Absence of Skin Sensitivity to Oxides of Aluminium, Silicon, Titanium Or Zirconium in Patients With

Total Page:16

File Type:pdf, Size:1020Kb

Absence of Skin Sensitivity to Oxides of Aluminium, Silicon, Titanium Or Zirconium in Patients With Gut1996;39:231-233 231 Absence of skin sensitivity to oxides of aluminium, Silicon, titanium or zirconium in patients with Crohn's disease Gut: first published as 10.1136/gut.39.2.231 on 1 August 1996. Downloaded from J C W Lee, S Halpem, D G Lowe, A Forbes, J E Lennard-Jones Abstract obstructive lymphadenopathy. It has been Background-Some metallic compounds, proposed that this is caused by fibrosis of the especially of zirconium, can cause cell afferent lymphatics as a result of absorption of mediated granulomatous inflammation of microparticles of silica and alumino-silicates the skin. Pigment granules containing through the skin where people walk barefoot compounds of aluminium, silicon, and on certain types of soil. Particles containing titanium have been observed within silica, titanium, and aluminium are present in macrophages in the wall of the small microgranulomata within inguinal lymph intestine in health and in Crohn's disease. nodes of sufferers.6 Granulomata also develop Zirconium compounds can be ingested in in response to intradermal injection ofcolloidal toothpaste. silica in healthy subjects but these are foreign Aim-To determine in a pilot study if body granulomata and are clearly distinguish- granulomatous sensitivity can be detected able from the cell mediated response to small to compounds of these metals or silicon quantities of zirconium lactate.7 after injection into the skin of patients As metals and minerals are ubiquitous in the with Crohn's disease. community, a hypersensitivity to these sub- Subjects-Eight patients with Crohn's stances in some people rather than a direct disease known to have had granulomata in toxic effect is the most probable pathogenetic the intestine and not currently treated mechanism by which they may contribute to with corticosteroids, and two healthy disease. Experiments with metal compounds controls. by skin testing provide a useful model for the Method-Two intradermal injections each study of the evolution of granulomatous of 0.1 ml of a 002% suspension of one of lesions in hypersensitive people. After intra- the compounds made in the abdominal dermal injection of small quantities of http://gut.bmj.com/ wall of each subject. The site was marked zirconium lactate or beryllium oxide, a distinct and full thickness skin biopsy performed epithelioid cell granulomatous reaction can be six weeks later. found in sensitive subjects compared with a Result-A foreign body granuloma was foreign body reaction to larger amounts in observed on histological examination of non-susceptible subjects.2 8 two biopsy specimens but no evidence of a The gastrointestinal tract is exposed daily to celi mediated response in any subject. metallic compounds from diverse dietary on September 24, 2021 by guest. Protected copyright. Conclusion-No support was found for the sources, either intentionally as with food hypothesis that Crohn's disease is due to a additives, or unintentionally via cooking uten- specific sensitivity to ingested metallic or sils. Small amounts of toothpaste, containing silicon compounds. zirconium compounds, may be swallowed. (Gut 1996; 39: 231-233) Interestingly, toothpaste has been postulated as a possible cause of CD.9 Keywords: Crohn's disease, skin sensitivity, A black granular pigment containing aluminium, silicon, titanium, zirconium. aluminium, silica, and titanium has been described within the intestinal wall of adults, St Mark's Hospital, including those affected by CD. The pigment London An in J C W Lee increase the incidence of Crohn's disease is found in macrophages concentrated in the A Forbes (CD) in the developed world and reports of lymphoid aggregates of the small bowel, and in J E Lennard-Jones clustering of cases in some geographical some cases also in the mesenteric lymph regions suggests that 11 Departments of environmental factors nodes.'0 Dermatology contribute to disease pathogenesis. Inorganic We have tested the hypothesis that patients S Halpem substances may be one such factor. with CD are sensitive to certain metal com- Metallic compounds or minerals have and Histopathology pounds or to the mineral silica by conducting D G Lowe been implicated as the cause of some human intradermal skin testing on patients in a pilot diseases. Zirconium lactate, when applied to the study. St Bartholomew's skin can cause a specific cell mediated granulo- Hospital, London matous reaction in a few subjects.' 