DRIVE PILOT: an Automated Driving System for the Highway Introducing DRIVE PILOT: an Automated Driving System for the Highway Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

DRIVE PILOT: an Automated Driving System for the Highway Introducing DRIVE PILOT: an Automated Driving System for the Highway Table of Contents Introducing DRIVE PILOT: An Automated Driving System for the Highway Introducing DRIVE PILOT: An Automated Driving System for the Highway Table of Contents Introduction 4 Validation Methods 36 Our Vision for Automated Driving 5 Integrated Verification Testing 36 The Safety Heritage of Mercedes-Benz 6 Field Operation Testing 38 Levels of Driving Automation 8 Validation of Environmental Perception and Positioning 40 On the Road to Automated Driving: Virtual On-Road Testing 42 Intelligent World Drive on Five Continents 12 Validation of Driver Interaction 44 Final Customer-Oriented On-Road Validation 44 Functional Description of DRIVE PILOT 14 How does DRIVE PILOT work? 16 Security, Data Policy and Legal Framework 46 Vehicle Cybersecurity 46 General Design Rules of DRIVE PILOT 18 Heritage, Cooperation, Continuous Improvement 47 Operational Design Domain 18 Data Recording 48 Object and Event Detection and Response 20 Federal, State and Local Laws and Regulations 49 Human Machine Interface 23 Consumer Education and Training 50 Fallback and Minimal Risk Condition 25 Conclusion 52 Safety Design Rules 26 Safety Process 28 Crashworthiness 30 During a Crash 32 After a Crash 35 Introduction Ever since Carl Benz invented the automobile in 1886, Mercedes-Benz vehicles proudly bearing the three-pointed star have been setting standards in vehicle safety. Daimler AG, the manufacturer of all Mercedes-Benz vehicles, continues to refine and advance the field of safety in road traffic through the groundbreaking Mercedes-Benz “Intelligent Drive” assistance systems, which are increasingly connected as they set new milestones on the road to fully automated driving. 4 Introduction Our Vision for Automated Driving Mercedes-Benz envisions a future with fewer traffic accidents, less stress, and greater enjoyment and productivity for road travelers. We are working to achieve this vision through automation, electrification and connectivity. Automation is one of the biggest drivers of change in the transportation sector today – with the potential to make mobility safer for all, while reducing traffic congestion. Thanks to automated driving, a vehicle can also be a private retreat that enables us to use at least some of our time on the move as we wish. Introduction 5 The Safety Heritage PRE-SAFE® PLUS of Mercedes-Benz Collision Prevention Assist DISTRONIC PLUS with Steering Assist and Stop & Go function ATTENTION ASSIST Active Brake Assist standard with pedestrian protection Active Lane Keeping Assist Active Brake Assist Active Blind Spot Assist with cross-traffic function with congestion emergency braking function Blind Spot Assist Evasive Steering Assist Mercedes-Benz can proudly point to decades of Active Lane Change Assist PRE-SAFE® Brake innovation in automotive safety systems, many of which Active Emergency Stop Assist are now standard equipment on vehicles across the ABS Brake Assist System BAS PLUS Active Speed Limit Assist industry. The figure below shows the timeline of safety Car-to-X Communication systems introduced on Mercedes-Benz vehicles. It ranges from the introduction of the Crumple Zone in Intelligent Light System Rear Cross-Traffic Assist 1959 to current systems that can reduce the risk of Route based speed adjustment ® DISTRONIC inner ear injuries: The PRE-SAFE Sound feature emits Vehicle exit warning function a short interference signal via the sound system in the Brake Assist System vehicle when there is a risk of collision. This can condi- Active Stop-and-Go Assist tion the passengers’ hearing by triggering a reflex in ASR Turning maneuver function the ears, and thus lessen the risk of hearing discomfort ESP End of traffic jam function or damage. ACTIVE SAFETY FUTURE PASSIVE SAFETY 1950 1960 1970 1980 1990 2000 2010 2016 2018 2020 2030 Safety steering column Active PRE-SAFE Impulse Side Bonnet PRE-SAFE Sound Airbag Sidebag PRE-SAFE