \OT u u rH rH rH rH rH rH rH rH ιΗ rH rH rH rH r-T rH rH rH rH U U U U u u u u D U U u u u u u u u υ Ή Ό rH Ό rH -H rH 0 rH 3 rH Ρ Ή 3 rH Dl rH iH c < U < U < E- < U < CJ < u < u < < < <

in CN tH tH CN CN CN iH .—. CT» rH in rH tH rH Odin t- tH UO CO — tH Ο CO r- ίο in <· Γ- ^r in CN rH ο in ο • . ο er» ro · er» ro ο CN CN ro ο oo ο ο CD ο CTi er» er» er» CT» in rH tH er» rH er» rH

ro tH io — —' rH CO CN ro cn ro rH rH CO τ* rH ro oo kd t— vo ro '—' ·—' -— —- •—· —- Λ — ^ ,—.,—.,— —^ - - W •—1' ·— — CN CN ro ro r- oo cn CN rH CN Ο ΙΟ M VD cn HrOH ro ro ro CN Γ- VO in in tn ^ in 00 O [— tH in o ro er» rH Γ- rH er» er» r— cn cn ro CO rH -3« in ro rn in ro ro CT» Γ— [— co r- in ι ο »o ro ro in in ο O CN Γ- cn ro vo VO rH

υ G G G υ υ υ N. \ \ CN \ \ U GS ^ Gfl CN CN Dl ^ CN CN CN CN -u) U CN XJ U CN EHtj ε μ ^ tJ Λ CN e α* CN £ cn ^ Ε a> e cu ^

0) co G CO CO ™ m Μ co rH CO Ν •» co •> CO — a) — 1<υ ω r-< φ ·-< cu -ι f-H U ^ U f—i ι—ι a rH 3 ^ υ c υ Λ ^ 3 U 3 < Γ-Ι (1) ΐ Η CD U 0 ι—I ^ 3 Ο r. ο ^ ο — ^ — ti — 1) Ο,Η to < 0 X ° X X° Ό U •α υ •Η tn 0 Λ 3 υ 3 V0 U o ΙΛ U U — υ — Eh — Ο — u — Ο — u — υ υ —

470 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

CN CN co in VO en CTi (Tt σ> CT» CT» er» CT» rH rH rH τΗ rH rH tH rH

ο s-* CO cn —> VO — CO CN — — in in Ο • CO VO ο VO rH CN CO 00 cn oo in ro rH · ο rH · Λ ο rH Ο • · rH vo rH ot VO rH CT» rH 00 rH σι CO rH — rH VO er» —~ rH rH TJ< rH 00 rH in in rH - -vo -CN CO rH rH CN rH rH rH rH rH rH rH rH rH — rH rH rH —' rH rH in in fN rH rH rH rH rH (1/6.4 ) (1/8.2 ) K3 ) •«3· r- r» CO Ο in CN rH Ο Γ- in rH CO P- in in CT» Ο tn r^ cn 00 in vo in in CT» r- co

od er» CN Γ- cn co ο VO in , VO rH er» co en CT\ er» co ο CT» Γ- rH , er» fN er» CT» in co in

σ r- er» Ο Γ- ^ Ο r- rH ο ο Ρ- CN "sT ο Γ- CN 7 6 ο er» ο r» ο er» rH Γ- rH 10 9 rH rH rH rH rH rH rH rH rH rH rH rH rH 112 . rH rH rH rH rH rH

rH rH «Η rH rH rH rH i~H rH rH rH rH rH rH rH rH rH rH υ υ U U U U u u U U U U U U υ U U U rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH υ ν υ u U U U U U U u u U U U U U u

— co CO —* CN — rH CM Ο CN in in vo (Ν Ο ο rH co er» rH Ο VO CN oo cn rH rH CO ^ VO co ro CN CN CO η Η x: CO rH x: x: - - rH rH rH ^ CT» - CT» - er» ο ο - Λ ^ ^ vo vo «Η in in CO rH rH rH rH CO CO fN VO VO rH —· rH CN CN ro rH rH 00 CO m CO

(4,172 ) Λ — vo (2,35 ) (2 ) (1,480 ) VD t^ Η Μ O rH CT» rH in VO CO CN o in oo rH rH Ο er» vo rH o Ο ^ Ο CT» JZ co in •«a« rH m in ^ CN ^f Ο in cn CN rH ο co rH co er» ^r in CO in o co vo in er» co in CO CN er» vo Ο Γ- CO CT» in CO Η Ο σι (Ν rH ο CT» rH Η Η cn Γ» rH ο er» ο Γ- rH rH er» rH 00 rH O CT» rH CO rH rH Ο Ο rH rH rH Ο r- (Ν (Ν (Ν Π CN CN CN ro CN CN CN CN CN CN CN ro CN CN CN CN CO CN (N CN CN CO CN CN CN CN CO CO fN CN CN CN CN

rH ι—I rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH UHU UHU U rH U U rH U U rH υ U rH Ο U U rH υ U U rH U iu iu iu 1U iU =L υ iu AU iu AU AU IU zi. iu iU =L iu =1

υ (Jf υ u° u Ü° CJ ΙΛ ιΛ •w in rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH rH (J υ υ U U U U U U υ υ υ u u u U U U r—I β rH rH £ Ή £ rH rH Α rH rH rH rH α < < Λ < & < CO < CO < co < CO < CO < CO CU <

Γ- tH rH rH CO rH rH rH co rH rH rH in CO vo Γ- rH CO 1—1 VO CO r- in in CN CN ro in er» Η

ro r- m in VO CO ο ro cn rH Ο cn ο cn er» er» er»ο rH cn cn rH rH rH rH rH

r- r- VD Η Η Η Η Η VO ^ji — rH CT» rH CN CN rH CN —' -— -—- — —- — ·—• •—· —«— co in w· rji rl m ο m o co ο r^ in in rH CN CT» Ο rH rH in Γ- l> CN VO . . CN CO Cn ο en in r^ er» r- Ο vo CN rH CN VO er» CO

. ^ vo m ο CT» CT CN VO [--

rH rH rH rH rH rH rH rH rH rH 113 6 173 0 127 0 rH rH

C G \G Ö CN \ υ \ \ rH \ _ rH Di CN (N CN 02 CN CN U U ro g a< ^ ε μ co 4J DU U ε α. χ* ε ^ ^ CN 4J CN ECU** υ Λ η

U rH rH rH υ rH rH rH υ υ — < .—- υ — u — rH ·— rH ^ rH U) G co rH CO rH CO < CO U CO < co Ω < CO rH CO co < co C co < Q) C φ rH Ω C Φ c ω CO 0) CO ,Η U rH CO rH CO rH rH rH rH ν-ι rH ^ rH ^ U ^ Λ U rH rυ ! ^3 U 3 U 3 — 3 αι ρ U - 0 0 — 0 — 0 rH 0 rH < Ä ^ rj fH ω rH CO Ή 4-) rH VD 0 I 0 ω ο ω ο —- o ^ 0 υ υ α

"— '—' — Σ ß-(t1)ClSnAlCl Ö — 4 — χ ~ i

471 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

ρ» 00 σ» ο τΗ CN ΓΟ (Ts cn <τ> ο Ο ο ο «h «Η rH CN (Ν CN CN

υ υ σι ιη —. tH m r- CO ο» ο υ ιη ^ο Γ- υ Γ- 00 · CT» Ο r- —- ο .—. • .—.υ · ^ • UD 00 m \o υ «Η m ιη ^ η ο ^ m ιΗ in rH co CN tH ο —. - · ιη CO in cn in rH (Ν Η I CN rH τΗ Η Η rs σ> •— rH rH rH «Η τΗ rH rH 1 | >— ' rH ΓΟ in ο ο 00 V£> er» I 00 I τΗ rH 00 \0 σ» Ο r- CT» rH Γ- in CO VO rH sD 00 ^ ιη ΓΟ ο3 ο (Ν rH CN Γ- rH 00 Γ- rH Ο CN c Ο Ο ο 00 CT» Γ- rH CT» ιη νο r» σ» ο Ο ο γο 00 ο οο m (Ν β <τ» CN Ο σ» r- m ο υ ο τΗ KD > •H «Η . Γ- •Η Di m ιΗ 01 —- •—- 4-) U Γ- U ΓΗ α Ο ·Η 4_) rH rH 0 CQ - m HUD.U J 0 U U u G - Χ Ο (J - u » 2ΗΙ - 2 Χ C u - En [η U <Ν U rH % ΓΗ - CN » ·Η <—I - rH rH * CQ «Η CQ χ κ IUIU 2 Η 2 J Χ Ζ Ζ U U U U in tu

— er» ο — m cn »π — ro ^ ^ in «— ο - rH ^ Ln - ä - -O - -Ο — — - — £ ^Zl» Z nn^nii^υ c J . ^i ~ ^ ™ ^ »^ ^^ «™ » ^^ .C 2 rH^ ^^ ^ ^ £ ^ £^ Λ U οι cn ιη ο οο -ιη^^νο rH ρ- mm ™ ·>*- n^ , πγνγ- ininS^r-S" 00 ™ co g rH γν S ^ σι g SS00 £ S S S CN PO (Ν rH ,Η ^ CS CN £ CN rH ι I CN CN rH rH ° m m m £ rH ° 3 £ " S ί 3 5 g

^ u BS Vj BS Χ u Χ U ü 21 gl Ο !θ α * α ΐ φ ij iBS Α 1Ϊ W ÜU ü ü 1U ZLO iU Zt. tu In t- fc tb tu tu