2 Pulmonary Correspondence to: granulomatous lesions are associated with Methods Professor J E Lennard-Jones, St Mark's Hospital, occupational exposure to compounds of titan- Northwick Park, Watford ium, beryllium, and aluminium.5 Road, Harrow, Middlesex Subjects studied HA1 3UJ. In podoconiosis, an endemic but non-filarial Eight patients (seven men and one woman) Accepted for publication form of elephantiasis, there is severe oedema with CD and two healthy male subjects volun- 19 January 1996 of the lower limbs as a consequence of teered for the study. The duration in time since 232 Lee, Halpern, Lowe, Forbes, Lennard-j7ones CD had been diagnosed ranged from four to Results 27 years, with a median of 13.5 years. Terminal ileum involvement by CD had been Patients with CD reported in all of the patients. In seven Except for a short period of localised pain at patients, surgical resection of diseased bowel the time of injection, no patient reported any had been required in the past, including six other side effect. There were no visible nor Gut: first published as 10.1136/gut.39.2.231 on 1 August 1996. Downloaded from with two or more resections. The median palpable papules at the injection sites for the time interval between surgical removal of duration of the study prior to skin biopsy. bowel, in which histological evidence of granu- Serial sections from each biopsy specimen lomata within diseased intestine was found, were examined under light microscopy. and skin testing was five years and ranged from Histological evidence of a loose granuloma one to 10 years. For the remaining patient around foreign material (silica) was observed who had not required operative treatment, as the only significant abnormality in one of 16 granulomata had been found in colonic sites tested. There was no evidence of an biopsy specimens obtained during endoscopy inflammatory response or other reaction to the 12 years previously. Six patients were injected metals in the other biopsy sites tested. receiving maintenance treatment with Inorganic material was not identified in any of mesalazine or sulphasalazine and one also with the histological sections in the remaining azathioprine. Two patients were not receiving biopsy sites under light microscopy. any specific treatment for CD. None of the patients studied required treatment with corticosteroids for at least two months prior Controls to and during the study. The study was Of the two control subjects studied, a foreign approved by the district research ethics com- body type granuloma (to zirconium oxide) was mittee. present in one of four skin sites tested. As with CD patients, there were no side effects except for minor localised discomfort at the time the Choice ofsubstances used and theirphysical compounds were injected intradermally. characteristics Four inorganic substances were selected for testing - zirconium oxide (ZrO2), titanium Discussion oxide (TiO2), aluminium oxide (A1203), and The aim of the study was to identify whether silica (SiO2), obtained from Degussa specific granulomatous sensitivity to inorganic (Cheshire, UK). The first three were chosen substances exists in patients with CD. The because of the known association of com- results have not provided evidence that pounds of these metals with diseases charac- patients with CD are prone to develop skin http://gut.bmj.com/ terised by granulomatous hypersensitivity granulomata after intradermal exposure to reactions and the presence of two of them in inorganic substances. Compounds of the three pigment within intestinal wall. Silica was used metals used are known to be associated with a as a non-specific substance, which can cause a granulomatous reaction in human tissue, -6 granulomatous skin response. and appropriately we have used elements that The compounds had a purity greater than are found in the granular pigment identified 96% and the average sizes of the primary parti- within diseased bowel wall.10 11 Furthermore on September 24, 2021 by guest. Protected copyright. cles were 12 (SiO2), 13 (A1203), 21 (TiO2), compounds of these elements are likely to be and 30 nm (ZrO2). Although their crystal ingested in small quantities: aluminium (from structures vary, they never exist as isolated cooking utensils, anti-caking agent), titanium primary particles, tending to form aggregates (artificial colouring), silica (thickening and and agglomerates (technical information anti-caking agent), and zirconium (tooth- supplied by Degussa). paste). 12 Elias and Epstein demonstrated, by intra- dermal skin testing of minute quantities of Preparation and intradermal injection of zirconium lactate and beryllium oxide, that inorganic substances only people known to be sensitive to these A 0.02% (w/v) suspension (1 in 5000) of metals developed a distinct epithelioid each substance (4 mg of compound diluted granulomatous reaction, whereas a non- in 20 ml sterile water) was autoclaved for specific foreign body inflammatory response 20 minutes at 121 °C before use. Each was seen in non-sensitive subjects when subject was tested with two substances. A injected with larger doses.8