Impulse Crumple Zone Belt Tensioner Beltbag PRE-SAFE Active Buckle Lifter Automatic Rollover Bar NECK-PRO Head Restraint 6 Introduction PRE-SAFE® PLUS Collision Prevention Assist DISTRONIC PLUS with Steering Assist and Stop & Go function ATTENTION ASSIST Active Brake Assist standard with pedestrian protection Active Lane Keeping Assist Active Brake Assist Active Blind Spot Assist with cross-traffic function with congestion emergency braking function Blind Spot Assist Evasive Steering Assist Active Lane Change Assist PRE-SAFE® Brake Active Emergency Stop Assist ABS Brake Assist System BAS PLUS Active Speed Limit Assist Car-to-X Communication Intelligent Light System Rear Cross-Traffic Assist DISTRONIC Route based speed adjustment Vehicle exit warning function Brake Assist System Active Stop-and-Go Assist ASR Turning maneuver function ESP End of traffic jam function ACTIVE SAFETY FUTURE PASSIVE SAFETY 1950 1960 1970 1980 1990 2000 2010 2016 2018 2020 2030 Safety steering column Active PRE-SAFE Impulse Side Bonnet PRE-SAFE Sound Airbag Sidebag PRE-SAFE Impulse Crumple Zone Belt Tensioner Beltbag PRE-SAFE Active Buckle Lifter Automatic Rollover Bar NECK-PRO Head Restraint Introduction 7 Levels of Driving Automation In order to better understand the capabilities of the In addition to offering a wide range of Level 0 warning We also offer a Level 1 steering assistance feature next generation of Mercedes-Benz automated driving and active safety features (many of them are standard called Active Steering Assist that, when engaged, will technologies, it’s helpful to begin with an explanation equipment on Mercedes-Benz vehicles), as of the publica- help the driver maintain the vehicle’s position within of the differences in the Levels of Driving Automation. tion of this document in February, 2019, Mercedes-Benz its lane of travel. However, similar to the Active Distance vehicles offer Level 1 and Level 2 driving automation Assist DISTRONIC feature, Active Steering Assist is SAE International (SAE) is a technical standards devel- features. These assistance features support the driver’s not able to handle all traffic situations and thus requires opment organization that leverages the professional operation of the vehicle but do not replace him or her. an alert and engaged human driver to supervise the expertise of its engineering members in the automotive We offer, for example, a Level 1 adaptive cruise control feature’s performance and to steer as needed to main- industry to develop consensus-based Standards, Re- feature called Active Distance Assist DISTRONIC. tain safe operation of the vehicle. Active Steering commended Practices, and Information Reports. Among It automatically maintains desired following distance to Assist can only be activated in conjunction with Active the many technical documents published by SAE is one a vehicle ahead in the same lane. While engaged, Active Distance Assist DISTRONIC. When both of these describing six levels of driving automation (Levels 0 – 5)1, Distance Assist DISTRONIC will automatically brake and Level 1 driving automation features are active they consti- along with supporting terms and definitions. This tax- accelerate the vehicle under normal operating condi- tute a Level 2 driver support feature. This Level 2 onomy classifies driving automation system features (or tions. However, it is not able to handle all traffic situations, feature automates braking, accelerating, and steering vehicles, in some cases) in terms of the degree to and thus requires an alert and attentive human driver under normal conditions, while still requiring an alert which they replace human operation of vehicles in traffic. to supervise the feature’s performance and to brake or and attentive human driver to supervise the vehicle’s accelerate if needed, as well as to steer the vehicle. performance in real time – to manually steer, brake, The chart on the following page from SAE describes those and/or accelerate as needed to maintain safe operation. six Levels in simplified terms to assist non-automotive Mercedes-Benz also offers a Level 2 Active Parking engineers in understanding how driving automation fea- Assist feature that will automatically park the vehicle tures (or vehicles designed to be operated exclusively while the driver supervises the parking maneuver. by an Automated Driving System rather than a human driver) are classified within the Levels. 