Μ rH .-Η u u 0» U X X m m aT Ξ 2 ζ ο" Ο o rH &Γ tu tb K rH •H rH u -Η rH ra rH u rH In rH ι—1 Ib < E-« < >< < J < U < < < <

rH m in tn γπολγο cn ** η μ η cn ιο ι—I ^ Η Γ^ Η Ο CN rH Ol HOl Η ID CO fl^T Ο Γ-

F- Ο Γ- CN Ρ- Ρ"Ϊ OPGH IN ΓΠ CN 00 CN -R* -ΣΤ^Ο ^ROO M Ο M ρ- ER* RH M IN I UO ρ- P- I£> rH HHtn ΠΗ HHH Η Η

β C a ε C -(90 «υ -C ε ^ c u υ .wx . _ i (. Ν. ^e. . „a ow- CN Ο CN OC^CD Ο TH OD ETX.^ JJ OJ CN 4J CU CN Ε ÖJ Τ

ο Μ d ω α) C. 01 m. • ^ Χ ri" OS W c OS 01 ·-< m ~ ω Μ Ρ,-Γ« OS OS < ω — »CO rH m 0) 01 0 -H QS -Ό ω Ή V * (υ ^ Φ rH rH in rH 1 Μ s IH ^ J-) ü u £ ^ Ü zu« »ST rH •H 3 3 3 (0 3 rH 1H ί Ο χ Ο σ· ~ 0? 2 υ ÜJ Ο „ o m u 0 td < ,·Η < U J-l Ε- — — — J — (0 — < υ X '—' ü —Χ! X) — 10

472 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

in 00 ο ο (Ν οα

— Ό tH ^ rH — - 0 ΓΟ rH 1 1 VO rH •—» — •—- —' CN CN Ο sr Ο TH G C G 0 ^r ο vo 0 Γ- ω Φ ω cn r- c G σ> > > > 0 Γ** rH 0) rH •Η •Η •Η cr\ r- > > D) 0> Cn rH •H •H Cn D) •U aJ 4J 0 0 0 JJ 4-> G G G 0 0 in G c tu tu tu tu tu

rH vo vo ΓΟ •—' m — CO Λ. ' ^ 00 ,—. Λ in η 0 — — CN — ο ο ο · ^Ji Ο rH m 0 in cn Ο rH · -rH CN — m •H CN rH rH «. «. 0 .. » Λ CN - ·» CO .—. in - in ,—. 00 00 Ώ — co m CN ^ ro 1 1 SH HHH(Nf^(N rH ^J· ΓΟ VO VO ^ ^ ^ σ> rH rH Γ- vo vo —• CN ' *—» — — — —ro —- iH «•••* ^ - — .— --Si η 1 1-1 0 LD r- CO CN ΓΟ CN CN 1 CO r- ro 00 HT I Η VO ^ VO rH rH in co Τ 00 00 , • · 1 · 1 r- in m 0 00 ^ J CO r- t-* η cn vo cn 00 CO CN r- t^ rn Ln er» ' VO «H 00 VO 00 in ^ 00 [V» CN CO CD οο γ- r- 00 . ro OD Γ- ο Ο co r- «er» ^ CD CD Η m r^ CN rH r- 00 00 rH «H rH rH co rH CN rH Η Η CN C\ π tH rH . CN Ή rH VO CN rH ^rHCNOJ CN rH CN CN CN cn Ο CN vo CN 00 CN CN σ χ CN er x a> »0 a1 10 [η En In In In [Lt (ii [14 fc.U* u. tu tu tu tu Ο tu Ο tu fc Ο tu tu Ο tu tu tu Ο tu tu tu tu

Ο 1» κ κ 0 Μ X X tu In In In In ln° In In IiT In" in In tu In In tn° In In° In In° iH »H Ρ—1 rH rH rH rH rH rH rH r- Λ 01 In In < J3 w VH (0 1 < < 05 < U < EH < EH < * 05 χ < Μ < m <

Π Τ Τ Oi Ο Ch ID •Ο* Οι CM Ο Η CD ο τ c— in CO ΗΟΙΛ τ lt) in oa ΓΗ τ ιοηιη OCS'i r- ιο cx\ rH in in cr> ι ro m ι ^D CTi OD Γ- σ> co Ο 00 I— m m τ in σ\ r-

ε ε ε ε υ ü u υ u DiT ο *J ID DlT Dl Τ u ε n ε n ε Dl τ D1T (Ν ^ (Ν UH(N 4J ft rH U ft Η OUT OUT· OUT 4-ί Η Τ XJ ft ΓΟ Ο ft Τ ε ft οο

m ω Ol οι 01 ω Ο m ω 01 m ω 01 οι Ο "> Ο ω r.01 to Ol 11 Φ dl φ Ο Φ Μ QJ S Ol o φ ^r-i rH rH rH 04rH X rH S rH CN rH rH l/irH In ^ Μ U 5C ^ Μ In U 3 3 »3 , 3 »3 • 3 In 3 In 3 In 3 »>3 rH 3 < Ο In 0 0 In Ο In 0 S 0 Ä £ 0 In 0 < 0 < rH rH rH rH rH rH rH rH (13 rH 10 05 0 < 0 < 0 < 0 <0 T.0 5.0 < 0 m 0 m ι υ CO u rH 0 rH U Λ U rH υ Dl U ^ υ 1 u οί- u — EH — Η — tt — 05 — EH — S — ω — a —

473 Vol. 19, No. 7, 1996 HeterometaIlie Aluminium Compounds

rH CN

Ü ο , . rΛH ^ VO .—. r^ tH Γ- .—. — —- τΗ »H m (Ν 00 tH σι Γ- Ο tH ^ r- r- CN CN VO rH . — CO χ ro ό • rHσ > CT» σ\ VOU ^ in tH tH in » - . Γ- - » » tH OJ tH r» » - · _ VO A tH rH VO THt— ι tH·> tH VO rH in «Η 1 . cn vo ro 1 (Ν in Η fN Η rH -— •— •— ο -— •—- — — I · TH tH •—' —' Γ^ —' rH —- Ο•—· ·.—^ Ο Ο Ο tH O ο Ο ο tH CN ο Ο Ο rH G CTi 1 • I · I Ο rH — Ο r» G ο Ο I Ο in ο ω ο | 1 ο o in cn ΟΛ »Η o ω σ\ σ\ σ\ > er» CO* — ' rH CO CT, CN rn rn r- rH — rH rH tH -Η cn Ο CO · . rH . > lo VO ο in r- ^ tH •U CN xJ 0 rH ο tH 0 G rH G Cn Cn G Cm Cm Cm Cm Cm Cm Cn Cm Cm Cm Cm Cm U Cn cn Cm Cm" Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm Cn

ro ·— .—. .—. •—• — CN CN ^ CO in .—. ^ ,—. «Η X X X ro ο tH rH Ο CO vo tH .—. CN CN CN in m ro ro ro CN 00 tH CN -- ^ •—- -— CTi * . « « » «. ·. « ,—, CO Ο * Ο rH in »J (Ν Ο rH ,Η tH rH tH CN rH rH CN CN CN ro CN vo ro ro 1 G - X CN — -— —- —• •—· —* — •—· « CN •—• — — (U rH rH CN VO CN ON Γ- 1 CO t- CO in vo 1 tH VO I ο > -—- -— •—• 1 -— 1 •H rH Ο σ> m in cn r-> ro rH CN o in Ο in CT> Ο vo ο rH Ο rH ro ο 0) Γ- Ch vo oo Ο CN CO CO CN 00 cn in 00 tH 00 ro 00 00 Γ- O CT\ Η Η O tH rH CN CN tH vo rH CN CN tH CN CN rH CN tH CN vo rH 4-> Γ- in rH CN CO CN CN Ο tH CN (N ro rH CN G rH Cn tu. Cn fl4 Cm Cn Cm Cm Ct, Cm Cm Cm Cm Cm Cn Cm Cm Cm Cm Cm Cm U

to r- ν Χ <« rH CO Cm* Cm Cm Cn° Cn Cn Cn Cn Cn h In b. b £ In tiT b 64 [ι!Γ b tl4 b b iH rH G rH G rH •H rH 03 id rH (0 TO ι—I 10 ιΗ ιο 10 r—i 10 rH ^ U < < S < S < •J < 2 Ζ < Ζ Ζ < ζ < υ υ < Ζ < U) ω

Η Η Η oo —- σ\ in oo er» LO CN VD in co co in ro *H cn ο chin tH Ο Γ*· »oho co er* ^ cn r^ ro m od in in oo in in cn oo in r- vo r- VO oo vo cr> in in cn r-

e G V, cm ε \ 03 (d υ (TJ ε CN u e u Β G CN U cn CN Μ G Di -tf Ό £ Α ^ Ο < Ο U Ο ^ Ο Λ(Ν ε Ol·'? 4-J CU CN U ti CD

CO CO Ol 01 01 Ol Ol 0) 01 01 01 01 0) φ 01 αϊ ω U rH rH rH fH _rH ΙΛ b ^ . k u -u ΙΛ rH ^3 «β — ** -1 CiT b bT «e b 5 iH < rH rH •^H r0H ä § s§ 3 ο rH 0 < «3 < < J 0 <0 T>< 0^ ο CQ C C U 10 U 10 u 10 u 10 ü ιο υ vT Σ S ai — ζ — ζ — ζ — u — Ζ —

474 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

n) Λ ro in vo r- 00 er» ο Η CN CN CN CN CN CN CN CN CN ro ro ro CN CN CN CN CN CN CN CN CN CN CN