Recommended publications
  • Determination of Aluminium As Oxide
    DETERMINATION OF ALUMINIUM AS OXIDE By William Blum CONTENTS Page I. Introduction 515 II. General principles 516 III. Historical 516 IV. Precipitation of aluminium hydroxide. 518 1. Hydrogen electrode studies 518 (a) The method 518 (b) Apparatus and solutions employed 518 (c) Results of hydrogen electrode experiments 519 (d) Conclusions from hydrogen electrode experiments 520 2. Selection of an indicator for denning the conditions of precipita- '. tion . 522 3. Factors affecting the form of the precipitate 524 4. Precipitation in the presence of iron 525 V. Washing the precipitate . 525 VI. Separation from other elements 526 VII. Ignition and weighing of the precipitate 528 1. Hygroscopicity of aluminium oxide 529 2. Temperature and time of ignition 529 3. Effect of ammonium chloride upon the ignition 531 VIII. Procedure recommended 532 IX. Confirmatory experiments 532 X. Conclusions '534 I. INTRODUCTION Although a considerable number of precipitants have been pro- posed for the determination of aluminium, direct precipitation of aluminium hydroxide by means of ammonium hydroxide, fol- lowed by ignition to oxide, is most commonly used, especially if no separation from iron is desired, in which latter case special methods must be employed. While the general principles involved in this determination are extremely simple, it has long been recog- nized that certain precautions in the precipitation, washing, and ignition are necessary if accurate results are to be obtained. While, however, most of these details have been studied and dis- cussed by numerous authors, it is noteworthy that few publica- tions or textbooks have taken account of all the factors. In the 515 ; 516 Bulletin of the Bureau of Standards [Voi.i3 present paper it seems desirable, therefore, to assemble the various recommendations and to consider their basis and their accuracy.
    [Show full text]
  • A Novel Method for Synthesis of Nano-C-Al2o3: Study of Adsorption Behavior of Chromium, Nickel, Cadmium and Lead Ions
    Int. J. Environ. Sci. Technol. (2015) 12:2003–2014 DOI 10.1007/s13762-014-0740-7 ORIGINAL PAPER A novel method for synthesis of nano-c-Al2O3: study of adsorption behavior of chromium, nickel, cadmium and lead ions A. Shokati Poursani • A. Nilchi • A. H. Hassani • M. Shariat • J. Nouri Received: 30 April 2014 / Revised: 5 November 2014 / Accepted: 22 December 2014 / Published online: 14 January 2015 Ó Islamic Azad University (IAU) 2015 Abstract Nano-c-Al2O3 adsorbent was synthesized by Introduction the novel sol–gel method. The adsorbent was characterized by transmission electron microscope, Fourier transform Heavy metal pollution occurs during different industrial infrared and X-ray powder diffraction. The effects of sev- activities, and rapid industrialization leads to the increase eral variables such as, adsorbent weight, pH and contact of heavy metal concentration in the environment (Rahmani time on adsorption of chromium (Cr6?), nickel (Ni2?), et al. 2010). It can also increase the concentration of heavy cadmium (Cd2?) and lead (Pb2?) ions were studied in metal ions, such as cadmium (Cd), lead (Pb), zinc (Zn), batch experiments. The results showed that the synthesized nickel (Ni), copper (Cu) and chromium (VI) in water nano-c-Al2O3 had a good capacity to adsorb Cr and Pb. resources (Aziz et al. 2008). The toxic nature of heavy The kinetic data were described with pseudo-first- and metals has caused serious health problems for human, and pseudo-second-order models. Three isotherm models, they can accumulate in the environment (Rahmani et al. namely Freundlich, Langmuir and Tempkin, were used for 2010). In addition, recovery and removal of heavy metals analysis of equilibrium data, and results showed that are principal purposes in industry and saving clean water Langmuir and Freundlich models were suitable for resources (Sharma and Tamar 2008; Neghlani et al.
