Crystal Structure of Aluminum, Zinc, and Their Alloys By: Omar Fajardo Sebastian Henao Devin Baines ENGR45, F2014, SRJC Purpose

Total Page:16

File Type:pdf, Size:1020Kb

Crystal Structure of Aluminum, Zinc, and Their Alloys By: Omar Fajardo Sebastian Henao Devin Baines ENGR45, F2014, SRJC Purpose Crystal Structure of Aluminum, Zinc, and their Alloys By: Omar Fajardo Sebastian Henao Devin Baines ENGR45, F2014, SRJC Purpose The purpose of this experiment was to examine and observe the microstructure of aluminum, zinc, and their alloys. Aluminum • “Aluminium (or aluminum; see spelling differences) is a chemical element in the boron group with symbol Al and atomic number 13. It is a silvery white, soft, ductile metal. Aluminium is the third most abundant element (after oxygen and silicon), and the most abundant metal in the Earth's crust. It makes up about 8% by weight of the Earth's solid surface. Aluminium metal is so chemically reactive that native specimens are rare and limited to extreme reducing environments. Instead, it is found combined in over 270 different minerals. The chief ore of aluminium is bauxite. • Aluminium is remarkable for the metal's low density and for its ability to resist corrosion due to the phenomenon of passivation. Structural components made from aluminium and its alloys are vital to the aerospace industry and are important in other areas of transportation and structural materials. The most useful compounds of aluminium, at least on a weight basis, are the oxides and sulfates.” • Source: Wikipidia • Atomic number 13 • Standard atomic weight 26.9815385(7) Zinc • “Zinc, in commerce also spelter, is a chemical element with symbol Zn and atomic number 30. It is the first element of group 12 of the periodic table. In some respects zinc is chemically similar to magnesium: its ion is of similar size and its only common oxidation state is +2. Zinc is the 24th most abundant element in the Earth's crust and has five stable isotopes. The most common zinc ore is sphalerite (zinc blende), a zinc sulfide mineral. The largest mineable amounts are found in Australia, Asia, and the United States. Zinc production includes froth flotation of the ore, roasting, and final extraction using electricity (electrowinning).” • Source: Wikipedia Aluminum & Zinc • “Zinc-aluminium (ZA) alloys are alloys whose main constituents are zinc and aluminium. Other alloying elements include magnesium and copper. This type of alloy was originally developed for gravity casting. Noranda, New Jersey Zinc Co. Ltd., St. Joe Mineral Co. and ILZRO were the main companies that pioneered the ZA alloys between the 1950s and the 1970s. They were designed to compete with bronze, cast iron and aluminium using sand and permanent mold casting methods. Distinguishing features of ZA alloys include high as-cast strength, excellent bearing properties, as well as low energy requirements (for melting).[1] • ZA alloys make good bearings because their final composition includes hard eutectic zinc-aluminium-copper particles embedded in a softer zinc-aluminium matrix. The hard particles provide a low-friction bearing surface, while the softer material wears back to provide space for lubricant to flow, similar to Babbitt metal.” • Source: Wikipedia Properties of various zinc aluminium alloys[1] ZA8 ZA12 ZA27 Mechanical properties Sand cast Permanent mold Sand cast Permanent mold Sand cast Permanent mold Ultimate tensile strength [ksi 38 (263) 32-37 (221-255) 40-46 (276-317) 45-50 (310-345) 58-64 (400-441) 45-47 (310-324) (MPa)] Yield strength - 0.2% offset 29 (200) 30 (206) 31 (214) 39 (269) 54 (372) 37 (255) [ksi (MPa)] Elongation [% in 2"] 1-2 1-2 1-3 1-3 3-6 8-11 Shear strength [ksi (MPa)] - 35 (241) 37 (255) - 42 (290) 33 (228) Hardness [Brinell] 85 85-90 89-105 89-105 110-120 90-110 Impact strength [ft·lbf (J)] 156 (20) - 193 (25) - 353 (47) 433 (58) Fatigue strength rotary bend in - 7.5 (52) 15 (103) - 25 (172) 15 (103) 5x108 cycles [ksi (MPa)] Compressive yield strength 29 (199) 31 (214) 33 (227) 34 (234) 48 (331) 37 (255) 0.1% offset [ksi (MPa)] Modulus of elasticity [psi x 12.4 (85.5) 12.47 (85.5) 12.07 (82.7) 12.07 (82.7) 11.37 (77.9) 11.37 (77.9) 106 (MPa x 103)] Poisson's ratio 0.29 0.29 0.30 0.30 0.32 0.32 Physical properties Sand cast Permanent mold Sand cast Permanent mold Sand cast Permanent mold Density [lbm/in3 (g/cm3)] .227 (6.3) 0.227 (6.3) 0.218 (6.0) 0.218 (6.0) 0.181 (5.0) 0.181 (5.0) Melting Range [°F (°C)] 707-759 (375-404) 707-759 (375-404) 710-810 (377-432) 710-810 (377-432) 708-903 (376-484) 708-903 (376-484) Electrical Conductivity [S/m 1.61 (27.7) 1.61 (27.7) 1.64 (28.3) 1.64 (28.3) 1.72 (29.7) 1.72 (29.7) (%IACS)] Thermal Conductivity 66.3 (114.7) 66.3 (114.7) 67.1 (116.1) 67.1 (116.1) 72.5 (125.5) 72.5 (125.5) [BTU/hr/ft2/°R (W/m/°K)] CTE [68-212°F µin/in/°R (100- 12.9 (23.3) 12.9 (23.3) 13.4 (24.2) 13.4 (24.2) 14.4 (26.0) 14.4 (26.0) 200°C µm/mm/°K)] Specific Heat [BTU/lbm/°R .104 (435) .104 (435) .107 (448) .107 (448) .125 (523) .125 (523) (J/kg/°K)] Pattern of Die Shrinkage [in/ft 1/8 (10.4) 1/8 (10.4) 5/32 (13.0) 5/32 (13.0) 5/32 (13.0) 5/32 (13.0) (mm/m)] Chemical Specification (per ASTM) (% by Weight) ZA12 ZA27 ZA8 Composition Ingot Casting Ingot Casting Ingot Casting Al 8.2-8.8 8.0-8.8 10.8-11.5 10.5-11.5 25.5-28.0 25.0-28.0 Mg .020-.030 .015-.030 .020-.030 .015-.030 .012-.020 .010-.020 Cu 0.8-1.3 0.8-1.3 0.5-1.2 0.5-1.2 2.0-2.5 2.0-2.5 Fe (max) .065 .075 .065 .075 .072 .075 Pb (max) .005 .006 .005 .006 .005 .006 Cd .005 .006 .005 .006 .005 .006 Sn (max) .002 .003 .002 .003 .002 .003 Ni (other)x10 - - - - - - Zn Bal Bal Bal Bal Bal Bal Color Code Blue Blue Orange Orange Purple Purple ASTM B908 Procedure • Aluminum with 99.8% purity and zinc with 99.7% were obtained and cut into multiple small chunks. • Those chunks were then weighed and grouped together to prepare them to be melted and alloyed. • We decided to make five different samples. The two original samples, 100% Al and 100% Zn, one 80% Al and 20% Zn, one 50/50 Al-Zn and one 80% Zn 20% Al. • Once all of the samples were weighed, we began melting the samples, followed by pouring the melted samples sandcast mold to let them cool. • Each sample was cut and set in bakelite powder and was compressed into a cylindrical mold. Aluminum Zinc Pure Zinc Procedure Procedure • Once the molds were ready, we polished each sample by sliding them in sandpaper with different grits. • After polishing the samples we successfully etched each of them, with the exception of pure aluminum, by using a copper sulfate solution. Etching Solution We used a deep etching technique for all of the five samples The solution we used was CuSO4 in a concentration of 200 g per liter ≈ 1.25 mol per liter Failures Succeses • We were not able to etch the pure aluminum • We were able to observe the micro structure of sample. most of our sample. • Over etching of 80 % zinc hypereutectoid. • Under etching of 100 % Zinc Eutectic Diagram Al-Zn Phase Diagram α = Al rich FCC phase ß = Zn rich FCC phase η = Zn rich HCP phase L = Liquid Solution 20% Zn, 80% Al 50% Zn, 50% Al 80% Zn, 20% Al 100% Zn Sources Aluminum - http://en.wikipedia.org/wiki/Aluminium Zinc- http://en.wikipedia.org/wiki/Zinc Zinc/Aluminum - http://en.wikipedia.org/wiki/Zinc_aluminium.