1J3016 – Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (June 2018) 8 Introduction SAE J3016TM LEVELS OF DRIVING AUTOMATION LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5 What does the You are driving whenever these driver support features You are not driving when these automated driving human in the are engaged – even if your feet are off the pedals and features are engaged – even if you are seated in driver’s seat you are not steering “the driver’s seat” have to do? You must constantly supervise these support When the feature These automated driving features features; you must steer, brake or accelerate requests, will not require you to take as needed to maintain safety over driving you must drive These are driver support features These are automated driving features What do these These features These features These features These features can drive the vehicle This feature features do? are limited provide steering provide steering under limited conditions and will can drive the to providing OR brake/ AND brake/ not operate unless all required vehicle under warnings and acceleration acceleration conditions are met all conditions momentary support to support to assistance the driver the
Recommended publications
  • Lives Saved Calculations for Seat Belts and Frontal Air Bags This Publication Is Distributed by the U.S
    DOT HS 811 206 December 2009 Lives Saved Calculations for Seat Belts and Frontal Air Bags This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 811 206 4. Title and Subtitle 5. Report Date Lives Saved Calculations for Seat Belts and Frontal Air Bags December 2009 6. Performing Organization Code NVS-421 7. Author(s) 8. Performing Organization Report No. Glassbrenner, Donna, Ph.D., and Starnes, Marc 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Mathematical Analysis Division, National Center for Statistics and Analysis National Highway Traffic Safety Administration 11. Contract or Grant No. NVS-421, 1200 New Jersey Avenue SE. Washington, DC 20590 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Mathematical Analysis Division, National Center for Statistics and Analysis NHTSA Technical Report National Highway Traffic Safety Administration NVS-421, 1200 New Jersey Avenue SE. 14.
    [Show full text]
  • SAE International® PROGRESS in TECHNOLOGY SERIES Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015
    Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Connectivity and the Mobility Industry Edited by Dr. Andrew Brown, Jr. SAE International® PROGRESS IN TECHNOLOGY SERIES Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Connectivity and the Mobility Industry Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Other SAE books of interest: Green Technologies and the Mobility Industry By Dr. Andrew Brown, Jr. (Product Code: PT-146) Active Safety and the Mobility Industry By Dr. Andrew Brown, Jr. (Product Code: PT-147) Automotive 2030 – North America By Bruce Morey (Product Code: T-127) Multiplexed Networks for Embedded Systems By Dominique Paret (Product Code: R-385) For more information or to order a book, contact SAE International at 400 Commonwealth Drive, Warrendale, PA 15096-0001, USA phone 877-606-7323 (U.S. and Canada) or 724-776-4970 (outside U.S. and Canada); fax 724-776-0790; e-mail [email protected]; website http://store.sae.org. Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 Connectivity and the Mobility Industry By Dr. Andrew Brown, Jr. Warrendale, Pennsylvania, USA Copyright © 2011 SAE International. eISBN: 978-0-7680-7461-1 Downloaded from SAE International by Eric Anderson, Thursday, September 10, 2015 400 Commonwealth Drive Warrendale, PA 15096-0001 USA E-mail: [email protected] Phone: 877-606-7323 (inside USA and Canada) 724-776-4970 (outside USA) Fax: 724-776-0790 Copyright © 2011 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, distributed, or transmitted, in any form or by any means without the prior written permission of SAE.