    [Show full text]
  • Isomorphous Substitution of Aluminium for Silicon in Tobermoritic Structure
    Isomorphous Substitution of Aluminium for Silicon in Tobermoritic Structure. I. The Mixtures of Different Forms of Silicon Dioxide and of Different Compounds of Aluminium J. PETROVIÖ, V. RUSNÁK and L. ŠTEVULA Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava 9 Received July 2, 1968 The isomorphous substitution of Al(III) for Si(IV) in tobermoritic structure was examined by X-ray phase analysis and DTA. It has been found that the extent of the substitution depends on the materials used. The samples were prepared using different forms of silica-either ^-quartz, quartz-glass, Si02-gel or aerosil. Gibbsite, boehmite, dehydrated kaolinite, kaolinite, corundum and 7-AI2O3 were used as sources of aluminium. The samples were heated in an autoclave at 150, 180 and 200°C for 10, 24 and in some cases for 48 hours. Tobermorite can be synthesized from calcium oxide and silica under hydrothermal conditions. Up to temperatures of about 110°C it is stable, at higher temperatures and under hydrothermal conditions it is formed as an unstable compound. When the reaction is allowed to proceed for a longer time, or when it takes place at higher tem­ perature, another stable calcium hydrosilicate arises. At lower temperature a calcium hydrosilicate with tobermoritic structure is formed. It has been found that tobermori­ te is produced on autoclaving building materials containing lime and some materials with high SÍO2 content. It is also formed from anhydrous dicalcium silicates in the course of setting of cement. Under different conditions, compounds with tobermoritic structure arise which, however, differ in the amount or lime and water in the molecu­ le, as well as in the arrangement of the structure — e.g.
    [Show full text]
  • The Adsorption Characteristics of Cu(II)
    www.nature.com/scientificreports OPEN The adsorption characteristics of Cu(II) and Zn(II) on the sediments at the mouth of a typical urban polluted river in Dianchi Lake: taking Xinhe as an example Xiang‑shu Ma1,2,3, Leng Liu1,2,3, Yi‑chuan Fang1,2,3 & Xiao‑long Sun1,2,3* This study is to determine the spatial distribution characteristics of Cu and Zn adsorption on the sediments of the estuary of Dianchi Lake, as well as the composite adsorption law of Cu and Zn on combinations of sediment organic matter, metal oxides, and organic–inorganic composites. The relationship between the adsorption contribution of each component of the substance. A static adsorption experiment was applied to the sediments in the estuary of Dianchi Lake. The relationship between adsorption capacity and sediment composition was analyzed through correlation analysis and redundant analysis. The results show that along the direction of the river fow and the vertical depth, the adsorption capacity presents a relatively obvious spatial distribution law; the change trend of sediment component content is not the same as the change trend of Cu and Zn adsorption capacity. The change trend of the sediment component content is not the same as the change trend of the adsorption amount of Cu and Zn, and the compound efect between the components afects the adsorption amount. The adsorption of Cu by the four groups of sediments after diferent treatments is more in line with the Freundlich isotherm adsorption model; When adsorbing Zn, the untreated and removed organic matter and iron‑aluminum oxide group are in good agreement with the Freundlich model, while the organic matter‑removed group and the iron‑aluminum oxide removal group are more consistent with the Langmuir isotherm adsorption model; The adsorption contribution rate of organic–inorganic composites in sediments is not a simple addition of organic matter and iron‑ aluminum oxides, but a more complex quantitative relationship.
    [Show full text]
  • Sintering of Aluminum Powder with Microwave
    ISSN (Online) 2393-8021 ISSN (Print) 2394-1588 IARJSET International Advanced Research Journal in Science, Engineering and Technology Vol. 6, Issue 9, September 2019 Sintering of Aluminum Powder with Microwave Imad ul Iman Chikkodi1 Student, Electronics & Communication, KLE Dr. M.S. Sheshgiri College of Engineering & Technology, Belgaum, India1 Abstract: Sintering or frittage is the process of compacting and forming a solid mass of material by heat or pressure without melting it to the point of liquefaction. Sintering happens naturally in mineral deposits or as a manufacturing process used with metals, ceramics, plastics, and other materials. Sintering happens naturally in mineral deposits or as a manufacturing process used with metals, ceramics, plastics, and other materials. The atoms in the materials diffuse across the boundaries of the particles, fusing the particles together and creating one solid piece. Because the sintering temperature does not have to reach the melting point of the material, sintering is often chosen as the shaping process for materials with extremely high melting points such as tungsten and molybdenum. The study of sintering in metallurgy powder-related processes is known as powder metallurgy. An example of sintering can be observed when ice cubes in a glass of water adhere to each other, which is driven by the temperature difference between the water and the ice. Examples of pressure-driven sintering are the compacting of snowfall to a glacier, or the forming of a hard snowball by pressing loose snow together. Keywords: Sintering, Aluminium, Silicone Carbide, Microwave Sintering I. INTRODUCTION Most, if not all, metals can be sintered. This applies especially to pure metals produced in vacuum which suffer no surface contamination.