Recommended publications
  • Thesis-1959-M936z.Pdf (5.165Mb)
    THE ZING SMETIL'ING INDUSTRY IN OKLAHOMA By ROLAND DELOY MOWER ti Bachelor of Science University of Utah Salt Lake City, Utah 1955 Submitted to the Faculty of the Graduate Sohool of the Oklahoma State University in Partial Fulfillment of the Requirements for the Degree or MASTER OF SCIENCE August, 1959 STATE UNIVERSITY , LIBRARY . NOV 18 1959 1 ..'· TEE ZINC SMELTING mDUSTRY m OKLAHOMA Thesis Approved: tfa/r£~if:i:#d 7 Dean of the Graduate School 430809 ii PREFACE // ·one of the most mportant aspects of the tremendous development and growth of American industry is an increased awareness of the basic metals, their products and their uses o Steel, aluminum and copper are pa.rticu= larly well knO'wn because of the publicity they receive and because their presence is easily recognized in a wide range of consumer products. On the other hand zinc~ which ranks fourth among other metals with respect to production, is relatively unknown. Because zinc is generally used in conjunction with other metals its identity is often hidden and the average person, unaware of zinc's wide application and uses in industry, fails to reeog:nize its significan9e ,/ In this study of Oklahoma vs zinc smelting industry I have attempted to acquaint the average Oklahoman with zinc 1 its sources, products and consumers. The zinc industry as a whole is discussed.,- bttt special emphasis is given to that part of the industry located in Oklahoma. Information contained_ in this thesis was obtained from various published materials found in several libraries :i through personal
    [Show full text]
  • The Bristol Brass Industry: Furnace Structures and Their Associated Remains Joan M Day
    The Bristol brass industry: Furnace structures and their associated remains Joan M Day Remains of the once-extensive Bristol brass industry failed appear to have been complex. Political and can still be seen at several sites on the banks of the economic developments of the time contributed to A von and its tri butaries between Bath and Bristol.! varying extents. So too, did the availability of raw They are relics of the production of brass and its materials and good sources of fuel and waterpower, but manufacture which nourished during the eighteenth technical innovation in the smelting of copper, which century to become the most important industry of its was being evolved locally, provided a major component kind in Europe, superseding continental centres of of the initial success.3 It laid foundations for Bristol's similar production. By the close of the century Bristol domination of the industry throughout the greater part itself was challenged by strong competition and the of the eighteenth century. adoption of new techniques in Birmingham, and thereafter suffered a slow decline. Still using its Significantly, it was Abraham Oarby who was eighteenth-century water-powered methods the Bristol responsible as 'active man', together with Quaker industry just managed to survive into the twentieth partners, for launching the Bristol company in 1702. century, finally closing in the 1920s.2 After some five years' experience in employing coal• fired techniques in the non-ferrous metals industry he The factors which gave impetus to the growth
    [Show full text]
  • Samuel Wetherill, Joseph Wharton, and the Founding of the ^American Zinc Industry
    Samuel Wetherill, Joseph Wharton, and the Founding of the ^American Zinc Industry HE TWO people most closely associated with the founding of the zinc industry in the United States were the Philadel- Tphians Samuel Wetherill (i821-1890) and Joseph Wharton (1826-1909). From 1853 to about i860 they variously cooperated and competed with each other in setting up commercially successful plants for making zinc oxide and metallic zinc for the Pennsylvania and Lehigh Zinc Company at South Bethlehem, Pennsylvania. Both did their work in the face of an established and successful zinc industry in Europe. Accordingly, they looked to Europe for standards governing efficiency of production, quality of product, and the arts of management and marketing. They had to surpass at least some of these standards in order to establish the domestic industry on a firm basis. Zinc is a blue to grey metal found in deposits throughout the world. It is used for thousands of products, for example, in the fields of medicine, cosmetics, die casting alloys, galvanizing of iron, paint, rubber, ceramics, plastics, chemicals, and heavy metals. It ranks "only behind aluminum and copper in order of consumption among the nonferrous metals."1 In short, it has from an early stage in the Industrial Revolution been essential to the maintenance and progress of a technological society. The industry has two main branches. One is the manufacture of zinc oxide. The other is the making of metallic zinc or spelter, as it is called in the trade. These industries are relatively new in the western world. Portuguese and Dutch traders brought spelter to Europe from the Orient about the seventeenth century.
