<<

UNIVERSITYOFNOVAGORICA GRADUATESCHOOL

COLLECTION,ANALYSISANDCHARACTERIZATIONOF PARTICULATEMATTERDEPOSITIONINANDAROUND MASTER'STHESIS

GregorJereb

Mentor/s: Professordr.SidneyA.Katz AssistantProfessordr.BorutPoljšak

NovaGorica,2010 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

II JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

ABSTRACT Air pollution with particulate matter is a serious environmentalhealth problem. For many yearstheinhabitantsinthevicinityofthePortofKoper(Sloveniancoast)havebeenpointing outtheproblemofthepollutionoftheirresidentialareawithemissionsfromtheterminalEET in the Port of Koper. The research described in this thesis was undertaken to identify the particulatematterdepositionandtoestimatetheinfluenceofthePortofKoperonthetotal dustdepositioninthesurroundingarea.Sixsamplingsiteswereusedduringthepreliminary studyof2005/06,andduring2007/08studytensamplingsiteswereplacedaroundthePortof Koper. During study of 2005/06 (preliminary study) high values of particulate matter deposition were observed, the limiting value was exceeded 11 times, the highest value exceededthelimitingvalueby12times.Duringthestudyof2007/08,monthlyparticulate matterdepositionwasconsiderablyloweranddidnotexceedtherecommendedvaluesatany of the sampling sites. Samples were analyzed gravimetrically, content of individual metals was determined, gammaray emitter's activity of coal and iron ore was measured, particles were examined using electron microscopy, and the ratio of stable carbon isotopes was measured. For a quick screening of the polluted environment, a new device for quick estimation of direction and quantity of airborne particulate matter and therefore determination/estimationofthemainemissionsourcesofdustparticlesintheobservedarea wasdeveloped. Basedontheanalysisofsamplesusing electron microscopy coal particles weredetectedandthereforedustdepositioncanbeattributedtoactivityintheEETinPortof Koper.Alsoaccordingtotheresultsofalternativesamplingdevice,thePortofKoperisone ofthesourcesofdustparticlesinthestudyarea.Lowvaluesofparticulatematterdeposition duringstudy2007/08couldbeattributedtotheintroductionofpreventivemeasures(bythe PortofKoper)andmildweatherconditions(lowwindspeedandhumidityoftheterrain). Keywords: airpollution,particulatematterdeposition,portactivities,coalandironore

III JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

POVZETEK Onesnaženostzrakasprašnimidelcijeresenokoljskiinzdravstveniproblem.Prebivalciv okoliciLukeKoper(slovenskaobala)ževrstoletopozarjajonaproblememisijprašnihdelcev sterminalazarazsutetovore(EET)vLukiKopervnjihovookolje.Predstavljenaraziskavase je izvedla z namenom ugotavljanja razsežnosti problema in definiranjem doprinosa Luke Koperkcelotnimasiprašneusedlinenaopazovanemobmočju.Vpreliminarnoštudijojebilo vključenih 6, v študijo 2007/08 pa 10 vzorčevalnih mest. V obdobju preliminarne študije (2005/06) so bile izmerjene vrednosti prašne usedline visoke, mejna vrednost je bila presežena11krat,najvišjavrednostjemejnopresegalaza12krat.Vobdobju2007/08sobile vrednosti zbrane prašne usedline nizke in niso v nobenem primeru presegle priporočenih vrednosti. Vzorci so bili analizirani gravimetrično, določena je bila vsebnost kovin v posameznemvzorcu,izmerjenaaktivnostsevalcevgamavpremoguinželezovirudi,izvedena je bila analiza z uporabo elektronskega mikroskopa, merjeno je bilo razmerje stabilnih izotopovogljika.Razvitajebilanovanapravazadoločanjehitreocenesmerirazširjanjater ocenekoličinelebdečihdelcevinstemidentifikacijoglavnihemisijskihvirovnaopazovanem območju.Zuporaboelektronskegamikroskopasmovvzorcihprašneusedlinedokazalimed ostalimidelciprisotnostpremoga,sčimersmo dokazali povezavo med prašno usedlino in dejavnostjonaterminaluEETvLukiKoper.Tudirezultatiuporabealternativnihmerilnikov kažejonaLukoKoperkotnaenegaodvirovprašnihdelcevvokolju.Zmanjšanjevrednosti prašneusedlinevobdobju2007/08papripisujemouvedbipreventivnihukrepov(sstraniLuke Koper) in ugodnim vremenskim razmeram (nizke jakosti vetra in vlažnost terena) v času opazovanja. Ključne besede: onesnaženostzraka,prašnausedlina,luškadejavnost,premoginželezova ruda

IV JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

ABBREVIATIONS ACGIHAmericanConferenceofGovernmentalIndustrialHygienists AEDAerodynamicEquivalentDiameter ARSOEnvironmentAgencyoftheRepublicof=AgencijaRepublikeSlovenijeza okolje CENTheEuropeanCommitteeforStandardization=ComitéEuropéendeNormalisation DINDeutschesInstitutfürNormung(GermanInstituteforStandardization) DNADeoxyribonucleicacid EETEuropeanEnergyTerminal EIMVMilanVidmarElectricPowerResearchInstitute=ElektroinštitutMilanVidmar EPAEnvironmentalProtectionAgency(USA) IARCInternationalAgencyforResearchonCancer(WHO) IJSJožefStefanInstitute=InštitutJožefStefan ISOInternationalOrganizationforStandardization MOP Ministry of the Environment and Spatial Planning of the Republic of Slovenia = MinistrstvozaokoljeinprostorRepublikeSlovenije PAHPolycyclicAromaticHydrocarbons PINT Primorska Institute of Natural Sciences and Technology = Primorski inštitut za naravoslovneintehničnevede PMParticulateMatter PM 10 Particulateswithanaerodynamicdiametersmallerthanorequalto10m PM 2,5 Particulateswithanaerodynamicdiametersmallerthanorequalto2,5m ROSReactiveOxygenSpecies SEM/EDXSScanningElectronMicrosopy/EnergyDispersiveXraySpectroscopy TSPTotalSuspendedParticles VDIAssociationofGermanEngineers=VereinDeutscherIngenieure WHOWorldHealthOrganization WTCWorldTradeCenter

V JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

TABLEOFCONTENTS ABSTRACT ...... III POVZETEK ...... IV ABBREVIATIONS...... V TABLEOFCONTENTS ...... VI INDEXOFtables ...... IX INDEXOFfigures ...... X 1INTRODUCTION...... 1 1.1PortofKoperanditsactivitiesatEET ...... 2 1.2Inhabitantsinnearbyresidentialareaandtheirperceptionsofdustemissions ...... 5 1.3Particlesinairandtheirinfluenceonhealth...... 7 1.4ParticulatematterPM ...... 11 1.5Particlesamplingandmethodofanalysis...... 17 1.6Legislation...... 19 1.6.1LegislationregardingambientairqualityinSlovenia...... 20 1.6.2EUlegislation ...... 21 2PURPOSEOFTHESTUDY ...... 24 3MATERIALSANDMETHODS ...... 26 3.1Timeschedule ...... 26 3.2Descriptionandlocationofthesamplingsites ...... 26 3.3Collectionofparticulatematterdeposition...... 32 3.4Gravimetricanalysis ...... 35 3.5Preparationoftheannualsamplesfordifferentanalysisfiltersprocessing ...... 36 3.6Identificationofpossiblehealthrisks ...... 37 3.6.1Chemicalanalysisofselectedmetalsindepositedmatter...... 37 3.6.2Gammarayemitteractivitymeasurementsincoalandironoresamples...... 39 3.7ApplicationofSEM/EDXS(ScanningElectronMicrosopy/Energy DispersiveXray Spectroscopy)...... 40 3.8Theratioofcarbonisotopes 13 C/ 12 Cmeasurementinthesample ...... 44 3.9Alternativemethodforquickestimationofdirectionandquantityofparticulatematter depositionandimpactionparticlescounting ...... 46 4RESULTS...... 50 4.1Resultsofpreliminarystudy(15 th October200515 th October2006)...... 50 4.1.1GravimetricanalysisofparticulatematterdepositionsamplingsiteA...... 50 4.1.2GravimetricanalysisofparticulatematterdepositionsamplingsiteB...... 52 4.1.3Particulatematterdepositioncalculatedyearlyresults ...... 54