    [Show full text]
  • SDS EU 2LI Version #: 02 Revision Date: 01-November-2019 Issue Date: 18-September-2019 1 / 14 Signal Word Danger Hazard Statements H302 Harmful If Swallowed
    SAFETY DATA SHEET SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Trade name or BaO-CaO-Al2O3 designation of the mixture Registration number - Document number 2LI Synonyms None. Materion Code 2LI Issue date 18-September-2019 Revision date 01-November-2019 1.3. Details of the supplier of the safety data sheet Supplier Company name Materion Advanced Chemicals Inc. Address 407 N. 13th Street 1316 W. St. Paul Avenue Milwaukee, WI 53233 United States Division Milwaukee Telephone 414.212.0257 e-mail [email protected] Contact person Laura Hamilton 1.4. Emergency telephone number Supersedes date 18-September-2019 Version number 02 1.2. Relevant identified uses of the substance or mixture and uses advised against Identified uses Not available. Uses advised against None known. SECTION 2: Hazards identification 2.1. Classification of the substance or mixture The mixture has been assessed and/or tested for its physical, health and environmental hazards and the following classification applies. Classification according to Regulation (EC) No 1272/2008 as amended Health hazards Acute toxicity, oral Category 4 H302 - Harmful if swallowed. Acute toxicity, inhalation Category 4 H332 - Harmful if inhaled. Skin corrosion/irritation Category 1 H314 - Causes severe skin burns and eye damage. Serious eye damage/eye irritation Category 1 H318 - Causes serious eye damage. Hazard summary Causes severe skin burns and eye damage. Harmful if inhaled. Harmful if swallowed. Occupational exposure to the substance or mixture may cause adverse health effects. The material as sold in solid form is generally not considered hazardous. However, if the process involves grinding, melting, cutting or any other process that causes a release of dust or fumes, hazardous levels of airborne particulate could be generated.
    [Show full text]
  • Warwick.Ac.Uk/Lib-Publications
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/139891 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications 1 AN INVESTIGATION OF SOME REACTIONS OF ALUMINIUM HYDROBORATE A thesis submitted for the degree of Doctor of Philosophy by David L.S. Shaw, B.Sc. The Department of Molecular Sciences^ University of Warwick 1. CONTENTS gage Contents 1 List of Tables 6 List of Figures 7 Acknowledgements 9 Sum m ary 10 1. Introduction 11 Nomenclature 11 Units 12 Hydroborates - Historical 12 Hydroborates - Properties 13 Hydroborates - Structures 17 Hydroborates - Bonding 21 Hydroborates - Vibrational Spectroscopy 24 Hydroborates - Nuclear Magnetic Spectral Properties 27 Aluminium Hydroborate 32 Preparation 32 Synthetic Reactions using Aluminium Hydroborate - Uses 33 Aluminium Hydroborate - Structure and Bonding 34 Aluminium Hydroborate - Properties 38 Physical Properties 38 Aluminium Hydroborate - Reactions 38 Exchange Reactions and Substituted Products 40 Anionic Aluminium Hydroborate Compounds 46 Adducts of Aluminium Hydroborates 47 Vibrational Spectra of Aluminium Hydroborate 50 Nuclear Magnetic Resonance of Aluminium Hydroborates 55 Decomposition of Aluminium Hydroborate - Hydride Aluminium Hydroborates 6-1 I Contents (continued ) Page Aluminium Hydride 63 Aluminium Alkyls 64 Aluminium and Higher Hydroborate Derivatives - Octahydrotriborates - 65 Trialkyl Boranes( Alkyl Diboranes 68 2.