    [Show full text]
  • Global Autonomous Driving Market Outlook, 2018
    Global Autonomous Driving Market Outlook, 2018 The Global Autonomous Driving Market is Expected Grow up to $173.15 B by 2030, with Shared Mobility Services Contributing to 65.31% Global Automotive & Transportation Research Team at Frost & Sullivan K24A-18 March 2018 Contents Section Slide Number Executive Summary 7 2017 Key Highlights 8 Leading Players in terms of AD Patents Filed in 2017 10 Sensors Currently Used Across Applications 11 Next Generations of Sensor Fusion 12 Future Approach in Hardware and Software toward L5 Automation 13 Level 3 Automated Vehicles—What could be new? 14 2018 Top 5 Predictions 15 Research Scope and Segmentation 16 Research Scope 17 Vehicle Segmentation 18 Market Definition—Rise of Automation 19 Key Questions this Study will Answer 20 Impact of Autonomous Vehicles Driving Development of Vital Facets in 21 Business and Technology K24A-18 2 Contents (continued) Section Slide Number Transformational Impact of Automation on the Industry 22 Impact on the Development of Next-Generation Depth Sensing 23 Impact on Ownership and User-ship Structures 24 Impact of Autonomous Driving on Future Vehicle Design 25 Impact of Investments on Technology Development 26 Major Market and Technology Trends in Automated Driving—2018 27 Top Trends Driving the Autonomous Driving Market—2018 28 Market Trends 29 1. Autonomous Shared Mobility Solutions 30 Case Study—Waymo 31 2. Collective Intelligence for Fleet Management 32 Case Study—BestMile 33 3. Cyber Security of Autonomous Cars 34 Case Study—Karamba Security 35 K24A-18 3 Contents (continued) Section Slide Number Technology Trends 36 1. Convergence of Artificial Intelligence and Automated Driving 37 Case Study—Mobileye 38 2.
    [Show full text]
  • Towards a Viable Autonomous Driving Research Platform
    Towards a Viable Autonomous Driving Research Platform Junqing Wei, Jarrod M. Snider, Junsung Kim, John M. Dolan, Raj Rajkumar and Bakhtiar Litkouhi Abstract— We present an autonomous driving research vehi- cle with minimal appearance modifications that is capable of a wide range of autonomous and intelligent behaviors, including smooth and comfortable trajectory generation and following; lane keeping and lane changing; intersection handling with or without V2I and V2V; and pedestrian, bicyclist, and workzone detection. Safety and reliability features include a fault-tolerant computing system; smooth and intuitive autonomous-manual switching; and the ability to fully disengage and power down the drive-by-wire and computing system upon E-stop. The vehicle has been tested extensively on both a closed test field and public roads. I. INTRODUCTION Fig. 1: The CMU autonomous vehicle research platform in Imagining autonomous passenger cars in mass production road test has been difficult for many years. Reliability, safety, cost, appearance and social acceptance are only a few of the legitimate concerns. Advances in state-of-the-art software with simple driving scenarios, including distance keeping, and sensing have afforded great improvements in reliability lane changing and intersection handling [14], [6], [3], [12]. and safe operation of autonomous vehicles in real-world The NAVLAB project at Carnegie Mellon University conditions. As autonomous driving technologies make the (CMU) has built a series of experimental platforms since transition from laboratories to the real world, so must the the 1990s which are able to run autonomously on freeways vehicle platforms used to test and develop them. The next [13], but they can only drive within a single lane.
    [Show full text]
  • Technologies for the Prevention of Run Off Road and Low Overlap Head-On Collisions
    TECHNOLOGIES FOR THE PREVENTION OF RUN OFF ROAD AND LOW OVERLAP HEAD-ON COLLISIONS Colin, Grover Matthew, Avery Thatcham Research UK Iain, Knight Apollo Vehicle Safety Limited UK Paper Number 15-0351 INTRODUCTION A substantial number of serious collisions occur when a vehicle: • Runs off the edge of the road way and collides with roadside furniture such as trees; and • Crosses the centre line of the road and collides head-on with an oncoming vehicle. A proportion of these are very likely to be caused by some form of inattention and/or distraction and several new technologies have been introduced into the market with the intention of preventing these crashes. Actions to promote the fitment of “lateral assist” systems are included within the Euro NCAP programme (Euro NCAP, 2014): • Lane Keep Assist Test and Assesment Procedure for the 2016 rating scheme • Advanced Lateral Support System Test and Assessment Procedure for 2018 rating scheme. The aim of this research was to: • Analyse the frequency and severity of relevant collisions in order to understand the potential impact of lateral control technologies • Characterise crashes to inform the development of performance criteria that will be relevant to the real world • Undertake initial research to explore the capability of different technologies • Investigate the potential of candidate test procedures that could form part of future assessments. LATERAL ASSIST TECHNOLOGIES A wide range of lateral assist technologies have been developed and put into production since the beginning of the 21st century. These include blind spot monitoring systems but these have not been considered in-depth in this paper because they are intended to be of benefit in crashes that occur during deliberate lane changes rather than crashes that occur because of unintended departure from the lane or road.