    [Show full text]
  • Isomorphous Substitution of Aluminium for Silicon in Tobermoritic Structure
    Isomorphous Substitution of Aluminium for Silicon in Tobermoritic Structure. I. The Mixtures of Different Forms of Silicon Dioxide and of Different Compounds of Aluminium J. PETROVIÖ, V. RUSNÁK and L. ŠTEVULA Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava 9 Received July 2, 1968 The isomorphous substitution of Al(III) for Si(IV) in tobermoritic structure was examined by X-ray phase analysis and DTA. It has been found that the extent of the substitution depends on the materials used. The samples were prepared using different forms of silica-either ^-quartz, quartz-glass, Si02-gel or aerosil. Gibbsite, boehmite, dehydrated kaolinite, kaolinite, corundum and 7-AI2O3 were used as sources of aluminium. The samples were heated in an autoclave at 150, 180 and 200°C for 10, 24 and in some cases for 48 hours. Tobermorite can be synthesized from calcium oxide and silica under hydrothermal conditions. Up to temperatures of about 110°C it is stable, at higher temperatures and under hydrothermal conditions it is formed as an unstable compound. When the reaction is allowed to proceed for a longer time, or when it takes place at higher tem­ perature, another stable calcium hydrosilicate arises. At lower temperature a calcium hydrosilicate with tobermoritic structure is formed. It has been found that tobermori­ te is produced on autoclaving building materials containing lime and some materials with high SÍO2 content. It is also formed from anhydrous dicalcium silicates in the course of setting of cement. Under different conditions, compounds with tobermoritic structure arise which, however, differ in the amount or lime and water in the molecu­ le, as well as in the arrangement of the structure — e.g.
    [Show full text]
  • Absence of Skin Sensitivity to Oxides of Aluminium, Silicon, Titanium Or Zirconium in Patients With
    Gut1996;39:231-233 231 Absence of skin sensitivity to oxides of aluminium, Silicon, titanium or zirconium in patients with Crohn's disease Gut: first published as 10.1136/gut.39.2.231 on 1 August 1996. Downloaded from J C W Lee, S Halpem, D G Lowe, A Forbes, J E Lennard-Jones Abstract obstructive lymphadenopathy. It has been Background-Some metallic compounds, proposed that this is caused by fibrosis of the especially of zirconium, can cause cell afferent lymphatics as a result of absorption of mediated granulomatous inflammation of microparticles of silica and alumino-silicates the skin. Pigment granules containing through the skin where people walk barefoot compounds of aluminium, silicon, and on certain types of soil. Particles containing titanium have been observed within silica, titanium, and aluminium are present in macrophages in the wall of the small microgranulomata within inguinal lymph intestine in health and in Crohn's disease. nodes of sufferers.6 Granulomata also develop Zirconium compounds can be ingested in in response to intradermal injection ofcolloidal toothpaste. silica in healthy subjects but these are foreign Aim-To determine in a pilot study if body granulomata and are clearly distinguish- granulomatous sensitivity can be detected able from the cell mediated response to small to compounds of these metals or silicon quantities of zirconium lactate.7 after injection into the skin of patients As metals and minerals are ubiquitous in the with Crohn's disease. community, a hypersensitivity to these sub- Subjects-Eight patients with Crohn's stances in some people rather than a direct disease known to have had granulomata in toxic effect is the most probable pathogenetic the intestine and not currently treated mechanism by which they may contribute to with corticosteroids, and two healthy disease.