X —» σ» ^ t^ — —« 0Ί — -—. .—» -—• oo · ro ^ · er» Ο Η Η ο ^ • ro · • in · · υ υ (NHm Hrr ΓΟ u ιη σ> Η Η CN Η r- ο CN - HHH rH rH rH CN (Ν CN ΓΟ Η u Η —' Η Γ—( LT) £ CN ro Γ- 00 Ο Ο Ο Φ Ο Ο Ο β Ο 00 Ο CN rH CN Ο ^ Ο Η > Φ G ο ο ο •Η Ο Ο Ο > Φ Ο CN Ο Γ^· KD er» Ο 00 ο er» er» er» σι er» er. er» •Η > er» er» CN CN er» CN σ» 0) •Η Η Η Η Η Η •U öl 0 JJ ß Ο 4J β Ο tu tu tu tin tu tu ß tu U, tn tn Cu tu tu tu tu tu tu" tJ tu tu

CN er» —- in , . in -—• -— CN — er» Η er» -— ^ CN r- . „ ro ro co ^ ,—.,—. TJ1 ^ Η KD —. er» Η er» ο · ο 0) Ο 0) CO in Η ο ο ο τ—1 Η ro Η 00 Η CN ro CO Η Η ro Γ- in »CO Η ο β 1 00 ^ οο ^ CO ΓΗ ΓΟ rH CN (N HHH 1 I 1 ι ro CN ΓΟ ΓΟ 1 1 CN CN CN CN φ KD ΗΓΤί -a· > — ι ro Γ- Γ- η r- CN ro ο σ>η in en rH er» ο ^ 00 LT» 00 er» r- ro ^ Η 00 KD CD Η Η Η er» in •Η CO CO CN Γ- 1 Ö rH Γ- Σ\ r- in co Ο Ο Γ^ ο O CD CT» CN CN Ο 00 00 (Τ» Γ" CN in ο 00 Ο ο ο LT) ο Η -«a 00 ^ CN Ο CN 00 Γ- Γ- vo O CO CO 00 Ο (Ν 00 O CN r- ο oo er» rH Γ- CO rH 00 00 er» in 00 er» 00 Ο Η r- 4-J CO ΓΟ Ο Η ro Η CN CN CN CN Η CN CN rH CN CN rH CN CN rH rH CN Η Η(Ν CN Η Η CN CN Η Η Η CN CN Η 0 Η Η CN ΓΟ β

PH kl tU tU tu tu TU tu tu tu tu tn tu tn tu tu tu tu tu tu tu TU tu In tu tn tu tu tu tu tu tu

vo VO vo VO »o votu° 5 tu tu tu tu tu tu in tu tu tu tu kl tU tu tu* 2 tu tu° tu 'tlT tu* tu tu tu LU tu β tiT tu° tlTtlT r-l Η • Η tu tu Η·Η m Η·Η (0 Η·Η ^ Η·ΗΌ rH 2 tu rH β (0 (0 rH Öl Η o (0 rH tSJ CO rH (0 CO < < J « tf < J u < J U < J CO < A cu < U < TS3 Ζ 2 < S < Υ 2 < — CQ < 2 U

Ο CN Η Ο in r- VO r» er» in er»

er» — τ ro σ» CN CN v rH rH KD rH — er» HHH ^ w w Η •—' in .—. Λ '—- •—- Τ —' rH — -—>—^ Γ-» ο CN — KD KD ~— Η Η KD KD Γ- CN r-i er» CN Ο Η Ο ΓΟ CN CN Γ- r^ o er» Η Η Η ο 1 CN CN er» ro Ο Γ- 00 r- ro -a1 er» er» er» ro [ Η rH ^ ^J KD rH KD KD CT» KD Ο KD ο rH er» η r- ο r- ο ο ΓΟ ΓΟ CN Ο co Ln ro ΓΟ in I Γ- 1 CT» LD ι ΟΛ LO I Ο ^ ι er» KD r- er» R- Ο Γ^· CN r«. in Γ- CN rH Η Η CN Η

u υ U U «0 Λ CN υ <0 ε öl Η Öl rH Öl Ή öl Ή ε β ε \ ε ε XI ro Μ CO hl ΓΟ Μ ΓΟ Μ ΓΟ U c ^ ε iH ε CN KD ^ ß Λ ro U α 4_) CU (N -U> Ο» CN U (H CN 4-) CU CN 0 Ο Ί^ ^ 0 Μ ^ ε U Η 0 (Ii U Κ rH

ω CO co CO CO CO co CO CO CO CO CO Φ φ Φ φ Φ Φ Η U>rH rH R-rH tu rH «3 «O tlT tu tiT Μ tu — tu° tu Μ CiT VH tu Η rH rH 3 Η rH ι—I Φ rH rH 3 rH —» tu 3 < < < < 0 < Φ rH 0 öl ο Ο ^ β ° cO 0 Η (0 ·Η c rH -rH <0 U rH Ό 3 < rH Ν rH u 2; J 0 Ο Λ u CO 0 CU rH ß 0 ,0 r**H ^ 0 . 0 ι υ •Η £ •H •Η υ •Η Λ U U «Γ ro υ «ο α tO U CO υ J — •J — Ui 2 2 2 — CQ — U —'

475 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

§

I

I ιο *

ιΗ '—· — ^ ^ 00 Γ*· •—' CN ο CO ο 00 CO · VO Ό φ . . ο (Ν tH rH Ν » νο rH Γ^· τΗ CN rsj rH CO — 8 « » » » c » » G c ro rH rH rH Ό Η Η Η ω m in (D rH Ο Ο η Φ > > Ό ο ιη ιη -Η Ο ο in •H •H 1 • rH τ, Ο Ο 4J Ό Di Di D) q Ο CT» (Ν Ο ΓΟ ο -«τ r- σ\ σ\ CT» Ο Γ- AJ CT» in Γ- jJ AJ . rH Ο rH rH 0 0 0 og ·> υ c a G in tu £ ® q q α Χ φ -Η ο β •α φ Μ ο tu tU lit tu tu Ο Ο Ο φ φ φ y <»1 ^ § tu tu tu tu Ο Ο Ο % 0) q «Μ Ο Ο, 4J <ο •u •8 to ο « φ φ β Ό ο I») ° Ή *< q to Τ3 0) "Η <Μ VO VD ι. sä* Μ Μ Ο ,—. 00 CN — CN 00 CN Χ X TJ« CN VO νο CQ vo cN in ro vo X χ XXX χ bi T-j XI in CN CO * in »H CN rH q Ό Ο ΙΟ <0 « « » « •ο 00 ο .—. — -—, ιη ro ^ •ο Ή Ή Ιη · £ ΓΟ «Η rH «Η in VO VO CO rH cn ro CO ro ro in CT» rH rH rH rH rH rH • σ\ σ\ Ό «

i Ό ü i ^ •u s co Η u -η Λ '" q « Ό Φ μ ® > ΤΗ · υ φ •>» IB νο ^ CO 91 CO q ^ Ν Ο ο° tu tu tu tu tu tu iu h. fc. (iT tlj Clj ο ο Ό ΙΟ ο VO •Η Φ CS Ή rH -Η «0 rH ι—1 rH 1—1 ι—1 "3 8 rH ·Η (Ö iH 10 Ol 10 (0 10 ο ο ο ο Ό Ζ < J2 CO 2 sum < ^ < < < 2 < χ « < In S IS ΙΗ οο « ο, Ο Φ 0\ ν Ο •q 10 υ ^ 2Λ "Η 1 φ •q S 3 <0 «ο 7 ι u 0 (ί< Ή U U I «ς 6 Λ Ή Ό Μ φ ·9 Ο •q § «C Ό •» 0 R3 · 0 q Φ ·Ν 4J •Η Ο Γ> φ 18 Ό ^ ιη «—» ο U Q) 3 «·> CN •— CN rH rH CN rH S« ι 0 ® « q μ φ •u pq ο <Τ\ ^ CN Ο Φ tu Η Γ*· Γ- ΓΟ Γ- Ο Γ- CN 01 τη „ -Η Φ •α q ÖI CN CT» νο Γ- νο Ο Γ- Γ- Γ- •η 10 q rH ο CN CT» m ^ ^ Π) <*> Vo ΓΟ in cn ιη α) <ο . J ''Ί CN CN Ο I CO Π in ·ς3< CN νο 5 « φ rH rH rH rH rH rH rH •u φ * 55 ^ φ ο bi q φη ,«! •σ ιο 4J τη Ν Ή to ο Λ u <0 ^ . ίο Ο ι ο „ 6 e "ο q CO <0 Dl "tf -ν XI η φ ο 1> ι U Η CD υ μ co 4J Cl* ε u ^ Λ « Μ «ι I •<* ο- φ 4J -η ^ 1 τη ΙΗ <0 φ Ä 2 * ** < % Q "ί in

• 10 Φ ... 00 (0 4J Ό >Q Ü βι 01 Ή ΤιΑί Μ Ol Χ χ >ι Ο τ-Η ο 01 < Οι Ο Ε C0 (0 α n 10 ζ ζ to U η (β m 10 < Ζ CQ 2