VI JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4.1.4ComparisonamongsamplingdeviceAandBoneachsamplingsites...... 55 4.1.5Meteorologicaldataforthetimeperiodfrom15.10.2005to15.10.2006...... 57 4.1.6 Correlation among strength and direction of the wind and the particulate matter deposition ...... 59 4.1.8Comparisonamongparticulatematterdepositionandcoalandironoremanipulation atEEToneachsamplingsite...... 61 4.1.8InfluenceofdistancefromtheEETdepotonamountofparticulatematterdeposition ...... 65 4.1.9.Chemicalanalyzes...... 67 4.1.9.1Chemicalanalysisofcoal,ironoreandsoil ...... 67 4.1.9.2Chemicalanalysisofdifferentmetalsindepositedmatter(Annualsample)...... 68 4.1.9.3Thecontentofironinsamplesfrom15.5.to15.6.2006 ...... 69 4.1.9.4Determinationofsamplesignitionresidue ...... 69 4.1.10Resultsofgammarayemitter'sactivitymeasurementsofironore,coalandsample ofsoil...... 70 4.1.11Resultsofelectronmicroscopy ...... 72 4.2.Resultsofstudyfrom1 st December200730 th November2008 ...... 80 4.2.1Gravimetricanalysesofparticulatematterdepositionmeasurementintervaltwice permonth ...... 80 4.2.2Particulatematterdepositiontrendatvarioussamplingsites...... 89 4.2.2Gravimetricalanalysesofparticulatematterdepositioncalculatedmonthlyresults ...... 92 4.2.4Chemicalanalysisofdifferentmetalsindepositedmatter(Annualsample)...... 95 4.2.5Thecarbonisotopes 13 C/ 12 Cratioresults...... 97 4.2.6ComparisonbetweensamplingdeviceAandBoneachsamplingsites ...... 99 4.2.7 Correlation between particulate matter deposition and coal and iron ore manipulationatEET ...... 104 4.2.7.1 Correlation between particulate matter deposition and coal and iron ore manipulationatEEToneachsamplingsite...... 105 4.2.8Meteorologicaldatafortheperiodfrom1.12.2007to30.11.2008...... 109 4.2.8.1Dailytemperaturesandamountofprecipitation...... 110 4.2.8.2Speedanddirectionofwinds ...... 111 4.2.9Resultsofelectronmicroscopy ...... 115 4.2.9.1Identificationofparticlesregardingmorphologyandchemicalcomposition .....115 VII JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 4.2.9.2Quantificationofparticlescollectedintheannualsample...... 118 4.2.10Theresultsofalternativemethodfortheparticlesmonitoringsamplingdevice type1(theball)particlecounting...... 122 4.2.10.1Visualperception...... 122 4.2.10.2Manualcounting...... 124 4.2.10.3Computersoftware(IT3,0)counting...... 129 4.2.10.4Comparisonofbothcountingmethods...... 130 4.2.10.5Identificationofparticlesregardingmorphologyandchemicalcompositionusing SEM/EDXS ...... 132 5DISCUSSION ...... 133 5.1Legislation...... 133 5.2Collectionofsamples...... 135 5.3Resultspreliminarystudy ...... 136 5.4Resultsstudy2007/08...... 139 5.5Hypothesis...... 147 5.6Toconclude...... 149 6CONCLUSION ...... 150 7LITERATURE ...... 152 ACKNOWLEDGMENT...... 158 ANNEX1...... 159

VIII JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

INDEXOFTABLES Table1:EETmanipulationwithcoalandironoreforthetimeperiodfrom1 st September2005to31 th October2006(intons)...... 4 Table2:EETmanipulationwithcoalandironoreforthetimeperiodfrom1 st December2007to30 th November2008(intons)...... 5 Table3:Limitingvalueforparticulatematterdeposition(Decree,1994) ...... 20 Table4:Methodsforchemicaldeterminationofselectedparameters ...... 38 Table5:MonthlymassofparticulatematterdepositionsamplingsitesA(mg/m 2day) ...... 50 Table6:MonthlymassofparticulatematterdepositionsamplingsitesAparticles smallerthan3m(mg/m 2day) ...... 51 Table7:MonthlymassofparticulatematterdepositionsamplingsitesB(mg/m 2day)...... 53 Table8:MonthlymassofparticulatematterdepositionsamplingsitesBparticles smallerthan3m(mg/m 2day) ...... 54 Table9:%ofwindblowingindirectiontowardsamplingsites ...... 58 Table10:Thecontentofmetalsincoal,ironoreandsoil...... 67 Table11:Valuesofmetalsintheyearlysampleofparticulatematter deposition(g/m 2day)...... 68 Table12:Contentsofironinsampleignitionresidues ...... 69 Table13:Ignitionresidueofdeposition(particlessmallerthan3m)...... 69 Table14:Specificactivityofgammarayemittersincoalsample...... 70 Table15:Specificactivityofgammarayemittersinironoresample...... 71 Table16:Specificactivityofgammarayemittersinsoilsample ...... 71 Table17:MassofparticulatematterdepositionsamplingsitesA(mg/m 2day)...... 80 Table18:MassofparticulatematterdepositionsamplingsitesAparticles largerthan3m(mg/m 2day)...... 83 Table19:MassofparticulatematterdepositionsamplingsitesAparticles smallerthan3m(mg/m 2day) ...... 84 Table20:MassofparticulatematterdepositionsamplingsitesB(mg/m 2day)...... 85 Table21:MassofparticulatematterdepositionsamplingsitesBparticles largerthan3m(mg/m 2day)...... 86 Table22:MassofparticulatematterdepositionsamplingsitesBparticles smallerthan3m(mg/m 2day) ...... 88 Table23:MassofparticulatematterdepositionsamplingsitesAmonthlyresults...... 92 Table24:MassofparticulatematterdepositionsamplingsitesBmonthlyresults...... 93 Table25:MassofparticulatematterdepositionsamplingsitesAandBcalculated yearlyresults(mg/m 2day)...... 94 Table26:Resultsofdifferentmetalsintheannualsampleateachsamplingsite...... 96 Table27:Thevaluesof 13 C/ 12 Cisotoperatioofcoalandblankfilter ...... 97 Table28:δ 13 Cvaluesdeterminedinparticulatematterdeposition...... 97 Table29:Windrosesforindividualsamplinginterval(windspeedanddirection)...... 112 Table30:Theaveragenumberofparticlespersquarecentimeteroffiltersurfacearea...... 119 Table31:Numberofparticleson1cm 2samplingdevice1(theball) ...... 125 Table32:Numberofparticleson1cm 2countingwithsoftwareIT3,0 ...... 129