    [Show full text]
  • II/IV B. Tech (Regular) DEGREE Examinationapril'2018
    II/IV B. Tech (Regular) DEGREE EXAMINATIONApril’2018 Mechanical Engineering Casting, Forming and Welding Technology (14 ME 405) Detailed Scheme of Evaluation Max. Marks: 60 -------------------------------------------------------------------------------------------------------------------------------------- 1. Answer all the questions. (2x6=12) (a) Mention any two disadvantages of die casting Answer: 1) All metals and alloys cannot be cast. 2) The cost of machines, dies and other equipment used is high. 3) Not economical for small quantity production. 4) Heavy casting cannot be cast. 5) Special precautions are necessary for evacuation of air from die cavity, otherwise cause porosity. (b) What are the materials that are generally used for preparing patterns? Answer: Patterns may be constructed from the following materials. Each material has its own advantages, limitations, and field of application. Some materials used for making patterns are: wood, metals and alloys, plastic, plaster of Paris, plastic and rubbers, wax, and resins (c) Define the casting yield. Answer: The efficiency, or yield, of a casting is defined as the weight of the casting divided by the weight of the total amount of metal poured (d) What is the most commonly used type of gate? Answer: Horizontal Gating System is used most widely. (e) Specify the advantages of the precision investment casting process. Answer: -Excellent surface finish -High dimensional accuracy -Extremely intricate parts are castable -Almost any metal can be cast -No flash or parting lines (f) How is a semi-permanent mould different from a permanent mould? Answer: In a permanent mold casting there are two molds used and these molds are joined together in which metals are molted when poured in these molds.
    [Show full text]
  • United States Patent [19] [111 3,903,585 Kosteruk Et Al
    United States Patent [19] [111 3,903,585 Kosteruk et al. [45] Sept. 9, 1975 [54] METHOD OF BRAZING 2.9791313 4/l96l Steinberg ....................... .. 29/504 X [761 ‘""emors: vakmi" pe‘mvkh Kosm'uki “msa 520918063 44 [3119231 19 gdulerifeurreta] e . .al. ........v . e . ...t 23:28: i M- Krlvonosa, 19» kv- 5;_Mikhail 3,442,006 5/l969 Grucket et a1...‘ 29/4711 x Savvich Kovalchenko. ulltsa 3,594,895 7/1971 Hill ....................... .. 29/504 x Kapitanovskaya, l0, kv. 20, both of 3,736,648 6/1973 Spielberg ......................... t. 29/4731 Kiev, U.S.S.R. [22] Filed: Ann 27, 1972 Primary Examiner—Francis S. Husar Assistant Examiner—Ronald J. Shore [2]] APPL N03 248,295 Attorney, Agent, or Firm—Waters, Schwartz & Nissen Related U.S. Application Data [63] Continuation of Ser. No. 875,503, Nov. l0, i969, [57] ABSTRACT abandoned‘ lnfusible metal alloys are employed both as a parts I ‘ material and as a brazing spelter for the connection of [52] U.S. Cl. ...... .... .. 75/134 V, 2222880122623, various parts and componems made of materialsrbascd [5 H I ‘ C‘ ‘ 823k suoz upon infusible metals and compounds, ceramics. [58 F’: ‘Id """" 473 1 graphite and the like. The alloys are based upon haf ] e o arc "" " ' ‘29/4729’ 477i 7’ nium to which is added some elements selected from ‘ ' ' the subgroup B of the ?rst group of the periodic sys tem and some elements featuring melting points lying [56] References Cited above 600°C and selected from the third to eighth UNITED STATES PATENTS groups of the periodic system.