    [Show full text]
  • Holistic Approach for Vehicle Safety at Mercedes-Benz
    Alternating between white and black slide layouts via menu bar: Reset the slide back to its Change the slide layout via menu bar: Holistic Approach for Vehicle Safety at Mercedes-Benz Per Lewerenz, Mercedes Benz AG, RD/KSF, VET 2019 Agenda 1. History of Vehicle Safety 2. The Integral Safety Strategy History of Road Accidents Vehicle Safety| Per Lewerenz | Nov 2019 3 Safety Aspects of the Benz Patent Motor Car from 1886 • Comfortable and safe • Easier and safer to operate compared to horse buggies Vehicle Safety| Per Lewerenz | Nov 2019 4 Mercedes-Benz – The Cradle of Vehicle Safety More than 75 Years of Experience in Passenger-Car Safety Development 1939 The „Father of Passive Safety“, Béla Barényi, was employed by Daimler-Benz. 1959 Crumple Zone, Rigid Passenger Cell and Interior Paddings were implemented in series production for the first time. Vehicle Safety| Per Lewerenz | Nov 2019 5 Mercedes-Benz – The Cradle of Vehicle Safety .1959 Crumple Zone . 1978 ABS .1980 Airbag, Belt Tensioner .1989 Automatic Rollover Bar .1995 ESP®, Sidebag .1996 Brake Assist .1997 Sandwich Concept .1998 Windowbag, Adaptive Front Airbag .2002 PRE-SAFE® .2003 Active Light Function .2005 Adaptive Brake Lights, Brake Assist PLUS, NECK-PRO Head Restraint .2006 PRE-SAFE ® Brake, Intelligent Light System .2007 Blind Spot Assist .2008 Reversible Active Bonnet .2009 Attention Assist, Self-Adaptive Belt Force Limiter .2013 PRE-SAFE® Impulse, Beltbag, Active Buckle Lifter .2016 PRE-SAFE® Sound, PRE-SAFE® Impulse Side Vehicle Safety| Per Lewerenz | Nov 2019 6 International
    [Show full text]
  • The Future of Automated Vehicles and Assert That a Certain Kind of Vehicle Is Likely to Succeed, E.G
    The Future of vehicles Automated Vehicles Scenarios for automated vehicles and the consequences for mobility, safety and the environment Bachelor thesis Anne van der Veen - S2322668 - University of Groningen - 2015 Abstract In the last decade, automation has entered the realm of vehicles. The automated vehicles that are being developed will have a large impact on the transportation network, which in turn impacts mobility. To prepare for what’s to come it is vital to get an understanding of what the future might look like. Because the technology is still in an early stage, it can develop in numerous wildly different directions. This research assesses these different directions by looking at what kind of automated vehicles are likely to occur. These vehicle types are defined using two key factors: the level of automation (full / limited automation) and the kind of mobility the vehicle provides (personal / on-demand / centralized). It does not look at the status quo but only at the future, which is why non-automated vehicles are not within the scope of this research. This results in six categories of automated vehicles. The impact of each automated vehicle on the transportation network and on mobility is assessed using scenarios and the assumption that that vehicle type becomes dominant. Using multiple expert interviews, these scenarios are explored. The result is that the impact of automated vehicles is very dependent on the kind of vehicle, that the impacts are complex and rather difficult to predict and that efficiency and that safety are greatly impacted because of these technological advancements. University of Groningen - Thesis A.