IX JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

INDEXOFFIGURES Figure1:QuantitiesofcoalandironoremanipulationatEET2005/06...... 4 Figure2:QuantitiesofcoalandironoremanipulationatEET2007/08...... 5 Figures3and4:Rožnikresidentialarea(approx.1000mfromlandfill)–after strongwind,October2006.3.cleangauzeand4.gauzeafterwipingthefloor...... 6 Figure5:Locationsofsamplingsitespreliminarystudy...... 27 Figure6:Thelocationofsamplingsites ...... 28 Figure7:Lineardirectionofsamplingsites1,2and3...... 28 Figure8:Samplingsite1...... 29 Figure9:Aviewfromsamplingsite1towardsEETdepot...... 29 Figure10:Samplingsite2...... 29 Figure11:Aviewfromsamplingsite2towardsEETdepot...... 29 Figure12:Samplingsite3...... 30 Figure13:Aviewfromsamplingsite3towardsEETdepot...... 30 Figure14:Samplingsite4...... 30 Figure15:Aviewfromsamplingsite4towardsEETdepot...... 30 Figure16:Samplingsite5...... 30 Figure17:Aviewfromsamplingsite5towardsEETdepot...... 30 Figure18:Samplingsite6...... 31 Figure19:Aviewfromsamplingsite6towardsEETdepot...... 31 Figure20:Samplingsite7...... 31 Figure21:Aviewfromsamplingsite7towardsEETdepot...... 31 Figure22:Samplingsite8...... 31 Figure23:Aviewfromsamplingsite8towardsEETdepot...... 31 Figure24:Samplingsite9...... 32 Figure25:Aviewfromsamplingsite9towardsEETdepot...... 32 Figure26:Samplingsite10...... 32 Figure27:Aviewfromsamplingsite10towardsEETdepot...... 32 Figure28:ComponentsofastandardizedmeasuringdevicetypeBergerhoff ...... 33 Figure29:AppearanceofsamplingsiteA,BandC...... 34 Figure30:Viewfromsamplingsite5(2005/06)...... 34 Figure31:Viewfromsamplingsite5(2007/08)...... 34 Figure32:Filterspreparedforelectronmicroscopy(15.2.200615.3.2006)...... 37 Figure33:Appearanceoftemplatemodelforfilterdivision...... 37 Figure34:LocationofadditionallyreferencesamplingsiteatBeliKriž...... 41 Figures35and36:SEMmicrographsoffiltersample ...... 43 Figure37:Pieceofcellulosenitratefiltercontrolsample ...... 43 Figure38:SchematicofanareaofaSEMimagetakenat500xmagnification ...... 44 Figure39:Samplingdevice1...... 47 Figure40:Locationofthemeasuringdevicetype1ball...... 48 Figure41:Appearanceoftemplatemodelforparticlescounting...... 48 Figure42:MonthlymassofparticulatematterdepositionsamplingsitesA...... 51 Figure43:Monthlymassofparticulatematterdepositionsamplingsites ...... 53 Figure44:MassofparticulatematterdepositionsamplingsitesAcalculated yearlyresults(mg/m 2day) ...... 55 Figure45:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite1)...... 56 Figure46:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite2)...... 56 X JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure47:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite3) ...... 56 Figure48:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite4) ...... 57 Figure49:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite5) ...... 57 Figure50:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite6control) ...... 57 Figure51:PrecipitationsinSloveniaAugust2006...... 58 Figure52:PrecipitationincoastalareaPortorož ...... 59 Figure53:Correlationamongparticulatematterdepositionandwindsamplingsite1...... 59 Figure54:Correlationamongparticulatematterdepositionandwindsamplingsite2...... 60 Figure55:Correlationamongparticulatematterdepositionandwindsamplingsite3...... 60 Figure56:Correlationamongparticulatematterdepositionandwindsamplingsite4...... 60 Figure57:Correlationamongparticulatematterdepositionandwindsamplingsite5...... 61 Figure58:Comparisonamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite1Aand1B...... 62 Figure59:Comparisonamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite2Aand2B...... 62 Figure60:Comparisonamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite3Aand3B...... 63 Figure61:Comparisonamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite4Aand4B...... 63 Figure62:Comparisonamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite5Aand5B...... 63 Figure63:ThepotentialtransportofsuspendedparticlesfromtheEETdepot towardssamplingsites1,2,3and4 ...... 65 Figure64:Amountofparticulatematterdepositiononsamplingsites1,2 and3samplingsitesA...... 65 Figure65:Amountofparticulatematterdepositiononsamplingsites1,2 and3samplingsitesB...... 65 Figure66:%ofparticulatematterdepositiononsamplingsite1,2and3...... 66 Figure67:%ofparticulatematterdepositiononsamplingsite1,2and3...... 66 Figure68:Trendinmassflowondifferentsamplingsites ...... 67 Figure69:Redignitionresidue...... 69 Figures70,71and72:Sampleofparticulatematterdepositionsamplingsite4 from15 th Februaryto15 th March2006 ...... 72 Figure73:Sample4A(85xmagnification,imagewidth1.55mm)...... 73 Figure74:TypicalEDXSspectrumofcoal...... 73 Figure75:Sample4A(220xmagnification,imagewidth600m)...... 73 Figure76:Sample4A(330xmagnification,imagewidth400m)...... 74 Figure77:Sample4B(350xmagnification,imagewidth377m) ...... 74 Figure78:TypicalEDXSspectrumofFe 2O3...... 74 Figure79:TypicalEDXSspectrumofalumosilicates ...... 74 Figure80:Sample3A(750xmagnification,imagewidth176m)...... 75 Figure81:TypicalEDXSspectrumofTiO 2 ...... 75 Figure82:TypicalEDXSspectrumofbauxite ...... 75 Figure83:Sample6Acontrol(1200xmagnification,imagewidth110m) ...... 76 Figure84:TypicalEDXSspectrumofironinthepresenceofsiliconoraluminum ...... 76 Figure85:Referencesample(850xmagnification,imagewidth155m) ...... 77

XI JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Figure86:Referencesample(1200xmagnification,imagewidth110m)...... 77 Figures87and88:WaxclothswimmingpoolcoverageinŽusterna...... 78 Figure89:Swimmingpoolcoverage(waxcloth)fromŽusterna (450xmagnification,imagewidth293m)...... 78 Figure90:TypicalEDXSspectrumofbauxite...... 79 Figure91:TypicalEDXSspectrumofTiO 2 ...... 79 Figure92:MassofparticulatematterdepositionsamplingsitesA...... 81 Figures93,94and95:Windrosesfortimeperiodof16.5.to31.5.,1.8.to 15.8.and16.11.to30.11.2008 ...... 81 Figure96:MassofparticulatematterdepositionsamplingsitesAparticles>3m ...... 83 Figure97:MassofparticulatematterdepositionsamplingsitesAparticles<3m ...... 84 Figure98:MassofparticulatematterdepositionsamplingsitesB ...... 85 Figure99:MassofparticulatematterdepositionsamplingsitesBparticles>3m...... 87 Figure100:MassofparticulatematterdepositionsamplingsitesBparticles<3m...... 88 Figure101:Particulatematterdepositioncorrelationamongsamplingsites2Aand7A...... 89 Figure102:Particulatematterdepositioncorrelationamongsamplingsites2Aand10A.... 89 Figure103:Particulatematterdepositioncorrelationamongsamplingsites1Aand5A...... 90 Figure104:Particulatematterdepositioncorrelationamongsamplingsites1Aand10A.... 90 Figure105:Trendsoftheparticulatematterdepositionatsampling sites1,2and3standardizedmethod...... 91 Figure106:Trendsoftheparticulatematterdepositionatsampling sites1,2and3modifiedsamplinggauge ...... 91 Figure107:MassofparticulatematterdepositionsamplingsitesAmonthlyresults...... 92 Figure108:MassofparticulatematterdepositionsamplingsitesBmonthlyresults...... 93 Figure109:MassofparticulatematterdepositionsamplingsitesAandB calculatedyearlyresults(mg/m2day)...... 94 Figure110:Portionofindividualmetalintheannualsampleateachsamplingsite...... 96 Figure111:%ofcarbondeterminedinsampleswhichprobablyoriginated fromcoalresultsaccordingtodifferentsamplingsites ...... 98 Figure112:%ofcarbondeterminedinsampleswhichprobablyoriginated fromcoalresultsaccordingtodifferentsamplingperiod ...... 98 Figure113:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite1)...... 100 Figure114:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite2)...... 101 Figure115:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite3)...... 101 Figure116:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite4)...... 101 Figure117:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite5)...... 102 Figure118:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite6)...... 102 Figure119:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite7)...... 102 Figure120:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite8)...... 103 Figure121:Comparisonbetweentheverticaldepositionandhorizontal contributiontoparticulatematterdeposition(samplingsite9)...... 103 Figure122:Comparisonbetweentheverticaldepositionandhorizontal