    [Show full text]
  • Sintering of Aluminum Powder with Microwave
    ISSN (Online) 2393-8021 ISSN (Print) 2394-1588 IARJSET International Advanced Research Journal in Science, Engineering and Technology Vol. 6, Issue 9, September 2019 Sintering of Aluminum Powder with Microwave Imad ul Iman Chikkodi1 Student, Electronics & Communication, KLE Dr. M.S. Sheshgiri College of Engineering & Technology, Belgaum, India1 Abstract: Sintering or frittage is the process of compacting and forming a solid mass of material by heat or pressure without melting it to the point of liquefaction. Sintering happens naturally in mineral deposits or as a manufacturing process used with metals, ceramics, plastics, and other materials. Sintering happens naturally in mineral deposits or as a manufacturing process used with metals, ceramics, plastics, and other materials. The atoms in the materials diffuse across the boundaries of the particles, fusing the particles together and creating one solid piece. Because the sintering temperature does not have to reach the melting point of the material, sintering is often chosen as the shaping process for materials with extremely high melting points such as tungsten and molybdenum. The study of sintering in metallurgy powder-related processes is known as powder metallurgy. An example of sintering can be observed when ice cubes in a glass of water adhere to each other, which is driven by the temperature difference between the water and the ice. Examples of pressure-driven sintering are the compacting of snowfall to a glacier, or the forming of a hard snowball by pressing loose snow together. Keywords: Sintering, Aluminium, Silicone Carbide, Microwave Sintering I. INTRODUCTION Most, if not all, metals can be sintered. This applies especially to pure metals produced in vacuum which suffer no surface contamination.
    [Show full text]
  • Zinc Transfer from China to Europe Via Trade, Ca. 1600–1800 a Transnational Perspective
    Zinc Transfer from China to Europe via Trade Zinc Transfer from China to Europe via Trade, ca. 1600–1800 A Transnational Perspective BY CHEN HAILIAN Abstract Previous studies of zinc in China and Europe have largely concentrated on issues of the origin of zinc in a specifi c place but have not addressed the connections and relationships produced and used between China and Europe because of zinc. This paper is the fi rst attempt to approach the history of zinc transfer from China to Europe from a transnational perspective. 1 My narra- tive of this zinc transfer goes beyond a classical comparison of two trading patterns modelled on the major factors of transfer. Instead, by viewing trade as a vehicle for moving commodities and transmitting ideas, knowledge and technology, I interpret the transfer of zinc from China to Europe chronologi- cally on two levels: both the physical movement or fl ow of zinc as an object or commodity that was being incorporated into producing a series of new goods, especially in such as imitating golden decorations; and the technology for producing the metal. In order to examine both aspects, I discuss Chinese zinc and European inventions within their larger technological, economic, political, social and cultural contexts and address the following questions: why did the large-scale use of zinc emerge in China? How did Chinese zinc arrive in Europe and how was zinc adopted as a new raw material? Why and how was zinc discovered and produced in Europe? As my fi ndings suggest, the arrival of Chinese zinc in Europe a ballast item led to its adoption in the production of new goods in Europe, for instance being used to produce imitation gold ornaments and toys.
    [Show full text]
  • “Spelter Chills.”
    370 RIESMAX, boles: SPELTER CIIILES “SPELTER CHILLS."1 By David Riesmax, M.D., ASD Russell S. Boles, M.D., I,HILADF.M,jnA. (From the Medical Division of the Philadelphia General Hospital.) In recent years the results obtained from the study of occupational diseases lias been most gratifying. Such a study not only often aids in arriving at an otherwise difficult diagnosis, but as a part of industrial hygiene it has become of great importance in the pre¬ vention of those ills that arc the result of occupation. With this in mind a systematic study of occupational diseases is being made in the medical division of the Philadelphia General Hos¬ pital, and the affection about to be described is one of a number of interesting conditions revealed by this study. “Spelter chills” is the name given to a condition heretofore but briefly described under such varying terms as brass-founders’ ague, brass chills, zinc chills, smelter shakes, das Giesfiebcr or Staubficbcr, and fitivre des fondeurs. We believe the condition results from the inhalation and ingestion of the fumes and flakes of zinc oxide arising from the melting and volatilizing of spelter, which is the commercial name for zinc in its impure state. Spelter chills wc found to be the name popularly employed among the local workmen. The chills occur in brass foundries, in zinc smelters, and in places where zinc is poured. The majority of instances are found in places where yellow brass is manufactured, a process in which a large percentage of zinc is used. The chills do not occur in those engaged in processes in which the zinc is not volatilized.