476 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

The M(l) cations act as bridges between the tetrahydridoaluminates. While the lithium(l) atom is surrounded by five hydrogen atoms, the sodium(l) atom has eight nearest neighbour Η atoms which define the vertices of a distorted triangular dodecahedron. The shortest AI-AI and Al-Li distances [171] are 375.3(1) and 318.6(4) pm, respectively. The corresponding data for the sodium derivative [172] are not given. There are three colourless derivatives [173-175] in which four O-donor ligands form a distorted tetrahedral environment about each aluminium atom- One has chains of alternating potassium(l) and aluminium(lll) atoms joined by double OPr' bridges [173], as shown in Figure 17.The polymer extends along the 21 axis in the c direction. Isopropyl groups sheath the metal- oxygen backbone and produce a non-polar exterior (Figure 17B). Potassium(l) is found in distorted octahedral environments. 2 The structure of K2AI20(0H)6 [174] contains [(OH)3AIOAI(OH)3]' groups built up from two AI04 tetrahedra sharing an oxygen atom. These groups are held together by the potassium(l) atoms which are themselves in a distorted environment (K06). The polymers MAI(NH2)4 (M = Li [176], Na [177,178], Κ or Cs [178}) have structure built up from [AI(NH2)4]" tetrahedra and the heterometal atom M. It is noted that the coordination number about M, as well as the mean M-N distance increase with the ionic radius of Μ in the order: 212 pm (Li, 4-coord, 73 pm) < 247 pm (Na, 4-coord, 113 pm) < 314 pm (K, 8-coord, 165) < 362 pm (Cs, 12- coord, 202 pm). The structure of LiAIEt4 [179] is found to consist of linear chains of alternating lithium and aluminium atoms double bridged by ethyl groups, with Al-Li distance of 270.6 pm and AI-C-AI angle of 77.2°. There are several examples of the general formula: M'AICI4 (M = Li or Na [180,1811, Ga H [182], Cd [183,184] orCu [187]); M (AICI4)2 (M = Cd [182], Ti [185], Co [186], Cu [188]; C6H6M AICI4 (M = Cu [189], Ag [190]; C6H6M"(AICI4)2 (M = Sn [191], Pb [195]; LSnCIAICI, (L = C6H6 and its derivatives [192-194] and Dy(AICI4)3 [196], Each aluminium(lll) atom is in a distorted tetrahedral environment with four chlorine atoms. As expected, the stereochemistry about the Μ atoms is variable. Some are tetrahedrally coordinated (Cd'CI3Cd' [183,184] and Cu'CI4 [187]); five coordinated (Cu'CI3C2 [189] and Ag'CI3C2 [190]; six coordinated (M'CI6, Μ = Li, Na [180], Ga [182]), n M"CI6 (M = Cd [183], Ti [185], Co [186], Cu [188]); "open" sandwich plus six chlorine ligands, M C6H6 (M = Sn [191-194] and Pb [195]); finally eight coordinated D'"4CI8 [196]. The structure of Cd2(AICI4)2 [184] is shown in Figure 18. Three of the AICI4' chlorine atoms form bridges to cadmium atoms to give the distorted tetrahedral environment about the cadmium indicated above. The resulting Cd-Cd bond distance is 257.6(1) pm. This structure was also published in another paper [183] with comparable results. The polymers LiAICI4 and NaAICI4 [180] were studied at three different temperatures and it was found that the unit cell dimensions increase smoothly with temperature. The M1 -CI distances also increase but the AI-CI distances are almost unchanged. The isomers a- and ß-(tl)CISnAICI4 [194] differ mostly by degree of distortion. In emerald green Ti(AIBr4)2 [197] each titanium(ll) atom is in a distorted octahedral environment of six bromide atoms. Two edges (4Br) and one two vertices (2Br) come from four crystallographically equivalent AIBr4 tetrahedra. Each of these is connected through one edge (2Br) and one vertex (Br) to two crystallographically equivalent Ti atoms. The fourth vertex of the tetrahedron (Br) is not coordinated to a titanium atom. The infinite chains of AIBr4 tetrahedra are connected through titanium atoms and extend along the a axis. Dimeric ορ2Υ(μ-ϋΙ)2Υορ2 fragments make up a polymeric chain in a colourless derivative [198] by linkage through AIH3(Et20) units via Y-H-AI bridges. Monoclinic LiAIH(NEt2)3 [199] contain chains of AIHN3 and LiHN3 tetrahedra linked through common edges. The Al-Li bond distances are 264.3(4) and 270.9(4) pm. The Al-H-Li and Al-N-Li bridge angles are 102.0(10)° and 80.9(1)°, respectively, and the Li-AI-Li angle is 132.6(1)°. Another colourless derivative [200] crystallizes in infinite chains of -(sulphate)AICs(18- crown)Cs(sulphate)AI-. Each cesium atom interacts with the six crown oxygen atoms plus two sulphate oxygen atoms. The Cs-Cs distance is 392 pm, which is slightly longer than the sum of two eight coordinate cesium(l) radii (376 pm). In an Al/K polymer [201], each metal atom is in a distorted tetrahedral environment. The AI{CH(SiMe3)2}2 moieties form a chain with K(l) atoms via double bridges of chlorine (AIC2CI2 and KCI4). In this series of tetrahedrally coordinated Al(lll) [171-201] the mean Al-L(terminal) and Al- L(bridge) distances increase with covalent radius of the donor atom in the order: 150 pm < 189 pm (LO) < 208 pm (CI) < 225.5 pm (Br); and 152 pm (H) < 176 pm (LO) < 185 pm (LN) < 202 pm (LC) < 215 pm (CI) < 232 pm (Br), respectively. The structure of the derivatives of the general formula M'AIF4 (Μ = Κ [202,203], Rb [204], Cs [205], TI [206,207]) may be described as a sequence of

477 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

1 [AIF4/2F2]J layers of AIFe octahedra sharing four corners in the (001) plane with M ions between the layers.

Fig. 17.

A. A portion of [(Pr'OH)2KAI(OPr')4]n. Β. Packing diagram viewed down the crystallographic c axis [173]

The structure of M'2AIF5.H20 (Μ = Κ [208], Rb [209], Tl [210], Hg [211]) is built up from endless and slightly kinked chains of AIF6c octahedra (Al in OOO plane) running along the direction of the c axis. The octahedra share two fluorine atoms in trans positions, and the M1 atoms and water molecules are located between the chains. In the derivative [211] the structure contains +2 the quasi-linear {H20-Hg-Hg-0H2] cations between the chains. The Hg-Hg bond distance is 251.1(1) pm and the equal Hg-0 bond distances are 214.4(9) pm. In the polymers of formula M"AIF5 (M = Sr [212], Ba [213]) aluminium and fluorine atoms are 2 grouped in two different kinds of chains, both with the formula (AIF5)" , linear and bent. The latter exists in three isomeric forms, but only data for the a-form has been made available (Table 5).

478 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

Fig.18. A portion of [Cd2(AICI4)2]n [184] (in projection down the a axis)

The polymer Na3AIF6 [218] has been studied at twelve different temperature from 295K to 900K. It was found that the unit cell dimensions increase with temperature, and there is a space group change from P2,/n to Immm at 890K. The mean Al-F bond distance increases from 180.4 pm at 295K to 180.8 pm at 373K and then remains unchanged to 673K. At a temperature of 800K it reduces back to 180.4 pm, then as the temperature increases to 900K it smoothly decreases to 177.4 pm. On the other hand, the mean Na-F bond distance (for NaF6) smoothly decreases with temperature from 225.5 pm at 295K to 220.9 pm at 900K. The mean Na-F distance for NaF8 smoothly increases with temperature from 250.6 pm at 295K to 282.4 pm at 900K. There are several derivatives which contain two different heterometal atoms. One set has

the general formula M'M"AIF6 [224-227], and the other M'2M"AIF7 [228-230], In the former each of the cations occupies a distorted octahedral site, except for potassium [227] which is ten coordinate. In the latter set the Al(lll) and M(ll) atoms are six coordinate, except for sodium which is eight 3N coordinate (Table 5). The structure of the latter derivatives contain [M"2AIF10]N" layers of octahedra parallel to the (001) plane in which the M(ll) atoms form chains of corner-shared octahedra. The sodium(l) atoms exhibit similar eightfold coordination. A distorted octahedral aluminium atom occupies a position on the threefold axis in another polymeric complex [237], and is coordinated to six Ο atoms from three facial glycolate ligands. Half of the hydroxy sites are deprotonated, leading to a very short symmetrical hydrogen bond between two-fold related hydroxy sites (0...0 = 242.5(4) pm) with the Η atom lying on the twofold axis. Three such hydrogen bonds connect two fac AI(lll)-glycolate moieties to give binuclear units along a common threefold axis. The binuclear units are stacked into three dimensions by O-Na links. The structure of alunite, KAI3(S04)2(0H)6 [238,239] is also included in this review as an example of a typical "inorganic" complex. There are many mixed oxide, carbonates, phosphates and sulphates, etcetera, which will be the subject of an later review. The structure of alunite shows aluminium to be coordinated by four OH groups and two oxygen atoms from two separate S04 groups, giving an octahedral environment. Six oxygen neighbours from six sulphate groups afford a flattened octahedron about potassium (AI-0 = 282.1 pm), while the six OH neighbours form an elongated octahedral arrangement about potassium (AI-0 = 287.1 pm) [238]. In the series of heteropolymeric aluminium compounds the heterometal atoms include main group, transition and lanthanide metals. There is no example with an AI-AI distance less than 300 pm, but there are several with ΑΙ-Li distances below 300 pm, for example: 264.3(4) and 270.9(4) pm [199], 267.1(8) pm [223] and 270.6 pm [179], For M-M distances the values are: 251.1(1) pm (Hg1 [211]), 256.2, 257.6(1) pm (Cd" [183,184]). It must, however, be noted that for several examples in Table 5 the relevant data are not given in the original manuscript.