XII JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

contributiontoparticulatematterdeposition(samplingsite10) ...... 103 Figure123:Correlationamongparticulatematterdepositionandcoal andironoremanipulationatEETsamplingsitesA...... 104 Figure124:Correlationamongparticulatematterdepositionandcoal andironoremanipulationatEETsamplingsitesB ...... 104 Figure125:Correlationamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite1Aand1B...... 105 Figure126:Correlationamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite2Aand2B...... 105 Figure127:Correlationamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite3Aand3B...... 106 Figure128:Correlationamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite4Aand4B...... 106 Figure129:Correlationamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite5Aand5B...... 106 Figure130:Correlationamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite6Aand6B...... 107 Figure131:Correlationamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite7Aand7B...... 107 Figure132:Correlationamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite8Aand8B...... 107 Figure133:Correlationamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite9Aand9B...... 108 Figure134:Correlationamongparticulatematterdepositionandoremanipulation atterminalEETsamplingsite10Aand10B...... 108 Figures135,136and137:WindRoseforthetimeperiodDecember2007 November2008...... 109 Figure138:Dailytemperatureandamountofprecipitationfortimeperiod 1.12.2007to30.11.2008automaticmeasuringstationMarkovecARSO...... 111 Figure139:SEMmicrographoftypicalcoalparticle(particlediameterof~25m)...... 116 Figure140:TypicalEDXSspectrumofcoal...... 116 Figure141:Coalparticlewithimpurities(particlediameterof~35m) ...... 116 Figure142:Bauxite(alumina)(particlediameterof~10m) ...... 117 Figure143:TypicalEDXSspectrumofbauxite(alumina)...... 117 Figure144:TypicalEDXSspectrumofTiO 2 ...... 117 Figure145:SEMmicrographofparticlesoftitaniumdioxide(TiO 2) ...... 117 Figure146:%ofdifferentparticlesatindividualsamplingsite...... 122 Figures147,148and149:Collectedparticlesonthesurfaceofasampleroriented towardPortofKoperandEETdepot ...... 123 Figures150,151and152:Collectedparticlesonthesurfaceofasampleroriented awayfromPortofKoperandEETdepot ...... 123 Figure153:Thenumberofparticlesonasamplingdeviceaccordingtothemain pointofdirectionofthecompassindifferenttimeperiods...... 127 Figure154:Comparisonofsamplingsite1,2and3numberofparticlesper1cm 2 ...... 128 Figure155:Numberofparticleson1cm 2alternativesamplingdevice(theball) computersoftwarecounting(15.10.15.11.2008)...... 130 Figure156:Comparisonbetweenmanualandcomputercounting ...... 131 Figure157:Comparisonbetweenmanualandcomputercountingaverageresults ...... 131 Figure158:Samplefromsimplemeasuringdeviceanalyzedusingelectronmicroscopy.....132

XIII JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

XIV JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

1INTRODUCTION Airborneparticulatematterhasvariousorigins.Thesourcesmaybenaturaloranthropogenic, linear,pointordispersed,theparticulatemattercouldbealsoprimaryorsecondarybyorigin. Their presence due to their concentration, chemical composition and size, however, has negativeimpactsonhumanhealthandontheenvironment.Fineparticleshavetheabilityto penetratedeepintotherespiratorysystem,andlargerparticlesaredisturbingbecauseoftheir deposition on the land, plants, etc. Particulate matter from airborne deposition is often a complex mixture ofparticles having different sizes,chemicalcompositionandorigins.Not onlysizebutalsochemicalstructureandphysicalpropertiesofparticlesareimportantdueto estimationtheirinfluenceonpublichealthandenvironmentalquality. Therearemanypointandlinearsourcesofdifferentairpollutantemittersinthecoastalarea aroundtheGulfofKoper.Inthisarea,thereisthelargestpetroleumproductswarehousein Slovenia (emissions of benzene, toluene), a chemical company Kemiplas (emission of formaldehyde,acetaldehyde),awasteincineratorandanironworksinTrieste(dioxins,furans, dustparticles).Inaddition,pollutionfromtraffic(individualtransport,heavytrucks,ships, railway transport) increases the groundlevel ozone in summer months. A lot of pollution comesalsofromaslongdistancetransportofpollution(especiallytransportofpolluted airwiththewesternwindsfromthePoriverbasin)(Kleinetal.,2007;Gaussetal.,2008; Nyirietal.,2009).Originoftheparticlesdeposited in Ankaran and its nearby residential areascouldbeacombinationofthecombustion,traffic,industry,agriculture,landuseetc., and,inourcasedepositionofdifferentmaterials(coalandironore)fromthestockpilesatthe PortofKoper.Emissionsofairborneparticlesthereforecanoriginatefromothersourcesalso from various ore depots, coal pits or even quarries and as such represent nuisance in residential areas. In addition, natural sources such as soil dust, pollen, parts of animals (insects)andpartsofplantscouldcontributetothetotaldepositedmaterialinobservedarea. Variousepidemiologicalstudies(fordetailsseeSection1.3)confirmedcorrelationsbetween increased concentrations ofparticulate matter in air and increased incidences of respiratory andcardiovasculardiseases.Additionally,forseveralyearstheinhabitantsofAnkaranandthe nearbyresidentialareahavebeencomplainingaboutdepositionofdust,whichmayoriginate fromcoalandironorehandlingandwarehousingattheEuropeanEnergyTerminal(EET)in PortofKoper(seeFigures3and4).

1 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 TillnownostudydealingwiththecontributionsofparticulatematteremissionsfromPortof Kopertosurroundingareahasbeenconducted.Thepurposeofthismaster'sworkwasthe collection,analysisandcharacterizationofdustdepositionintheareaoftheMunicipalityof Kopertodeterminewhat,ifany,impacttheoutdoorcoalandironorestoragedepotshaveon thedepositionofparticulatematterontheresidentialareas.Thesimplemethodofcollecting dust deposition was used (Bergerhoff sedimentators). Additionally collected samples were analyzed by various methods with the goal to identify the source of particles and their characterization.Alsoasimplemeasurementdevice,basedondepositionand/oradhesionwas developed.

1.1PortofKoperanditsactivitiesatEET ThePortofKoperisamultipurposeport,locatedincoastalregionofSlovenia.Thebasic portactivityiscarriedoutatspecializedterminals,whicharetechnicallyandorganizationally suitable for handling and warehousing of specific cargo groups. General transfer of port operationsandwarehousingperformedontwelvespecializedterminals(Passengerterminal, Fruit terminal, General cargo terminal, Timber terminal, Container and RoRo terminal, Liquidcargoesterminal,Livestockterminal,Terminal for cereals and fodder, Terminal for minerals,Aluminaterminal,CarterminalandEuropean energy terminal) (http://www.luka kp.si).PortofKoperisfullyembeddedintheinternationaltradeandglobalcommerce.Only 30 percent of transfer is made for Slovenian needs, all the rest of the transit for the wider hinterland notably , Italy, Hungary, Czech Republic, Slovakia, southern Germany, ItalyandtheBalkancountries(PortofKoper,2009). EconomicZoneAreaofPortofKopercovers2,720,000m 2,ofwhich247,000m 2ofclosed warehouses, 76,000 m 2 covered warehouses, 900,000 m 2 of open storage areas, 49,000 m 3 shoretanksand81,000tonesofsilos.Theporthastwopierswithatotalof25berthsandtotal quaylengthof3,1km(PortofKoper,2009;Topič,2009). EETEuropeanEnergyTerminal AttheEuropeanEnergyTerminal(EET)inthePortofKoper,largeamountsofcoalandiron orearehandledandwarehoused.Cargocomesmainlyfrom Indonesia, SouthAmerica and SouthAfrica.Theterminalincludesaclosedconveyorbeltsystemwhichlinks630mofquay withaopenstorageareasandwagonloadingstation.Theterminaloffersadditionalservices 2 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 includingscreening,blendingandcrushing.Thestoragecapacityoftheoredepotis500.000 tonesforcoaloreand300.000tonesforironore.Theareacoveredbythecoalandironoreis 108.500m 2.Thedailycapacityforunloadingcoalis17.000t(capesizevessel)or15.000t (panamaxvessel)andforironore(capesizevessel)is25.000t(http://www.lukakp.si;Topič, 2009). OneofthemajorsourcesofdustintheareaofthePortofKoperrepresentstheactivitiesat theEET.Itisimportanttoemphasizethattheemissionofparticlesresultsnotonlyfromthe manipulation of ore (off or on loading) but also from ore storage. The landfill itself represent a significant source of emission, particularly during strong winds (Poljšak et al., 2006).DustcontrolmeasureswhichthePortalreadyintroducedincludeconstructionofan11 mhighantidustemissionwall,sprayingthebodyofthelandfillwithwaterandwetcleaning ofthetransportationroadsaroundthelandfillatleasttwiceperday.However,whenastrong windblowsunexpectedly,thedustingisnotsuppressedcompletely.Becausethelandfillisnot completelyclosed,itisstillexposedtotheweatherconditions(e.g.strongwinds). ThequantitiesofbulkcargoesmanipulationontheEETduringtheperiodfromSeptember 2005toOctober2006areshowninTable1andFigure1.Thoseforthetimeperiodfrom December2007toMay2008(timeperiodofthestudy)areshowninTable2andFigure2. UnloadingofironoreisquiteconstantduringentireyearwiththeexceptionofMarchwhen unloading is minimal. Quantity of unloaded iron was increased in year 2007/08 by 16% comparedto2005/06.Theamountoftheunloadedcoalvariesthroughouttheyear.Maximum unloadinganduploadinginbothtimeintervals(2005/06and2007/08)occurduringJanuary, FebruaryandMarch,duringthisperiodsignificantlyincreasedalsothetotaloreunloading/ uploading. Another higher values occur during October and November. In time period 2005/06totalamountofunloadingironorewere1.633.283tonsand4.100.269tonsofcoal while in time period 2007/08 total amount of unloaded iron ore were 1.899.269 tons and 4.395.897tonsofcoal,whatmeansmanipulationwithbulkcargoinPortofKoperincreased inyear2007/08comparetotheyear2005/06by10%,mainlyonaccountoftransferofiron ore (16%) and slightly less (7%) for unloading of coal. In 2007/08 amount of the coal manipulatedatEETismuchhigher(41%)comparetoyear2005/06sinceadditionallyloading ontheshipisincluded.