    [Show full text]
  • Chemistry; Metallurgy
    C01F SECTION C --- CHEMISTRY; METALLURGY C01 INORGANIC CHEMISTRY XXXX C01F C01F XXXX C01F COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS (metal hydrides C01B 6/00; salts of oxyacids of halogens C01B 11/00; peroxides, salts of peroxyacids C01B 15/00; sulfides or polysulfides of magnesium, calcium, strontium, or barium C01B 17/42; thiosulfates, dithionites, polythionates C01B 17/64; compounds containing selenium or tellurium C01B 19/00; binary compounds of nitrogen with metals C01B 21/06; azides C01B 21/08; metal amides C01B 21/092; nitrites C01B 21/50; phosphides C01B 25/08; salts of oxyacids of phosphorus C01B 25/16; carbides C01B 31/30; compounds containing silicon C01B 33/00; compounds containing boron C01B 35/00; compounds having molecular sieve properties but not having base-exchange properties C01B 37/00; compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites, C01B 39/00; cyanides C01C 3/08; salts of cyanic acid C01C 3/14; salts of cyanamide C01C 3/16; thiocyanates C01C 3/20; fermentation or enzyme-using processes for the preparation of elements or inorganic compounds except carbon dioxide C12P 3/00; obtaining metal compounds from mixtures, e.g. ores, which are intermediate compounds in a metallurgical process for obtaining a free metal C22B; production of non-metallic elements or inorganic compounds by electrolysis or electrophoresis C25B) (1) Attention is drawn to Note (1) after class C01, which defines the last place priority rule applied in this class, i.e. in the range of subclasses C01B C01G and within these subclasses.
    [Show full text]
  • Review Report for Aluminum Oxide (CASRN 1344-28-1) Partial Exemption
    Review Report for Aluminum Oxide (CASRN 1344-28-1) Partial Exemption May 2019: The Aluminum Association Docket Identifier: EPA-HQ-OPPT-2019-0224 Summary of Decision: In response to a petition from the Aluminum Association1 (hereinafter “petitioner”) requesting that aluminum oxide (CASRN 1344-28-1) be added to the 40 CFR 711.6(b)(2)(iv) list of specific chemical substances for which the Environmental Protection Agency (EPA, “the Agency”) has a low current interest in the processing and use information, EPA has determined that the Agency does not have a low current interest in the processing and use information collected under the Chemical Data Reporting (CDR) rule (see 40 CFR Part 711) for aluminum oxide (Al2O3). This determination is based on the totality of information available for the chemical substance, including an evaluation of all the considerations listed in 40 CFR 7l1.6(b)(2)(ii), as well as additional considerations. Background: EPA received a petition from the Aluminum Association on January 31, 2019, requesting that aluminum oxide (Al2O3) (CASRN 1344-28-1) be added to the 40 CFR 711.6(b)(2)(iv) list of specific chemical substances that are exempt from the reporting requirements of 40 CFR 711.15(b)(4) (i.e., exempt from requirements to report industrial processing and use and commercial/consumer use information). EPA has a low current interest in the substances on this “partial exemption” list and thus in the related CDR processing and use information. EPA emphasizes that low current interest is not synonymous with low hazard or low risk. As EPA stated in the preamble to the Inventory Update Reporting Amendments rule (the previous name for the Chemical Data Reporting rule), “[t]he inclusion of a chemical substance under this partial exemption is not itself a determination of the potential risks of a chemical.