    [Show full text]
  • Warwick.Ac.Uk/Lib-Publications
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/139891 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications 1 AN INVESTIGATION OF SOME REACTIONS OF ALUMINIUM HYDROBORATE A thesis submitted for the degree of Doctor of Philosophy by David L.S. Shaw, B.Sc. The Department of Molecular Sciences^ University of Warwick 1. CONTENTS gage Contents 1 List of Tables 6 List of Figures 7 Acknowledgements 9 Sum m ary 10 1. Introduction 11 Nomenclature 11 Units 12 Hydroborates - Historical 12 Hydroborates - Properties 13 Hydroborates - Structures 17 Hydroborates - Bonding 21 Hydroborates - Vibrational Spectroscopy 24 Hydroborates - Nuclear Magnetic Spectral Properties 27 Aluminium Hydroborate 32 Preparation 32 Synthetic Reactions using Aluminium Hydroborate - Uses 33 Aluminium Hydroborate - Structure and Bonding 34 Aluminium Hydroborate - Properties 38 Physical Properties 38 Aluminium Hydroborate - Reactions 38 Exchange Reactions and Substituted Products 40 Anionic Aluminium Hydroborate Compounds 46 Adducts of Aluminium Hydroborates 47 Vibrational Spectra of Aluminium Hydroborate 50 Nuclear Magnetic Resonance of Aluminium Hydroborates 55 Decomposition of Aluminium Hydroborate - Hydride Aluminium Hydroborates 6-1 I Contents (continued ) Page Aluminium Hydride 63 Aluminium Alkyls 64 Aluminium and Higher Hydroborate Derivatives - Octahydrotriborates - 65 Trialkyl Boranes( Alkyl Diboranes 68 2.
    [Show full text]
  • Chemistry; Metallurgy
    C01F SECTION C --- CHEMISTRY; METALLURGY C01 INORGANIC CHEMISTRY XXXX C01F C01F XXXX C01F COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS (metal hydrides C01B 6/00; salts of oxyacids of halogens C01B 11/00; peroxides, salts of peroxyacids C01B 15/00; sulfides or polysulfides of magnesium, calcium, strontium, or barium C01B 17/42; thiosulfates, dithionites, polythionates C01B 17/64; compounds containing selenium or tellurium C01B 19/00; binary compounds of nitrogen with metals C01B 21/06; azides C01B 21/08; metal amides C01B 21/092; nitrites C01B 21/50; phosphides C01B 25/08; salts of oxyacids of phosphorus C01B 25/16; carbides C01B 31/30; compounds containing silicon C01B 33/00; compounds containing boron C01B 35/00; compounds having molecular sieve properties but not having base-exchange properties C01B 37/00; compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites, C01B 39/00; cyanides C01C 3/08; salts of cyanic acid C01C 3/14; salts of cyanamide C01C 3/16; thiocyanates C01C 3/20; fermentation or enzyme-using processes for the preparation of elements or inorganic compounds except carbon dioxide C12P 3/00; obtaining metal compounds from mixtures, e.g. ores, which are intermediate compounds in a metallurgical process for obtaining a free metal C22B; production of non-metallic elements or inorganic compounds by electrolysis or electrophoresis C25B) (1) Attention is drawn to Note (1) after class C01, which defines the last place priority rule applied in this class, i.e. in the range of subclasses C01B C01G and within these subclasses.
    [Show full text]