3 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Table1:EETmanipulationwithcoalandironoreforthetimeperiodfrom1 st September 2005to31 th October2006(intons) IRONORE COAL IRONOREANDCOAL September * 289,435 289,435 October 324,453 271,903 596,356 November * 343,636 343,636 December 166,496 232,945 399,441 January 191,590 497,371 688,961 February 139,603 471,791 611,394 March 3,639 708,295 711,934 April 142,575 269,685 412,260 May 191,711 320,364 512,075 Jun 145,462 287,287 432,749 July 164,200 270,301 434,501 August 163,554 137,256 300,810 SUM 1,633,283 4,100,269 5,733,552 Source:DepartmentofenvironmentandhealthatworkofPortofKoper *datawerenotavailable

700.000 600.000 500.000 ironore 400.000 coal

tons 300.000 coalandironore 200.000 100.000 0

. . . . . 2. 3. 5. .11 .1 .01 .02 .0 .0 .06. .08 .10 5 5 5 5 5 15 15 .1 . .1 .1 .15 . .15 .15.07..1 .1 0 2 6 9 11 01 04 07 5.1 5. 5.1 5. 5. 5.0 5. 5.0 1 1 1 1 15.02 15.03.15.04.1 15.05 1 1 15.08.15.09.1 Figure1:QuantitiesofcoalandironoremanipulationatEET2005/06

4 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Table2:EETmanipulationwithcoalandironoreforthetimeperiodfrom1 st December 2007to30 th November2008(intons) IRONORE COAL upload unload sum upload unload sum December07 0 163,700 163,700 120,161 281,501 401,662 January08 0 164,225 164,225 121,948 345,892 467,840 February08 0 159,625 159,625 99,051 586,923 685,974 March08 0 7,464 7,464 167,423 405,117 572,540 April08 0 221,804 221,804 126,250 278,393 404,643 May08 0 116,094 116,084 83,097 405,498 488,595 Jun08 0 191,944 191,944 92,760 270,422 363,182 July08 0 165,997 165,997 133,052 222,476 355,528 August08 0 191,340 191,340 139,237 228,495 367,732 September08 0 161,916 161,916 55,651 498,859 554,510 October08 0 191,922 191,922 101,589 431,528 533,117 November08 0 163,248 163,248 147,626 440,793 588,419 SUM 0 1,899,279 1,899,269 1,387,845 4,395,897 5,783,742 Source:DepartmentofEnvironmentalandOccupationalHealthofPortofKoper

900.000 800.000 700.000 600.000 500.000 400.000

tons 300.000 200.000 IRONORE 100.000 COAL 0

8 8 0 8 008 2008 2007 n2008 y20 r200 arch2008 Ju gust2008ber April2008May200 Jul u tobe M A January2008February2008 Oc December Septem November2 Figure2:QuantitiesofcoalandironoremanipulationatEET2007/08

1.2Inhabitantsinnearbyresidentialareaandtheirperceptionsofdustemissions FormanyyearstheinhabitantsofAnkaran(distancefromtheironoreandcoalstoragesitesis approximately1800m)anditssurroundings(theclosestresidentialareais1000mfromthe storage sites) have been complaining about the pollution of their residential area with emissions from the terminal EET in the Port of Koper. Particulate matter depositions are visibly perceived on their yards, places of residence, linen and vegetables (Figure 3 and Figure4).TheresultsofthestudyofenvironmentpollutioninAnkaran(ARSO,2005)made 5 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 bytheEnvironmentAgencyoftheRepublicofSlovenia(ARSO)showthe24hourlimiting value for particles PM 10 was exceeded. With respect to wind direction, the distribution showedanincreasedconcentrationofparticlesduringthemistralwind.Consequently,itcan be assume, considering the location of the sampling site, a direct influence of the Port of Koper,speciallythelandfillEETonthedustemissions.Thesamestudyascertainedavery strongcorrelationbetweentheparticlesPM 10 andthepresenceofiron.Thecorrelationfactor was0.91.

Figures 3 and 4: Rožnik residential area (approx. 1000 m from landfill) – after strong wind,October2006.3.cleangauzeand4.gauzeafterwipingthefloor. Thementionedperceptionsoftheinhabitantswereoneofthereasonforstartingthestudy presentedinthismasterthesiswork. ThepresenceofŠkocjanskizatokandthenearbyYouthHealthandHolidayCentre,Debeli rtič,areadditionalreasonswhytheareaaroundPortofKoperissensitive. 1.ŠkocjanskizatokNatureReserveisthelargestbrackishwetlandinSlovenia.Itislocatedon the outskirts of the coastal city of Koper and consists of brackish lagoon surrounded by reedbedsandagriculturallandwhichistobeturnedintoafreshwatermarsh.Anoutstanding qualityoftheNatureReserveisitsrichfloraand fauna which boasts a number of rare or endangeredSlovenianspecies(http://www.skocjanskizatok.org). 2.AlsotheYouthHealthandHolidayCentreDebeli rtič,istheonlyseahealthcentrefor children in Slovenia. The health services in the spa are based on the favorable and mild climateandtheseawater,abenefitfornaturalhealthtreatmentofchildrenwithrespiratory diseases.Theyarespecializedforrespiratorydiseases(bronchialasthma,chronicobstructive

6 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 pulmonarydiseases,pulmonaryemphysema,postinjuryconditionsaswellaspostoperative conditionsofthethoraxandlungs)andhavesomespecialprogramsforchildrenwithasthma.

1.3Particlesinairandtheirinfluenceonhealth Airpollutionhasbothacuteandchroniceffectsonhumanhealth.Healtheffectsrangefrom minorirritationofeyesandtheupperrespiratorysystemtochronicrespiratorydisease,heart and vascular disease, lung cancer and death. Among other pollutants, particulate matter is severe health and environmental problem. Particles in air can impact the health merely because of their presence, or because of a specific chemical composition or morphological structure, they can have additional harmful influences on health. In most cases, the most susceptibleorgansarethelungsandtherespiratorytract.Someairpollutants,suchasfine particles,canalsodamageotherorgans.Humanscomeincontactwithdifferentairpollutants primarilyviainhalationandingestion,whiledermalcontactusuallyrepresentsaminorroute ofexposureforairpollutants.Airpollutionadditionallycontributestothecontaminationof foodandwater,whichmakesingestioninseveralcasesadditionalrouteofpollutantintake. Thepresenceofparticlesintheairisassociatedwithasthma,chronicbronchitisandreduction of pulmonary function (Vallero, 2008; Likar and Bauer, 2006). Several epidemiological studies (Hoek et al., 2002; Clancy et al., 2002; Miller et al., 2007) showed a connection betweentheelevatedconcentrationofparticlesintheairandtheincreaseofdiseasesofthe respiratory tract and cardiovascular diseases, regardless of the chemical structure of the particulatematter.Hospitaladmissionforcardiovascularandrespiratorydiseasesarerelated withconcentrationoffineparticlesinair(Dominicietal.,2008).Exposuretoparticlesinair can affect health, while elevated concentration of fine particle has a direct influence on morbidityandmortality(Sametetal.,2000;Hoeketal.,2002;Clancyetal.,2002;PopeIIIet al.,2002)andtherefore,canhaveadirectinfluenceonreducedlifeexpectancy(Kampaand Castanas, 2007). Also larger particles have health effects. In dust samples after WTC twin towerscollapse(Lioyetal.,2002)acomplexmixtureofcoarseparticlesandfibersconsisting ofrelativelylargerparticles(>90%ofdustparticle mass was > 10 m in diameter) was found.Onceinhaled,particles>2.0mindiameter are most commonly deposited in the upperairways,causingsignificantirritation.Amongfirefightersworkingingroundzeroarea