    [Show full text]
  • A Study on Tesla Autopilot
    INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689 Issue 171, Volume 71, Number 01, May 2020 A Study on Tesla Autopilot K. Nived Maanyu1, D Goutham Raj2, R Vamsi Krishna3, Dr. Shruthi Bhargava Choubey4 Dept. of ECE, Sreenidhi Institute of Science And Technology, Hyderabad, India Abstract— Tesla Autopilot may well be a refined driver- Enhanced Autopilot has the following partial self- assistance system feature offered by Tesla that has lane driving abilities: automatically change lanes without centering, adaptative controller, self-parking, the power to requiring driver input, the transition from one freeway to mechanically modification lanes, and jointly the flexibleness to another, exit the freeway when your destination is near and summon the automobile to and from a garage or parking spot. more.[21] As an upgrade to the base Autopilot's capabilities, the company's stated intent is to offer full self-driving (FSD) at a Autopilot for HW2 cars came in February 2017. It future time, acknowledging that legal, regulatory, and technical enclosed an adaptative controller, autosteer on divided [1] hurdles must be overcome to achieve this goal. highways, autosteer on 'local roads’ up to a speed of 35 I. INTRODUCTION mph or a specified number of mph over the local speed limit to a maximum of 45 mph.[22] Firmware version 8.1 Autopilot was 1st offered on Oct nine, 2014, for Tesla for HW2 arrived in June 2017 adding a new driving-assist Model S, followed by the Model X upon its release.[3] algorithm, full-speed braking and handling parallel and Autopilot was included within a "Tech Package" option.
    [Show full text]
  • 2021 Sequoia-SR5 Sequoia-SR5 4WD 5.7L V8 6-Speed Automatic
    Toyota of Gladstone 19375 SE McLoughlin Blvd. Gladstone OR 97027 503-722-4800 2021 Sequoia-SR5 Sequoia-SR5 4WD 5.7L V8 6-Speed Automatic Model: 7919E VIN: 5TDAY5B13MS186054 Stock: T13995 Engine: 5.7L-V8 Engine Transmission: 6-Speed-Automatic Transmission EXTERIOR INTERIOR Celestial-Silver Metallic Graphite-Leather FUEL ECONOMY PRICE Vehicle Base Model $53,625.00 Total Installed Packages & Accessories $4,698.00 MPG 13MPG 17MPG Delivery Processing and Handling $1,365.00 14 COMBINED CITY HIGHWAY Total MSRP* $59,688.00 INSTALLED PACKAGES & ACCESSORIES 50-State Emissions $0.00 Premium-Package $4,325.00 Premium-Package: includes 8-passenger leather-trimmed seats; heated 10-way power-adjustable driver's seat and 6- way power-adjustable front passenger seat; power reclining and fold-fat third-row seating; Premium Audio with Dynamic Navigation with up to 3-year trial, dynamic auto-dimming rearview mirror with compass and HomeLink® universal transceiver. All-Weather-Floor Liners/ All-Weather Cargo Mat / Door Sill Protector $373.00 All-Weather-Liners, All-Weather Cargo Mat & Door Sill protectors. PREFERRED-OWNER'S PORTFOLIO $0.00 Total Optional Equipment $4,698.00 Vehicle Base Model $53,625.00 Delivery Processing and Handling $1,365.00 FEATURES Mechanical & Performance Engine:-5.7-Liter i-FORCE V8 DOHC 32-Valve with Dual Emission-rating: California Air Resources Board (CARB) Emission Independent Variable Valve Timing with intelligence (VVT-i); 381 Standard: Low Emission Vehicle (LEV) III, Ultra Low Emission hp @ 5600 rpm; 401 lb.-ft. @ 3600 rpm
    [Show full text]
  • Testimony of Daniel Hinkle for the American Association for Justice
    Testimony of Daniel Hinkle for the American Association for Justice Autonomous Vehicles: Promises and Challenges of Evolving Automotive Technologies February 11, 2020 House Energy and Commerce Committee Good afternoon Chairwoman Schakowsky, Ranking Member McMorris, and members of the Committee. My name is Daniel Hinkle, and I am the Senior State Affairs Counsel for the American Association for Justice (“AAJ”). Thank you for the invitation to testify about automated driving. AAJ, the world’s largest trial bar with members in the U.S., Canada, and abroad, was established to safeguard victims’ and survivors’ rights, strengthen the civil justice system, promote injury prevention, and foster public safety. And as representatives for those injured, and those who may be injured by automated driving now and in the future, we are honored by the opportunity to work with this committee as it develops legislation that will protect and empower the public while promoting the safe deployment of this emerging technology. In my current capacity as AAJ’s Senior State Affairs Counsel, I have had the privilege of working on automated driving legislation at the state and federal levels over the last five years. I was an observer on the Uniform Law Commission’s Uniform Automated Operations of Vehicles drafting committee. I have given dozens of presentations across the country and collaborated with countless experts in a quest to better understand the technology behind this emerging phenomenon. AAJ believes that in order to best protect the public while fostering safety as well as innovation, any federal legislation designed to regulate automated vehicles must preserve: the traditional role of the states in ensuring safety on the roads, access to the courts under state laws for injured persons and damaged property, and the ability to access relevant information necessary to pursue such claims.