    [Show full text]
  • 12Cl23h2o, a New Gibbsite-Based Hydrotalcite Supergroup
    minerals Article Dritsite, Li2Al4(OH)12Cl2·3H2O, a New Gibbsite-Based Hydrotalcite Supergroup Mineral Elena S. Zhitova 1,2,* , Igor V. Pekov 3, Ilya I. Chaikovskiy 4, Elena P. Chirkova 4, Vasiliy O. Yapaskurt 3, Yana V. Bychkova 3, Dmitry I. Belakovskiy 5, Nikita V. Chukanov 6, Natalia V. Zubkova 3, Sergey V. Krivovichev 1,7 and Vladimir N. Bocharov 8 1 Department of Crystallography, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia 2 Laboratory of Mineralogy, Institute of Volcanology and Seismology, Russian Academy of Sciences, Bulvar Piypa 9, Petropavlovsk-Kamchatsky 683006, Russia 3 Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991, Russia 4 Mining Institute, Ural Branch of the Russian Academy of Sciences, Sibirskaya str., 78a, Perm 614007, Russia 5 Fersman Mineralogical Museum, Russian Academy of Sciences, Leninsky Prospekt 18-2, Moscow 119071, Russia 6 Institute of Problems of Chemical Physics, Russian Academy of Sciences, Akad. Semenova 1, Chernogolovka, Moscow Region 142432, Russia 7 Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Fersman Street 14, Apatity 184209, Russia 8 Resource Center Geomodel, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia * Correspondence: [email protected]; Tel.: +7-924-587-51-91 Received: 2 August 2019; Accepted: 14 August 2019; Published: 17 August 2019 Abstract: Dritsite, ideally Li Al (OH) Cl 3H O, is a new hydrotalcite supergroup mineral formed 2 4 12 2· 2 as a result of diagenesis in the halite carnallite rock of the Verkhnekamskoe salt deposit, Perm Krai, − Russia. Dritsite forms single lamellar or tabular hexagonal crystals up to 0.25 mm across.
    [Show full text]
  • Compounds of the Metals Beryllium, Magnesium
    C01F COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS (metal hydrides [N: monoborane, diborane or addition complexes thereof] C01B6/00; salts of oxyacids of halogens C01B11/00; peroxides, salts of peroxyacids C01B15/00; sulfides or polysulfides of magnesium, calcium, strontium, or barium C01B17/42; thiosulfates, dithionites, polythionates C01B17/64; compounds containing selenium or tellurium C01B19/00; binary compounds of nitrogen with metals C01B21/06; azides C01B21/08; [N: compounds other than ammonia or cyanogen containing nitrogen and non-metals and optionally metals C01B21/082; amides or imides of silicon C01B21/087]; metal [N: imides or] amides C01B21/092, [N: C01B21/0923]; nitrites C01B21/50; [N: compounds of noble gases C01B23/0005]; phosphides C01B25/08; salts of oxyacids of phosphorus C01B25/16; carbides C01B31/30; compounds containing silicon C01B33/00; compounds containing boron C01B35/00; compounds having molecular sieve properties but not having base-exchange properties C01B37/00; compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites, C01B39/00;cyanides C01C3/08; salts of cyanic acid C01C3/14; salts of cyanamide C01C3/16; thiocyanates C01C3/20; [N: double sulfates of magnesium with sodium or potassium C01D5/12; with other alkali metals C01D15/00, C01D17/00]) Definition statement This subclass/group covers: All compounds of Be,Mg,Al,Ca,Sr,Ba,Ra,Th or rare earth metals except those compounds which are classified in C01G because of application of the last appropriate place rule. So, in principle does this subclass comprise all Al-compounds with elements as such being part of C01B-C01D, e.g.
    [Show full text]
  • Aluminium Oxide Coated Titanium Dioxide Particles and Methods Of
    (19) & (11) EP 1 544 256 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C09C 1/36 (2006.01) 20.10.2010 Bulletin 2010/42 (21) Application number: 04257867.4 (22) Date of filing: 16.12.2004 (54) Aluminium oxide coated titanium dioxide particles and methods of preparing the same in presence of a densifying agent Aluminiumoxidbeschichtete Titandioxidpartikel und Verfahren zu deren Herstellung unter Verwendung von verdichtenden Agentien Particules d’oxyde de titane recouverts d’oxyde d’aluminium et leurs procédés de préparation utilisant un agent densifiant (84) Designated Contracting States: • Morrison, William Harvey Jr. DE FI FR GB IT NL Wilmington, Delaware 19810 (US) (30) Priority: 16.12.2003 US 737357 (74) Representative: Towler, Philip Dean Dehns (43) Date of publication of application: St Bride’s House 22.06.2005 Bulletin 2005/25 10 Salisbury Square London (73) Proprietor: E.I. DU PONT DE NEMOURS AND EC4Y 8JD (GB) COMPANY Wilmington, DE 19898 (US) (56) References cited: EP-A- 0 244 180 WO-A-93/22386 (72) Inventors: US-A- 4 199 370 US-A- 5 451 390 • Frerichs, Scott Rickbeil US-A1- 2003 089 278 Smyrna, Delaware 19977 (US) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid.
    [Show full text]