7 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 increasedincidenceofupperairwaysymptoms(nasalcongestion/drip,throatirritation,cough, andgastroesophagealreflux)occured(Firemanetal.,2004). Atmospheric particles affect health when they enter the respiratory system. Depth of penetrationanddepositionofparticlesdependsonthesizeofparticle,thedefensecapabilities of the respiratory tract and the respiratory pattern (Godish, 2004). Godish (2004) also mentionedthatparticlesofaerodynamicdiameterof10marelargeenoughtoberetainedby nose hairs and the defense system of upper respiratorytract.AccordingtoStropnik(1994) particles with aerodynamic diameter larger then 15 mcannotpenetrateindeeperlungs, thereforehavenodirectinfluenceonhealth.AccordingtoBilban(1999)theupperairways path excluded especially larger or very small dust particles due to inertia on the bends. Particleslargerthan5mhitthewallandadheretothemucus.Suchparticlestogetherwith mucusareexcretedthroughthenasalcavity.Protectivesystemoftheupperrespiratorytractis the least effective for the dust particles with aerodynamicdiameterfrom0.25upto5m. Theseparticlesthusrepresentthegreatesthealthimpact. Thehealtheffectsofparticulatematter(PM)dependontheirmassconcentrationandwhere they are deposited in the respiratory tract. An international harmonization of particle size selectivesamplingcriteriadefinedbytheAmericanConferenceofGovernmentalIndustrial Hygienists(ACGIH), InternationalOrganizationfor Standardization (ISO), and the Comité EuropéendeNormalisation(CEN)wasadopted(Parketal,2009).Thesecriteriaweredefined asinhalable,thoracic,andrespirablewiththeir50%cutoffsizesatanaerodynamicequivalent diameter(AED)of100m,10m,and4m,respectively.ThesePMsizefractionsdeposit inaparticularregionoftherespiratorytract:theinhalablefractionenteringtheupperairways beyond the nose and mouth, the thoracic fraction depositing beyond the larynx and the respirablefractionreachingtheairspacedeepinthelungs(alveoli). Depending on the ability of penetration and deposition in respiratory system Tran and Kuempel(2007)dividedaerosolsintothreegroupsasinhalable,thoracicandrespirable.The respirable particles size distribution includes the ultrafine or nanoparticles (<0.1 m), fine particles(<2.5m)andcoarseparticles(<10m). Stropnik (1994) distinguished two types of aerosols; inhalable and respirable aerosols. Particles smaller than 15 m and greater than 2.5 m (inhalable aerosols) are generally 8 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 retained in the upper parts of respiratory system, nose, throat and esophagus. Respirable aerosols representparticles that have aerodynamicequivalentdiameteroflessthan2.5m and thereforepenetrate deeper in the respiratory systemallthewaytopulmonaryvesicles, wheretheymayberetainedforseveraldaysorevenmonths. Themostexposedgroupinthepopulationtoairparticlesarechildren,becausetheparticles penetratedeeperintheirlungsascomparedtoadultsbecousechildrentheybreathedeeper andfaster,theyspendmoretimeoutdoorandtheyaremoreactive(Likar,1998).Thepolluted airslowsdownthedevelopmentofpulmonaryfunctionsinchildren(Gaudermanetal.,2000; Gaudermanetal.,2004).Seniorcitizens,especiallythosewithaweakenedcardiovascularand respiratorysystem,areahighriskgrouptoo(Vallero,2008).Anotherriskgroupispatients withchronicpulmonaryemphysema,asthmaorcardiovasculardiseases(Vallero,2008). However, epidemiological studies on large populations have been unable to identify a threshold concentration below which ambient PM has no effect on health. It is likely that within any large human population, there is such a wide range in susceptibility that some subjectsareatriskevenatthelowestendoftheconcentrationrange(WHO,2003). Coal Coal has been described as the most significant pollutant of all fossil energy sources producing important polluting compounds as sulfur dioxide and its derivatives and many otherimpurities.Differentmanipulationwithcoalthereforecancauseairpollution.Exposure to coal is considered as an important noncellular and cellular source of reactive oxygen speciesthatcaninduceDNAdamageasshownforwildrodentsinanopencoalminingarea (Leonetal.,2007).Inaddition,spontaneouscombustioncanoccurincoalstockpilesresulting in releasing combustion byproducts (polycyclic aromatic hydrocarbons PAH) in environment.SeveralofthesePAHexhibitwellknownmutagenicandcarcinogenicactivity. CoalparticlesbelongaccordingtothecategorizationoftheInternationalAgencyforResearch onCancer(IARC)ingroup3theagentisnotclassifiableastoitscarcinogenicitytohumans, whichmeansthattherewerenotenoughstudiesmadetoconfirmcarcinogenicity,howeverit is not excluded (IARC, http://monographs.iarc.fr/ENG/Classification/crthalllist.php). Coal particlesare,duetotheirchemicalstructureandtheirmorphology,capableofbindingwith diverse pollutants, causing synergistic effects between various substances (Vallero, 2008). 9 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Fewifanystudiesregardingthesephenomenahavebeenreported.Whenaparticlesuchas coal getsintothelungs,itreactswiththepulmonary cells, irritates them and releases the pollutants bound to it (Vallero, 2008). Coal particles can cause allergic reactions in upper respiratory tracts and lungs (Potkonjak, 1979; Zawisza, 1982). That is why its toxicity is connectedmainlytothesizeoftheparticlesandthepresenceofotherpollutantsintheair. AdditionallyHuangetal.(1993),Dalaletal.(1995)andSmithetal.(1998)supportideathat presenceofironincoalisreasonforreactiveoxygenspecies(ROS)formationandtherefore influenceonhealth. Long exposure to coal dust can lead to so called black lung disease, also known as coal workers'pneumoconiosis(http://en.wikipedia.org;Bilban,1999).Itisacommonafflictionof coalminersandotherswhoworkwithcoal,similartosilicosisfrominhalingsilicadustandto thelongtermeffectsoftobaccosmoking. Inhaledcoal dust progressively builds up in the lungsandisunabletoberemovedbythebody;thatleadstoinflammation,fibrosis,andinthe worstcase,necrosis.Coalworkers'pneumoconiosis,initsmostseverestate,developsafter theinitial,milderformofthediseaseknownasanthracosis(anthraccoal,carbon).Thisis oftenasymptomaticandisfoundtoatleastsomeextentinallurbandwellers(Cotranetal., 1999inhttp://en.wikipedia.org)duetoairpollution.Coaldustcanalsoincreasetheriskof developingchronicobstructivepulmonarydisease.Both(blacklungandchronicalobstructive pulmonarydisease)canbelinkedwithworkinginacoalmine,coaltrimming(loadingand stowingcoalforstorage),miningormillinggraphite, manufacturing carbon electrodes and carbon black. The severity of pneumoconiosis depends on the type of coal and the dust conditionsintheworking(http://www.webmd)andlivingenvironment. Metals Kodavantietal.(2008)establishedaconnectionbetweenmetalsinsmallparticulatematters (particularly zinc) and the phenomenon of pulmonary inflammation in laboratory animals. Pulmonaryinflammationinmostcasesresultedinthedamageofthecardiacmuscle.Authors concludedthatthefineparticlesinoutdooraircontainsignificantconcentrationsofvarious metals,inmostcasesalsosignificantconcentrationofzinc.Besidezincinparticulatematter depositionaconsiderableamountofothermetals,suchasleadandironispresent(Vallero, 2008).Ironoxideisapotentiallydangeroussubstancebecauseitisacatalystforthereaction accordingtoFenton’schemistry(Dalaletal,1995;Evans,2000).Inthisreactionhydrogen peroxide,whichisanormalmetaboliteinpulmonarycells,inthepresenceofironformsa 10 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 hydroxylradical,whichisthemostactiveandmostaggressivefreeradical.Hydroxylradicals directly destroy cells, degrade cellular membranes, proteins and cellular deoxyribonucleic acid(DNA)andcausemutations.Inthelegislation,ironoxideisnot yetdeclaredastoxic. However,thelateststudiessupporttheabovementionedmechanismofaction(Smithetal., 1998;Evans,2000;ReillyandAust,2000).Alsoin thecaseofironoxidethesizeofthe particleshasthemainroleindeterminingitsdangerforhealth(Smithetal.,1998). Chronicinhalationofhighconcentrationsofironoxidesfumesorirondustmightresultin depositionofironintissueandthereforedevelopmentofpneumoconiosis,calledsiderosis. Causativeagentcanbeironoxidepresentinweldingmaterial,foundriesandironoremining; alsoitcanbecausedbypowderedhematite(http://en.wikipedia.org). The iron ore in EET depotismostlyhematite,themineralformofiron(III)oxide(Fe 2O3)(Topič,2009). SloveniaKoper AnalysisoftheepidemiologicalstudymadebytheInstituteofPublicHealthCelje(Erženet al.,2003)onthehealthstatusoftheresidentsintheMunicipalityofKopershowsanincrease ofchronicrespiratorydiseasesandallergicillnessesamongchildren.Alsoanincreaseinthe numberofwomenwithlungcancer,whichis1.6timeshigherthantheSlovenianaverage,a resultofthepollutionloadonthestudyarea,wasdetected.Bothobservationsindicateonthe airpollutionasthecausativeagent.