    [Show full text]
  • RESULTS RESULTS RESULTS DISCUSSION Human Factors of Advanced Driver Assistance Systems DEMOGRAPHICS Contact Information
    Contact Information Know It By Name: Human Factors of ADAS Design Kelly Funkhouser University of Utah Graduate Student Kelly Funkhouser, Elise Tanner, & Frank Drews [email protected] https://www.linkedin.com/in/kelly-funkhouser/ Human Factors of Advanced Driver RESULTS RESULTS RESULTS DISCUSSION Assistance Systems Terminology in Current Consumer Vehicles Participants ranked their trust in each of Terminology Terms non-owners chose to describe features the SAE Levels of Automation Terminology Scale -5 (Do Not Trust) to +5 (Completely Trust) ADAS Features Human Factors Principles for ADAS Design: Misinterpretation resulting from ambiguous terminology remains a Findings There were no significant differences between pressing concern in the design of novel technology. The National Active Active Active Reactive Warning Warning Levels 0-4 ● Use driver chosen terminology Reactive Function ● Use descriptive terminology Highway Traffic Safety Administration (NHTSA) suggests Function Function Function Function Alert Alert There was a significant difference between Levels 4 and 5 ● Do not use words that have prior connotations or meanings manufacturers of highly automated vehicles follow Human Factors Both continuously and Systems-Engineering principles during the design and validation keeps centered t(35) = 3.01, p < 0.01 ● Use standardized/consistent/common terminology Continuously Nudges back into lane when Gives signal when car is Gives signal when Moves the car back into processes to reduce known safety risks. As novel automation between lane lines Adjusts speed/distance keeps centered your car is crossing over crossing over lane another car is lane if another car is and adjusts from car in front Recommended Terminology: technologies emerge in the automobile industry, new system designs between lane lines lane marker marker occupying blind spot occupying blind spot Participants rated their trust in societal speed/distance and terminology are introduced.
    [Show full text]
  • A Behavioural Lens on Transportation Systems: the Psychology of Commuter Behaviour and Transportation Choices
    A Behavioural Lens on Transportation Systems: The Psychology of Commuter Behaviour and Transportation Choices Kim Ly, Saurabh Sati, and Erica Singer, and Dilip Soman Research Paper originally prepared for the Regional Municipality of York Region 22 March 2017 Research Report Series Behavioural Economics in Action, Rotman School of Management University of Toronto 2 Correspondence and Acknowledgements For questions and enquiries, please contact: Professors Dilip Soman or Nina Mažar Rotman School of Management University of Toronto 105 St. George Street Toronto, ON M5S 3E6 Email: [email protected] or [email protected] Phone Number: (416) 946-0195 We thank the Regional Municipality of York Region for support, Philip Afèche, Eric Miller, Birsen Donmez, Tim Chen, and Liz Kang for insights, comments, and discussions. All errors are our own. 3 Table of Contents Executive Summary ...................................................................................................... 6 1. Introduction ............................................................................................................. 7 2. The Impact of Path Characteristics on Travel Choices ....................................... 9 2.1 Hassle factors – Mental effort and Commuter Orientation ................................... 11 2.2 Perceived Progress towards a Destination ............................................................... 14 2.3 Physical Environment Surrounding the Travel path and The Effect on The Commuter ...............................................................................................................................
    [Show full text]