7. CONCLUSIONS This review classifies almost three hundred heterometallic compounds of aluminium. In addition, there are almost five hundred coordination compounds [1] and three hundred organometallic compounds [2] of aluminium whose structures have been reviewed. The data

479 Vol. 19, No. 7. 1996 Heterometallic Aluminium Compounds presented here show aluminium present, with other metal atoms, in molecules with from two to eighteen metal atoms per unit. These exist in a various degrees of condensation from dimers to polymers with a wide range of ligand donor-atoms. In general, in all derivatives of aluminium [1,2] the aluminium(lll) atom favours a tetrahedral environment, and this is also the case in this series. The mean Al-L bond distances for such derivatives, for the most common donor atoms, are given in Table 6. In general, the mean Al-L bond distance increases with the covalent radius of the coordinated atom in the order: heterometallics < coordination complexes < organometallics. Also, the Al-L(terminal) distances are shorter than the corresponding Al-L(bridge) distances. One example [213] exists in three isomeric forms, and another [202,203] exists in two isomeric forms. Some examples [7,12,27,50,60,63,66,75,84,102,117,133, 147] contain two crystallographically independent molecules differing by degree of distortion (Al-L and L-AI-L parameters), and these are typical examples of distortion isomersim [57],

TABLE 6. Summary of the Meang Al"'-L(atom) Bond Distances (pm) for Four Coordinate Derivatives

COORD. Cov. Heterometallic Coordination Organometallic ATOM Rad. Compounds Compounds Compounds [pm] this paper [ref. 1] [ref 2]

Η 30 150(15,15) 154(26,46) 172(1,1) μΗ 168(24,42) 167(0,1) 175(10,12)

LO 73 176(11,22) 180(13,11) 184(14,16) μίΟ 180(11,9) 181(5,2) 186(4,10)

LN 75 192(15,21) 193(14,24) 192(8,9) μίΝ 192(11,15) 194(15,4) 197(14,24)

LC 77 198(18,13) 197(14,8) μίΟ 221(10.19) 196

CI 99 210(5,8) 212(7,9) 216(14,6) μΟ 221(7,27) 226(4,2) 232(7,13)

Br 113 223(9,3) 227(7,30) 234(3,5) μΒτ 234(3,14) 244(7,6) 249(1,1) Footnotes: a. The first number in parenthesis is the difference between the shortest and the mean, the second is between the highest and the mean.

Summaries of the metal-metal distances are given in each section (Tables 1B, 3D and 4A) where it can be seen that aluminium bonds to a variety of other metal atoms of both the "hard" and "soft" variety. The metal atoms cover the range from main group to actinide. This illustrates the rich diversity of the chemistry of aluminium in its nearly twelve hundred structurally determined compounds. During the collection and organisation of the data it became clear that, despite the increasing availability of data retrieval systems, finding relevant material can be a difficult and expensive proposition. Some published papers do not provide relevant data, or refer it to supplemental material, such as names of ligands, atomic coordinates and molecular distances. This can lead to the overlooking of important structural features, which may only become apparent when comparisons are attempted. It is therefore hoped that this review, and its coordination and organometallic partners will draw attention to such comparisons, and provide a cross linking of different areas of interest in aluminium chemistry.

480 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

8. ACKNOWLEDGEMENTS The authors wish to thank those who gave permission for reproduction of original figures, the Chemical Faculty of the Slovak Technical University for their cooperation in allowing M.M. to par- ticipate, and the Faculty of Pure and Applied Science of York University and the Ministry of Education of the Slovak Republic for financial support.

9. REFERENCES 1. C.E. Holloway and M. Melnik, Main Group Met. Chem., submitted. 2. C.E. Holloway and M.Melnik, J. Organomet. Chem., sumitted. 3. J.M. Burlitch, M.E. Leonowicz, R.B. Petersen and R.E. Hughes, Inorg. Chem., 18 (1979) 1097. 4. A.R. Barron, G. Wilkinson, M. Motevalli and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., (1987) 837. 5. W.A. Skupinski, J.C. Huffman, J.W. Bruno and K.G. Caulton, J. Am. Chem. Soc., 106 (1984) 8128. 6. A. Heine and D. Stalke, Angew. Chem. Int. Ed. Engl., 31 (1992) 854. 7. E.B. Lobkovskii, G.L. Soloveichik, B.M. Bulychev, R.G. Gerr and Y.T. Struchkov, J. Organomet. Chem., 270 (1984) 45. 8. J.W. Bruno, J.C. Huffman and K.G. Caulton, J. Am. Chem. Soc., 106 (1984) 444. 9. Y.K. Gunko, B.M. Bulychev, V.K. Belsky and G.L. Soloveichik, J. Organomet. Chem., 440, (1992) 47. 10. W.J. Evans, T.J. Boyle and J.W. Ziller, Polyhedron, 11 (1992) 1093. 11. M.B. Power, S.G. Bott, J.L. Atwood and A.R. Barron, J. Am. Chem. Soc., 112 (1990) 3446. 12. C. Sirio, O. Poncelet, I.G. Hubert-Pfalzgraf, J.C. Daran and J. Vaissermann, Polyhedron, 11 (1992) 177. 13. W.J. Ewans, M.A. Ansari and J.W. Ziller, Inorg. Chem., 34 (1995) 3079. 14. H.M.M. Shearer, R. Snaith, J.D. Sowerby and K. Wade, J. Chem. Soc. Chem. Commun., (1971) 1275. 15. S. Böck, H. Nöth and P. Rahm, Ζ. Naturforsch., 43b (1988) 53. 16. M.A. Petrie, K. Ruhlandt-Senge and P.P. Power, Inorg. Chem., 32 (1993) 1135. 17. W.J. Evans, L.R. Chamberlain and J.W. Ziller, J. Am. Chem. Soc., 109 (1987) 7209. 18. J. Holton, M.F. Läppert, D.G.H. Ballard, R. Pearce, J.L. Atwood and W.E. Hunter, J. Chem. Soc., Dalton Trans., (1979) 45. 19. G. Erber, M. Albrecht, C. Krüger and S. Werner, Organometallics, 10 (1991) 3791. 20. G. Erber, M. Albrecht, C. Krüger, Μ. Nolte and S. Werner, Organometallics, 12 (1993) 4979. 21. M. Albrecht, G. Erber, M. Nolte and C. Krüger, J. Organomet. Chem., 427 (1992) C21. 22. S. Trayanov, A. Pisarevsky and Y.T. Struchkov, J. Organomet. Chem., 494 (1995) C4. 23. P.L. Watson, J.F. Whitney and R.L. Harlow, Inorg. Chem., 20 (1981) 3271. 24. S.I. Troyanov and V.B. Rybakov, Metallorg. Khim., 5 (1992) 1082; Engl. Ed., p.527. 25. S.I. Troyanov and V.B. Rybakov, Metallorg. Khim., 2 (1990) 1382; Engl. Ed., p.732. 26. G. Erber, M. Albrecht, S. Werner, M. Nolte and C. Krüger, Chem. Ber., 125 (1992) 1953. 27. G. Erker, Μ. Albrecht, C. Krüger, S. Werner, P. Binger and F. Langhauser, Organometallics, 11 (1992) 3517. 28. U. Klabunde, F.N. Tebbe, G.W. Parshall and R.L. Harlow, J. Mol. Struct., 8 (1980) 37. 29. F.M. Hunter, Jr., S.M. Clift, J. Schwartz and T.H. Tulip, Organometallics, 6 (1987) 1346. 30. G. Erber, P. Zwettler, C. Krüger, R. Noe and S. Werner, J. Am. Chem. Soc., 112 (1990) 9620. 31. C. Krüger, J.C. Sekutowski, H. Hoberg and R. Krause-Göing, J. Organomet. Chem., 141 (1977) 141. 32a. G. Lehmkuhl, Κ. Mehler, R. Benn, A. Rufin'ska, G. Sehroth and C. Krüger, Chem. Ber., 117 (1984) 389. 32b. H. Lehmkuhl, Κ. Mehler, A. Shakoor, C. Krüger, Y.H. Tsay, R. Benn, A. Rufinska and G. Schroth, Chem. Ber., 118 (1985) 4248. 33. H.H. Karsch, K. Zellner and G. Müller, J. Chem. Soc. Chem. Commun., (1991) 466. 34. S.B. Butts, E.M. Holt, S.H. Strauss, N.W. Alcock, R.E. Stimson and D.F. Shriver, J. Am. Chem. Soc., 101 (1979) 5864; S.B. Butts, S.H. Strauss, E.M. Holt, R.E. Stimson, N.W. Alcock and D.F. Shriver, J. Am. Chem. Soc 102 (1980) 5093.