1.4ParticulatematterPM Particulatematterisacommonphysicalclassificationforparticlesfoundinair(atmosphere) suchasdust,dirt,soot,smokeandliquiddroplets.Unlikeotherpollutants(O 3,CO,SO 2,NO x, Pbetc.)particulatematterisnotaspecificchemicalentity.Ratherit'samixtureofparticlesof differentorigin,thatdifferinsize,compositionandchemicalorphysicalproperties(WHO, 2003;Vallero,2008).ThetermaerosolisoftenusedsynonymouslywithPM(Bolteetal., 2007;Baron andWilleke,2005;Vallero,2008).An aerosolcanbesuspensionofsolidor liquidparticlesinairandincludesparticlesaswellasvapororgasphasecomponentsofair. Atmosphericparticles(alternativelyreferredtoasparticulatematterPM)aretinyparticlesof solidsorliquidssuspendedinair.Theseparticlesvaryinsizeanddensity(EPA,2008).They 11 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 originateasaresultofprocessesonthesurfaceoftheearthandintheatmosphere(Bolteet al., 2007). They may be either emitted directly into the atmosphere or formed there by chemical reactions (Finlayson Pitts and Pitts, 2000). Particles may be emitted naturally or haveananthropogenicorigin.Therefore,somenaturallyoccurringparticulatesoriginatefrom volcanoes, dust storms,forest and grassland fires, living vegetation and sea spray. Human activities,suchastheburningoffossilfuelsinvehicles,powerplantsandvariousindustrial processes also generate significant amounts of aerosols. The main problem of pollution represents anthropogenic sources; however, natural pollution is not negligible. Large scale natural pollution (such us volcanic eruptions (Tambora, Krakatao, Mt. St. Helen, El Chinchón, Pinatubo) and large scale fires may lead to regional or global effects (Bizjak, 2009). According to the origin and specific characteristics particles differ in size, mass, density, morphology, chemical composition and have various chemical and physical properties(Godish,2004;BaronandWilleke,2005).FinlaysonPittsandPitts(2000)state thatsizeisthemostimportantcharacteristicsinceitisrelatedtotheir(particles)effectson health, visibility and climate. According to their properties particles settle out from the atmosphereinmatterofminutesiftheyaresmallanddenseorremainssuspendedfordays, evenweeks,alsodependonweatherconditions.AccordingtoStropnik(1994)themajorityof particles in air represent size fraction from 0.01 to10m.AlsoGodish(2004)refersthat particles smaller than 20 m because of their aerodynamic properties are those of special concernsincetheymayremainsuspendedinairanddependingonsizeanddensitysettleout slowly. Atmosphericparticlescanbeprimaryorsecondaryaccording to their origin and formation process.Primaryparticlesintheairaretheresultofdirectemissionsintheatmospherefrom differentnaturaloranthropogenicsources(Bolteetal.,2007).However,secondaryparticles occurinairasaresultofdifferentchemicalreactionsamongparticles,gases,H 2Oandvapor (Godish, 2004). Emission of primary particles can occur from stationary sources (such as factories,powerplantsetc.)orfrommovingvehicle(mobilesources).Suchparticlescouldbe emitted directly from moving vehicle (internal combustion engine) or indirectly when particlesareresuspendedduetomovementofthevehicles.Alsononpointorareassources areknownwhenthesourcesrepresentlargerareas(constructionsites,largeopenstockpiles, openpitmining,quarry...)(Vallero,2008). 12 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Shape Particlesvaryinshapefromsimplesphereordifferentcubestomanyirregularshapes.Shape isoftendeterminedbyparticle'schemicalcompositionandtheprocessunderwhichparticle was formed (Godish, 2004) and have important influence on various factors such as drag force,lightscattering,electricalcharging,orinsomecaseseventoxicity(Murphy,1984). Asparticlesareoftenirregularnonspherical(forexample,asbestosfibers),therearemany definitionsofparticlesize(BaronandWilleke,2005).Themostwidelyuseddefinitionisthe aerodynamicdiameteroraerodynamicequivalentdiameter(AED)(Godish,2004;Baronand Willeke,2005).Particulateaerodynamicbehaviorisexpressedintermsofthediameterofan idealizedsphere.Aparticlewithanaerodynamicdiameterof1micrometermovesinagas likeasphereofunitdensity(1grampercubiccentimeteror1000kg/m 3)withadiameterof1 micrometer. The aerodynamic properties of particles determine how particles will be transported in the atmosphere,howtheycanberemovedfromitandtheirbehavioringassuspension(Baron andWilleke,2005).Thesepropertiesalsogovernhowfartheygetintotherespiratorysystem. Thesamplinganddescriptionofparticlesisbased on this aerodynamic diameter, which is usuallysimplyreferredtoas‘particlesize’.Particleshavingthesameaerodynamicdiameter mayhavedifferentdimensionsandshapes. Itisconvenienttoclassifyparticlesbytheiraerodynamicpropertiesbecause: thesepropertiesgovernthetransportandremovalofparticlesfromtheair theyalsogoverntheirdepositionwithintherespiratorysystem theyareassociatedwiththechemicalcompositionandsourcesofparticles(WHO,2003). Size The size of aparticle is determinedby how aparticleisformed.Combustion,forinstance generates very small particles, while coarse particles are usually formed via mechanical processes(Vallero,2008).Atmosphericparticlesdifferinsizeovermanyordersofmagnitude from<0.005nmtoseveralhundredsm(Murphy,1984;WHO,2003;Godish,2004).