481 Vol. 19, No. 7, 1996 HeterometaUic Aluminium Compounds

35. G. Erber, R. Noe, C. Krüger and S. Werner, Organometallics, 11 (1992) 4174. 36. H.H. Karsch, A. Appelt and G. Müller, J. Chem. Soc. Chem. Commun., (1984) 1415; Organometallics, 4 (1985) 1624. 37a. J. Kopf, E.J. Vollmer and W. Kaminsky, Cryst. Struct. Commun., 9 (1980) 985. 37b. S.Y. Knjashanski, B.M. Bulychev, V.K. Belskii and G.L. Soloveichek, J. Organomet. Chem., 327 (1987) 173. 38. K.R. Pörschke, W. Kleimann, Y.H. Tsay, C. Krüger and G. Wilke, Chem. Ber., 123 (1990) 1267. 39. W. Uhl and J.E.O. Schnepf, Ζ Anorg. Allg. Chem., 595 (1991) 225. 40. M.T. Reetz, B.M. Johnson and K. Harms, Tetrahedron Lett., 35 (1994) 2525. 41. W. Uhl, A. Vester, D. Fenske and G. Baum, J. Organomet. Chem., 464 (1994) 23. 42. J. Fischer, J. Kress, J.A. Osborn, L. Ricard and M. Wesolek, Polyhedron, 6 (1987) 1839. 43. J.A. Labinger and J.S. Miller, J. Am. Chem. Soc., 104 (1982) 6856; J.A. Labinger, J.N. Bonfiglio, D.L. Grimmett, S.T. Masuo, E. Shearin and J.S. Miller, Organometallics, 2 (1983) 733. 44. M. Veith, A. Spaniol, J. Pöhlmann, F. Gross and V. Huch, Chem. Ber., 126 (1993) 2625. 45. M.D. Fryzuk, N.T. McManus, S.J. Rettig and G.S. White, Angew. Chem. Int. Ed. Engl., 29 (1990) 73; M.D. Fryzuk, L. Huang, N.T. McManus, P. Paglia, S.J. Rettig and G.S. White, Organometallics, 11 (1992) 2979. 46. M.R. Churchill, A.L. Rheingold and H.J. Wasserman, Inorg. Chem., 20 (1981) 3392. 47. H. Yamamoto, H. Yasuda, K. Yokota, A. Nakamura, Y. Kai and M. Kasai, Chem. Letters, (1988) 1963. 48. C.McDade, V.C. Gibson, B.D. Santarsiero and J.E. Bercaw, Organometallics, 7 (1988) 1. 49. M.V. Gaudet, M.J. Zaworotko, T.S. Cameron and A. Linden, J. Organomet. Chem., 367 (1989) 267. 50. M.R. Churchill, H.J. Wasserman, H.W. Turnerand R.R. Schröck, J. Am. Chem. Soc., 104 (1982) 1710. 51. T. Probst, O. Steigelmann, J. Riede and H. Schmidbaur, Angew. Chem. Int. Ed. Engl., 29 (1990) 1397. 52. J.D. Protasiewicz, B.S. Bronk, A. Masschelein and S.J. Lippard, Organometallics, 13 (1994) 1300. 53. M.R. Churchill, H.J. Wasserman, S.J. Holmes and R.R. Schröck, Organometallics, 1 (1982) 766; M.R. Churchill and H.T. Wasserman, Inorg. Chem., 22 (1983) 41. 54. R. Kumar, H. Rahbarnoohi, M.J. Heeg, D.G. Dick and J.P. Oliver, Inorg. Chem., 33 (1994) 1103. 55. R. Guilard, M.A. Lopez, A. Tabard, P. Richard, C. Lecompte, S. Brandes, J.E. Hutchison and J.P. Collman, J. Am. Chem. Soc., 114 (1992) 9877. 56. C. Tessier-Youngs, C. Bueno, O.T. Beachley, Jr. and M.R. Churchill, Inorg. Chem., 22 (1983) 1054. 57. M. Melnik, Coord. Chem. Rev., 47 (1982) 239. 58. M.R. Churchill and H.J. Wasserman, Inorg. Chem., 20 (1981) 4119. 59. J.L. Atwood and J.D. Stucky, J. Am. Chem. Soc., 91 (1969) 2538. 60. Chung-Cheng Chang, Wen-Hwa Lee, Tzong-Yih Hu, Gene-Hsiang Lee, Shie-Ming Peng and Yu Wang, J. Chem. Soc., Dalton Trans., (1994) 315. 61. J. Sassmannshausen, R. Riedel, K.B. Pflanz and Η. Chmiel, Ζ. Naturforsch., 48b (1993) 7. 62. J.L. Atwood and G.D. Stucky, J. Organomet. Chem., 13 (1968) 53. 63. J.A. Meese-Marktscheffel, R.E. Cramer and J.W. Gilje, Polyhedron, 13 (1994) 1045. 64. W. Lenhard, H. Schäfer, H.U. Hürter and B. Krebs, Ζ Anorg. Allg. Chem., 482 (1981) 19. 65. C. Krüger, R. Mynott, C. Siedenbiedel, L. Stehling and G. Wilke, Angew. Chem. Int. Ed. Engl., 30 (1991) 1668.

66. A.A. Danopoulos, G. Wilkinson, Β. Hussain-Bates and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., (1990) 2753. 67. W.J. Evans, T.J. Boyle and J.W. Ziller, J. Am. Chem. Soc., 115 (1993) 5084. 68. J.M. Boncella and R.A. Andersen, Organometallics, 4 (1985) 205. 69. G. Schmid, U. Thewalt, S.I. Troyanov and K. Mach, J. Organomet. Chem., 453 (1993) 185. 70. U. Thewalt and F. Stollmaier, J. Organomet. Chem., 228 (1982) 149.

482 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

71. S.I. Troyanov, M.Y. Furkalyuk and V.B. Rybakor, Metalloorg. Khim., 1 (1988) 298; Engl. Ed., p.164. 72. U. Thewalt and F. Osterle, J. Organomet. Chem., 172 (1979) 317. 73. S.I. Trojanov, J. Poläcek, H. Antropiusovä and K. Mach, J. Organomet. Chem., 430 (1992) 317. 74. S.I. Trojanov and K. Mach, J. Organomet. Chem., 389 (1990) 41. 75. S.I. Trojanov and V.B. Rybakov, Metalloorg. Khim., 1 (1988) 1282; Engl. Ed., p.700. 76. F. Calderazzo, F. Marchetti, G. Pampaloni, W. Hiller, Η. Antropiusovä and Κ. Mach, Chem. Ber., 122 (1989) 2229. 77. W.J. Evans, T.J. Boyle and J.W. Ziller, J. Organomet. Chem., 462 (1993) 141. 78. J. Kopf, W. Kaminsky and H.J. Vollmer, Cryst. Struct. Commun., 9 (1980) 197; W. Kaminsky, J. Kopf and G. Thirase, Liebigs Ann. Chem., (1974) 1531. 79. J. Kopf, H.J. Vollmer and W. Kaminsky, Cryst. Struct. Commun., 9 (1980) 271. 80. J.M. Mayer and J.C. Calabrese, Organometallics, 3 (1984) 1292. 81. D.L. Grimmett, J.A. Labinger, J.N. Bonfiglio, S.T. Masuo, A. Shearin and J.S. Miller, J. Am. Chem. Soc., 104 (1982) 6858; Organometallics, 2 (1983) 1325. 82. R.D. Rogers, W.J. Cook and J.L. Atwood, Inorg. Chem., 18 (1979) 279. 83. H.D. Hausen, J. Tödtmann and J. Weidlein, J. Organomet. Chem., 466 (1994) C1, 84. V.K. Belskii, Y.K. Gunko, B.M. Bulychev and G.L. Soloveichik, J. Organomet. Chem., 419 (1991) 299. 85. A.B. Erofeev, B.M. Bulychev, V.K. Belskii and G.L. Soloveichik, J. Organomet. Chem., 335 (1987) 189. 86. A.B. Barron, M.B. Hursthouse, M. Motevalli and G. Wilkinson, J. Chem. Soc. Chem. Commun., (1985) 664. 87. V.K. Belskii, A.l. Sizov, B.M. Bulychev and G.L. Soloveichik, J. Organomet. Chem., 280 (1985) 67. 88. A.l. Sizov, I.V. Molodnitskaya, B.M. Bulychev, E.V. Evdokimova, V.K. Belskii and G.L. Soloveichik, J. Organomet. Chem., 344 (1988) 293. 89. A.l. Sisov, I.V. Molodnitskaya, B.M. Bulychev, E.V. Evdokimova, G.L. Soloveichik, A.l. Gusev, E.B. Chuklamova and V.l. Andrianov, J. Organomet. Chem., 335 (1987) 323. 90. A.l. Sisov, I.V. Molodnitskaya, B.M. Bulychev, V.K. Belskii and G.L. Soloveichik, J. Organomet. Chem., 344 (1988) 185. 91. L.J. Guggenberger and F.N. Tebbe, J. Am. Chem. Soc., 95 (1973) 7870. 92. G. Erker, U. Hoffmann, R. Zwettler, P. Betz and C. Krüger, Angew. Chem. Int. Ed. Engl., 28 (1989) 630. 93. R.W. Waymouth, K.S. Potter, W.P. Schaefer and R.H. Grubbs, Organometallics, 9 (1990) 2843. 94. R.M. Waymouth, B.D. Santarsiero and R.H. Grubbs, J. Am. Chem. Soc., 106 (1984) 4050. 95. R.M. Waymouth, B.D. Santarsiero, R.J. Coots, M.J. Bronikowski and R.H. Grubbs, J. Am. Chem. Soc., 108 (1986) 1427. 96. J. Wu, P.E. Fanwick and C.P. Kubiak, J. Am. Chem. Soc., 110 (1988) 1319; ibid, 111 (1989) 7812. 97. G. Del Piero, M. Cesari, S. Cucinella and A. Mazzei, J. Organomet. Chem., 137 (1977) 265. 98. W.J. Evans, R. Anwander and J.W. Ziller, Organometallics, 14 (1995) 1107. 99. M. Cesari, U. Pedretti, A. Zazzetta, G. Lugli and W. Marconi, Inorg. Chim. Acta, 5 (1971) 439. 100. F.A. Cotton and W. Schwotzer, J. Am. Chem. Soc., 108 (1986) 4657. 101. Fan Bao-Chen, Shen Qi and Lin Yong-Hua, Youji Huaxue, 9 (1989) 414. 102. Fen Bao-Chen, Shen Qi and Lin Yong-Hua, J. Organomet. Chem., 376 (1989) 61. 103. F.A. Cotton and W. Schwotzer, Organometallics, 6 (1987) 1275. 104. P. Corradini and A. Sirigu, Inorg. Chem., 6 (1967) 601. 105. G. Allegra, G. Tettamanti Casagrande, A. Immirzi, L. Porri and G. Vitulli, J. Am. Chem. Soc., 92 (1970) 289; C. Nardin, P. Delise and G. Allegra, Gazz. Chim. Ital., 105 (1975) 1047. 106. J. Lamotte, O. Dideberg, L. Dupont and P. Durbut, Cryst. Struct. Commun., 10 (1981) 59. 107. J.J. Schneider, C. Krüger, M. Nolte, I. Abraham, T.S. Ertel and H. Bertagnolli, Angew. Chem. Int. Ed. Engl., 33 (1994) 2435. 108. C.H. Wunderlich and G. Bergerhoff, Ζ Kristallogr., 207 (1993) 185.

483 Vol. 19. No. 7, 1996 Heterometallic Aluminium Compounds

109. G. Bergerhoff and C.H. Wunderlich, Ζ Kristallogr., 207 (1993) 189. 110. G. Erker, Μ. Albrecht, S. Werner and C. Krüger, Ζ Naturforsch., 45b (1990)1205. 111. S.U. Ghazi, R. Kumar, M.J. Heeg and J.P. Oliver, Inorg. Chem., 33 (1994) 411. 112. G.H. Robinson, W.T. Pennington, B. Lee, M.F. Self and D.C. Hrncir, Inorg. Chem., 30 (1991) 809. 113. H.F. Klein, K. Ellrich and K. Ackermann, J. Chem. Soc. Chem. Commun., (1983) 888. 114. T. Takahashi, T. Kodema, A. Watakabe, Y. Uchida and M. Hidai, J. Am. Chem. Soc., 105 (1983) 1680. 115. J.F. Janik, E.N. Duesler and R.T. Paine, J. Organomet. Chem., 323 (1987) 149. 116. T.J. McNeese and S.S. Wreford, J. Chem. Soc. Chem. Commun., (1978) 500. 117. V. Saboonchian, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, Polyhedron, 10 (1991) 595. 118. G.S. Girolami, G. Wilkinson, M. Thornton-Pett and M.B. Hursthouse, J. Am. Chem. Soc., 105 (1983) 6752. 119. G.S. Girolami, C.G. Howard, G. Wilkinson, H.M. Dawes, M. Thornton-Pett, M. Motevalli and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., (1985) 921. 120. V.K. Belskii, A.I. Sizov, B.M. Bulychev and G.L. Soloveichik, Koord. Khim., 11 (1985) 1003. 121. T.Y. Struchkov, A.I. Sizov, B.M. Bulychev, E.A. Rozova, V.K. Belskii and G.L. Soloveichik, J. Organomet. Chem., 288 (1990) 11. 122. D.A. Atwood and D. Rutherford, Inorg. Chem., 34 (1995) 4008. 123. C. Tessier-Youngs, W.J. Youngs, O.T. Beachley, Jr., and M.R. Churchill, Organometallics, 2 (1983) 1128. 124. E.B. Lobkovskii, G.L. Soloveichik, A.I. Sizov, B.M. Bulychev, A.I. Gusev and N.I. Kirillova, J. Organomet. Chem., 265 (1984) 167. 125. V.K. Belskii, A.B. Erofeev, B.M. Bulychev and G.L. Soloveichik, J. Organomet. Chem., 265 (1984) 123. 126. W. Uhl, Ζ Anorg. Allg. Chem., 570 (1989) 37. 127. Tzong-Yih Her, Chung-Cheng Chang, Gene-Hsiang Lee, Shie-Ming Peng and Yu Wang, Inorg. Chem., 33 (1994) 99. 128. Tzong-Yih Her, Chung-Cheng Chang and Ling-Kang Liu, Inorg. Chem., 31 (1992) 2291. 129. M. Veith, W. Frank, F. Töllner and H. Lange, J. Organomet. Chem., 326 (1987) 315. 130. H. Schmidbaur, T. Probst and O. Steigelmann, Organometallics, 10 (1991) 3176. 131. N.E. Kim, N.J. Nelson and D.F. Shriver, Inorg. Chim. Acta, 7 (1973) 393. 132. D.J. Brauer and G.D. Stucky, J. Am. Chem. Soc., 92 (1970) 3956. 133. W. Uhl, M. Layhand W. Massa, Chem. Ber., 124(1991) 1511. 134. Y.K. Gunko, B.M. Bulychev, A.I. Sizov, V.K. Belskii and G.L. Soloveichik, J. Organomet. Chem., 390 (1990) 153. 135. S.Y. Knjazhanskij, B.M. Bulychev, O.K. Kireeva, V.K. Belskii and G.L. Soloveichik, J. Organomet. Chem., 414 (1991) 11. 136. V.K. Belskii, B.M. Bulychev, A.B. Erofeev and G.L. Soloveichik, J. Organomet. Chem., 268 (1984) 107. 137. E.B. Lobkovskii, G.L. Soloveichik, B.M. Bulychev, A.B. Erofeev, A.I. Gusev and N.I. Kirillova, J. Organomet. Chem., 254 (1983) 167. 138. A. Herzog, H.W. Roesky, Ζ. Zak and M. Noltemeyer, Angew. Chem. Int. Ed. Engl., 33 (1994) 967. 139. H. Schmidbauer, Τ. Probst, Β. Huber, Ο. Stegelmann and G. Müller, Organometallics, 8 (1989) 1567. 140. P.S. Tanner, R.A. Williams and T.P. Hanusa, Inorg. Chem., 32 (1993) 2234. 141. M.A. Busch, R. Harlow and P.L. Watson, Inorg. Chim. Acta, 140 (1987) 15. 142. W.J. Evans, L.R. Chamberlain, T.A. Ulibarri and J.W. Ziller, J. Am. Chem. Soc., 110 (1988) 6423. 143. A.J. Conway, G.J. Gainsford, R.R. Schrieke and J.D. Smith, J. Chem. Soc., Dalton Trans., (1975) 2499. 144. Feng-quan Liu, H. Gornitzka, D. Stalke and H.W. Roesky, Angew. Chem. Int. Ed. Engl., 32 (1993) 442. 145. F. Rominger, Α. Müller and U. Thewalt, Chem. Ber., 127 (1994) 797. 146. R.B. Petersen, J.J. Stezowski, Cheng Wan, J.M. Burlitch and R.E. Hughes, J. Am. Chem. Soc., 93 (1971) 3532. 147. C.M. Lukehart, G.P. Torrence and J.V. Zeile, J. Am. Chem. Soc., 97 (1975) 6903. 148. R.D. Shannon, Acta Crystallogr., Sect. A, 32 (1976) 751.

484 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

149. J.A. Meese-Marktscheffel, R. Fukuchi, M. Kido, G. Tachibana, C.M. Jensen and J.W. Gilje, Chem. Mater., 5 (1993) 755. 150. S.J. Rettig, A. Storr, B.S. Thomas and J. Trotter, Acta Crystallogr. Sect. B. 30 (1974) 666. 151. R.A. Forder and K. Prout, Acta Crystallogr. Sect. B, 30 (1974) 2312. 152. R.D. Ellison, H.A. Levy and K.W. Fung, Inorg. Chem., 11 (1972) 833. 153. M. Veith and O. Reektenwald, Ζ Naturforsch., 36b (1981) 144. 154. Η. Schmidbauer, Τ. Probst, Ο. Steigelmann and G. Müller, Ζ Naturforsch., 44b (1989) 1175. 155. J.L. Atwood and A.L. Shoemaker, J. Chem. Soc. Chem. Commun., (1976) 536. 156a. U.M. Tripathi, A. Singh, R.C. Mehrotra, S.C. Goel, M.Y. Chiang and W.E. Buhro, J. Chem. Soc. Chem. Commun., (1992) 152. 156b. Shuang Liu, E. Wong, V. Karunaratne, S.J. Rittig and C. Orvig, Inorg. Chem., 32 (1993) 1756. 157. F.A. Cotton, W. Schwotzer and C.Q. Simpson II., Angew. Chem. Int. Ed. Engl., 25 (1986) 637. 158. M. Veith and W. Frank, Angew. Chem. Int. Ed. Engl., 24 (1985) 223. 159. E.B. Lobkovskii, G.L. Soloveichik, A.I. Sizov and B.M. Bulychev, J. Organomet. Chem., 280 (1985) 53. 160. A.l. Sizov, I.V. Molodnitskaya, B.M. Bulychev, V.K. Belskii, E.V. Evdokimova and G.L. Soloveichik, Metallorg. Khim., 3 (1990) 430; Engl. Ed., p.212. 161. M. Cesari, G. Perego, G. Del Piero, M. Corbellini and A. Immirzi, J. Organomet. Chem., 87 (1975) 43. 162. S.I. Troyanov and V.B. Rybakov, Metallorg. Khim., 1 (1988) 1061; Engl. Ed., p.579; S.I. Troyanov and V.A. Tafeenko, Zh. Obsch. Khim., 60 (1990) 2416; Eng. Ed., p.2160. 163. G. Perego and G. Dozzi, J. Organomet. Chem., 205 (1981) 21. 164. H. Schmidbaur, T. Probst, B. Huber, G. Müller and C. Krüger, J. Organomet. Chem., 365 (1989) 53. 165. E.B. Lobkovskii, A.l. Sizov, B.M. Bulychev, I.V. Sokolova and G.L. Soloveichik, J. Organomet. Chem., 319 (1987) 69. 166. S.Y. Knjazhanski, E.B. Lobkovskii, B.M. Bulychev, V.K. Belskii and G.l. Soloveichik, J. Organomet. Chem., 419 (1991) 311. 167. E.B. Lobkovskii, A.N. Chekhlov, S.Y. Knyazhanski, B.M. Bulychev and G.L. Soloveichik, Metallorg. Khim., 2 (1989) 1190; Engl. Ed., p.632; A.N. Chekhlov, Zh. Strukt. Khim., 34 (1993) 167; Engl. Ed., p.803. 168. V.K. Belskii, Y.K. Gunko, B.M. Bulychev and G.L. Soloveichik, J. Organomet. Chem., 420 (1991) 43. 169. Hongze Liang, Qui Shen, Songchun Jin and Yonghua Lin, J. Chem. Soc. Chem. Commun., (1992) 480. 170. Shan Cheng-Ji, Lin Yong-Hua, Jin Song-Chun, Ouyang Jun, Fan Yu-Guo, Yang Guang-Di and Y. Jing-Sheng, Huaxue Xuebao (Acta Chim. Sin.), 45 (1987) 949. 171. N. Sklar and B. Post, Inorg. Chem., 6 (1967) 669. 172. J.W. Lauher, D. Dougherty and P.J. Herley, Acta Crystallogr. Sect. Β. 35 (1979) 1454. 173. J.A. Meese-Marktscheffel, R. Weimann, H. Schumann and J,W. Gilje, Inorg. Chem., 32 (1993) 5894. 174. G. Johansson, Acta Chem. Scand., 20 (1966) 505. 175. J.J. Pluth, J.V. Smith and J.M. Bennett, J. Am. Chem. Soc., 111 (1989) 1692.

176. H. Jacobs, K. Jänichen, C. Hadenfeldt and R. Juza, Z. Anorg. Allg. Chem., 531 (1985) 125. 177. H. Jacobs and B. Nöcker, Z. Anorg. Allg. Chem., 619 (1993) 381. 178. P. Molinie, R. Brec, J. Rouxel and P. Herpin, Acta Crystallogr. Sect. Β. 29 (1973) 925. 179. R.L. Gerteis, R.E. Dickerson and T.L. Brown, Inorg. Chem., 3 (1964) 872. 180. E. Perenthaler, H. Schulz and A. Rabeneau, Ζ Anorg. Allg. Chem., 491 (1982) 259. 181. K. Peters, A. Simon, E.M. Peters, H. Kühnl and B. Koslowski, Ζ Anorg. Allg. Chem., 492 (1982) 7. 182. T. Staffel and G. Meyer, Ζ Anorg. Allg. Chem., 552 (1987) 108. 183. T. Staffel and G. Meyer, Ζ Anorg. Allg. Chem., 548 (1987) 45. 184. R. Faggiani, R.J. Gillespie and J.E. Vekris, J. Chem. Soc. Chem. Commun., (1986) 517. 185. S.I. Troyanov, Zh. Neorg. Khim., 37 (1992) 266; Engl. Ed., p.121.

485 Vol. 19, No. 7, 1996 Heterometallic Aluminium Compounds

186. J.A. Ibers, Acta Crystallogr., 15 (1962) 967. 187. K. Hildebrandt, P.G. Jones, E. Schwarzmann and G.M. Sheldrick, Ζ Naturforsch., 37b (1982) 1129. 188. Η. Schäfer, Μ. Binnewies, R. Laumanns and Η. Wächter, Ζ Anorg. Allg. Chem., 461 (1980) 31. 189. R.W. Turner and E.L. Amma, J. Am. Chem. Soc., 88 (1966) 1877. 190. R.W. Turner and E.L. Amma, J. Am. Chem. Soc., 88 (1966) 3243. 191. P.F. Rodesiler, T. Auel and E.L. Amma, J. Am. Chem. Soc., 97 (1975) 7405 751. 192. M.S. Weininger, P.F. Rodesiler and E.L. Amma, Inorg. Chem., 18 (1979) 751. 193. H. Schmidbaur, T. Probst, O. Steigelmann and G. Müller, Heteroatom. Chem., 1 (1990) 161. 194. W. Frank, Ζ Anorg. Allg. Chem., 585 (1990) 121. 195. A.G. Gash, P.F. Rodesiler and E.L. Amma, Inorg. Chem., 13 (1974) 2429. 196. D. Hake and W. Urland, Z. Anorg. Allg. Chem., 586 (1990) 99. 197. S.I. Troyanov, V.B. Rybakov and V.M. lonov, Zh. Neorg. Khim., 35 (1990) 882; Engl. Ed., p.494. 198. E.B. Lobkovskii, G.L. Soloveichik, A.B. Erofeev, B.M. Bulychev and V.K. Belskii, J. Organomet. Chem., 235 (1982) 151. 199. G. Linti, H. Nöth and P. Rahm, Ζ Naturforsch., 43b (1988) 1101. 200. C.M. Means, N.C. Means, S.G. Bott and J.L. Atwood, J. Am. Chem. Soc., 106 (1984) 7627. 201. W. Uhl, Ζ Naturforsch., 45b (1990) 1349. 202. J. Nouet, J. Pannetier and J.L. Fourguet, Acta Crystallogr., Sect. Β, 37 (1981) 32; A. Gibaud, A. Le Bail and A. Bulou, J. Phys. C: Solid State Phys., 19 (1986) 4623. 203. J.M. Launay, A. Bulou, A.W. Hewat, A. Gibaud, J.Y. Laval and J. Nouet, J. Phys. (Paris), 46 (1985) 771. 204. J.L. Fourguet, F. Plet and R. De Pape, Acta Crystallogr., Sect. B, 36 (1980) 1997. 205. R. Lösch and C. Hebecker, Ζ Naturforsch., 34b (1979) 131. 206. C. Brosset, Ζ Anorg. Allg. Chem., 235 (1937) 139. 207. J.L. Fourguet, F. Plet, G. Courlion, A. Bulou and R. De Pape, Rev. Chim. Miner., 16 (1979) 490. 208. J.L. Fourguet, B. Boulard and F. Plet, J. Solid State Chem., 81 (1989) 35. 209. J.L. Fourguet, F. Plet and R. De Pape, Rev. Chim. Miner., 18 (1981) 19. 210. M. Moliner and W. Massa, Acta Crystallogr., Sect. C. 49 (1993) 782. 211. J.L. Fourguet, F. Plet and R. De Pape, Acta Crystallogr., Sect. B, 37 (1981) 2136. 212. R. Von der Mühll, S. Andersson and J. Galy, Acta Crystallogr. Sect. B, 27 (1971) 2345. 213. R. Domesle and R. Hoppe, Ζ Anorg. Allg. Chem., 495 (1982) 16. 214. A. Rimsky, J. Thoret and W. Freundlich, C.R. Acad. Sc. Paris, Ser. C, 270 (1970) 407. 215. G. Ferey, M. Leblanc and A.M. Mercier, J. Solid State Chem., 102 (1993) 9. 216. J.H. Burns, A.C. Tennissen and G.D. Brunton, Acta Crystallogr., Sect. B, 24 (1968) 225. 217. F.C. Hawthorne and R.B. Ferguson, Can. Mineral, 13 (1975) 377. 218. H. Yang, S. Ghose and D.M. Hatch, Phys. Chem. Minerals, 19 (1993) 528. 219. S.V. Näray-Szabo and K. Sasväri, Ζ Kristallogr., 99 (1938) 27. 220. R. Domesle and R. Hoppe, Ζ Kristallogr., 153 (1980) 317. 221. C. Jacaboni, A. Leble and J.J. Rousseau, J. Solid State Chem., 36 (1981) 297. 222. A. Hemon and G. Courbion, J. Solid State Chem., 81 (1989) 293. 223. A. Tressaud, J. Darriet, P. Lagassie, J. Grannec and P. Hagenmuller, Mat. Res. Bull., 19 (1984) 983. 224a. W. Viebahn, Z. Anorg. Allg. Chem., 386 (1971) 335. 224b. N.B. Bolotina, B.A. Maksimov, V.l. Simonov, S.I. Derzhavin, T.V. Uvarova and V.V. Apollonov, Kristallografiya, 38 (1993) 43. 225. K.I. Schaffers and D.A. Keszler, Acta Crystallogr., Sect. C, 47 (1991) 18. 226. B. Bachmann and B.G. Müller, Ζ. Anorg. Allg. Chem., 619 (1993) 189. 227. R. Hoppe, J. Fluorine Chem., 23 (1983) 458; G. Wingefeld and R. Hoppe, Ζ. Anorg. Allg. Chem., 516 (1984) 223. 228. P. Dahlke and D. Babel, Z. Anorg. Allg. Chem., 620 (1994) 1692. 229. O. Knop, T.S. Cameron and K. Jochem, J. Solid State Chem., 43 (1982) 213; A. Byström, Ark. Kemi. Mineral. Geol. B, 18 (1944) 10. 230. P. Gravereau, A. Boireau, J.M. Dance, L. Trut and A. Tressaud, Acta Crystallogr., Sect. C, 48 (1992) 2108. 231. T. Fleischer and R. Hoppe, Ζ Anorg. Allg. Chem., 492 (1982) 83.

486 C. Ε. Holloway and Μ. Melnik Main Group Metal Chemistry

232. G. Courbion, C. Jacoboni and R. De Pape, Acta Crystallogr., Sect. B, 32 (1976) 3190. 233. S. Geller, Amer. Minerologist, 56 (1971) 18. 234. G. Menzer, Z. Kristallogr., 75 (1930) 265. 235. A. Hemon, A. Le Bail and G. Courbion, J. Solid State Chem., 81 (1989) 299. 236. O.L. Litvin, A.A. Petrunina, S.S. Ostapenko and O.S. Povarennik, Dopov. Akad. Nauk Ukr. SSR, (1980) 47. 237. H. van Koningsveld and F.R. Venema, Acta Crystallogr., Sect. C, 47 (1991) 289. 238. R. Wang, W.F. Bradley and H. Steinfink, Acta Crystallogr., 18 (1965) 249. 239. S. Menchetti and C. Sabelli, Neues Jahrb. Miner. Monatsh., (1976) 406.

487