13 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Accordingtosizeatmosphericparticlesaredividedintotwomajorfractions,courseparticles and fine particles (Godish, 2004; Vallero, 2008). Coarse particles are particles with aerodynamicdiameterslargerthan2.5mandfineparticlesaresmallerthan2.5m.Fine particles can be further classified on the basis of accumulation modes, Aitken nuclei and ultrafine particles (Godish, 2004). Most of the total mass of airborne particulate matter is usually made up of fine particles ranging from 0.1 to 2.5 m. Ultrafine particles often contribute only a few percent to the total mass, though they are the most numerous, representingover90%ofthenumberofparticles(http://en.wikipedia.org).Manyofthemcan harmourhealth,especiallyverysmallparticlesthatcanenterdeepintothelungs. Mostcoarseparticlesareinthesizefrom2.5to10m,buttheycouldbeaslargeasseveral tensofmicrometersorevenmore.Fineparticlesaswellascourseparticleswithdiameterup to 10 m tend to remain suspended in the atmosphere for long period of time and are describedassuspendedparticles.Largerparticleswithaerodynamicdiameterlargerthan100 mtendtosettleoutfastandthereforearedescribedassettleableparticles(Godish,2004). Largeparticlesaregenerallyoflessconcernsincetheyrarelytravellongdistances.Therefore, theyareusuallymeasuredonlyifalargeparticulateemittingsource(e.g.coalmineetc.)is nearby (Vallero, 2008). Large particles (also known as dust or grit) are therefore a major causeofnuisance,butcanalsobeacauseofhealthandotherproblems,eitherfromdirect inhalationoringestionorthroughsecondarypathways after they have deposit (Hall et al., 1993). Thelargestparticlesorcoarsefractionaremechanicallyproducedbythebreakupoflarger solid particles. These particles can include windblown dust from agricultural processes, uncovered soil, unpaved roads or mining operations. Traffic produces road dust and air turbulencethatcanstiruproaddust.Nearcoasts,evaporationofseaspraycanproducelarge particles.Pollen grains, mouldspores,andplantandinsectpartsare allinthislargersize range.Theamountofenergyrequiredtobreaktheseparticlesintosmallersizesincreasesas the size decreases, which effectively establishes a lower limit for the production of these coarse particles of approximately 1 m. Fine fraction of particles are largely formed from gases.Thesmallestparticles,lessthan0.1m,are formed by nucleation (condensation of lowvaporpressure substances formed by hightemperature vaporization or by chemical reactionsintheatmosphere)toformnewparticles(nuclei).Fourmajorclassesofsourceswith equilibriumpressureslowenoughtoformnucleimodeparticlescanyieldparticulatematter: 14 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 heavy metals (vaporized during combustion), elemental carbon (from short C molecules generated by combustion), organic carbon and sulfates and nitrates. Particles in this nucleationrangegrowbycoagulationamongtwoormoreparticlestoformalargerparticleor bycondensationofgasorvapormoleculesonthesurfaceofexistingparticles(WHO,2003). Chemicalcomposition Thecompositionofaerosolparticlesdependsontheirsource.Particlesinairareaggregatesof manymolecules,sometimesofsimilaronesbutusuallyofdissimilarones(Vallero,2008). Therefore particles suspended in the atmosphere contain hundreds of different chemical compound due to large number of sources of primary particles, formation of secondary particlesinairbyatmosphericchemistry,growthofatmosphericparticlesandsorptionofgas phase substances (Godish, 2004). Chemical composition of particles in air differs and is dependent on origin, production processes and atmospheric history of individual particle. However,thechemicalcompositionofparticlesisvery important and highly variable. The chemical composition of tropospheric particles includes inorganic ions, different metals, elementalcarbon,organiccompoundsandcrustal(carbonatesandcompoundsofalkaliand rareearthelementals)substances(Vallero,2008).Thereforewindblownmineraldusttendsto be made of mineral oxides and other material blown from the Earth's crust. Sea salt is consideredthesecondlargestcontributorintheglobalaerosolmassandconsistsmainlyof sodium chloride originated from sea spray. In addition, sea spray aerosols may contain magnesium, sulfate, calcium, potassium and organic compounds, which influence their chemistry(http://en.wikipedia.org). Secondaryparticlesderivefromtheoxidationofprimary gasessuchas sulfurandnitrogen oxidesintosulfuricacid(liquid)andnitricacid(gaseous).Theprecursorsfortheseaerosols mayhaveananthropogenicorigin(fromfossilfuelcombustion)andanaturalbiogenicorigin. Inthepresenceofammonia,secondaryaerosolsoftentaketheformofammoniumsalts;i.e. ammoniumsulfateandammoniumnitrate(bothcanbe dry or in aqueous solution); inthe absence of ammonia, secondary compounds take an acidic form as sulfuric acid (liquid aerosoldroplets)andnitricacid(atmosphericgas)(http://en.wikipedia.org) Organic material in the atmosphere may either be biogenic or anthropogenic. Organic compoundsfoundonorinparticlesaremorecomplexinurbanregiontheninremoteplaces. Asaconsequenceofhigherpollutionsuchparticlesinurbanregionscontain,inadditionto 15 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 organic compound from biogenic emissions, complex compounds emitted directly from sources of anthropogenic pollution (Godish, 2004). Particles can additionally function as "vehicles" for transporting and transforming chemical contaminants. Highly sorptive compounds (large organic carbon adsorption coefficient) can use particles as a long range transport.Alsodifferentchargesofionscouldbeanotheroptionforcontaminantstransporton atmosphericparticles(Vallero,2008). Anotherimportantaerosolisconstitutedofelementalcarbon(alsoknownasblackcarbon, BC, carbon black, elemental carbon). BC, often called soot, is one of the most important absorbingaerosolspeciesintheatmosphere(includesstronglylightabsorbingmaterial). Various factors influence the elevated concentration of pollutants, such as climatic characteristics,meteorologicalphenomena,physicalchemicalprocessesoftransformationof substancesintheairandthetopographicalstructureofthearea(Žlebiretal.,2007). Particledeposition Atmospheric deposition poses significant ecological concerns. According to the process of depositionparticlescanbedepositedattheearth'ssurfaceintwoways,drydepositionorwet deposition,dependingonthephaseinwhichaspeciesstrikestheearth'ssurfaceandistaken up(FinlaysonPittsandPitts,2000).Drydepositionischaracterizedbydirecttransferofgas phaseandparticulatesfromairtoground,vegetation,waterbodiesandotherEarthsurfaces. Thistransfercanoccurbysedimentation,impaction,diffusiontosurfacesorincaseofplants byphysiologicaluptake.Intheabsenceofprecipitationdrydepositionplaysmayorrolein removing pollutants from atmosphere (Finlayson Pitts and Pitts, 2000). Wet deposition includesrain,snow,fog,cloud,dewformationandwashouttheatmosphere(Godish,2004; Vallero, 2008). Rain out therefore means process in the clouds, where the occurrence of dropletsonsolidparticles(condensationnuclei)happened.Insuchwaydisposalofpollutants byrain,snowetc.occurs.Ontheotherhand,washoutistheprocessbywhichpollutantsare removedfromtheatmospherebybeingabsorbedinoradsorbedonwaterdroplets. Iftwoparticlesinaircollidetheytendtoadheretoeachotherduetotheirattractivesurface forces.Thereforeparticlesbecomelargerandlargerbyagglomeration.Largerparticleshave greatermassandthereforea greaterpossibilityforfallingtothegroundratherthantostay

16 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 airborne. Such process of removing particles from atmosphere is called sedimentation (Vallero,2008).

1.5Particlesamplingandmethodofanalysis Avarietyofsamplingmethodsanddevicesareusedforatmosphericparticlesmeasurements. They range from sample collection on a filter for later analysis to complex direct reading instruments that detect airborne particles in real time and display size distribution and chemicalcomposition(BaronandHeitbrink,2005).Theselectionofthemethoddependson parametertobemeasured;totalmass,concentration,sizedistribution,chemicalcomposition. Itisalsoimportantwhetherthecollectionofsamplesisrequiredforfurtheranalysisornot, thecoastofthestudyandcalibrationandoperationcharacteristicofchosenmethod(Murphy, 1984).AccordingtoMurphy(1984)selectionofaparticlesamplinginstrumentdependson objectives of the study. For size selective collection of particles inertial separation can be used;filtrationisusedforcollectionofparticles;usingelectrostaticprecipitationorelectric mobilityseparationprecipitationofparticlesonacollectionsurfaceorlimitationofparticles passagethroughthesystembasedontheelectricalmobilitycanbeachieved;usingoptical particles counting the total particles concentration or size selective particle count can be achieved; condensation nuclei counting is used for submicron particles count; diffusion separation method separate particles according to diffusion characteristics; thermal precipitation is collection method which produce a gentle precipitation of particles on a collectionsurface. Bizjak (2009) divided sampling devices (from a technological point of view) to 3 groups: 1. First generation represents simple, inexpensive and less reliable samplers without the drivingelements. 2.Samplingdevicesofthesecondgenerationrepresentdeviceswithdrivingparts(pump)that enablefilteringandwashingofthewetgases. 3.Thethirdgenerationrepresentsautomatedmachinesthatperformcontinuousmeasurements andhavetheoptionofreadingthecurrentdataandthepossibilityofdatatransmission.

17 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Passive devices (dry, wet, sticky collectors) are intended for sediment sampling. They are simple and robust, however less reliable. Suspended particulate matter could be measured usinghighvolumesamplers,lowvolumesamplersandfilters(Bizjak,2009). Themostcommoncollectiontechniquesinvolvestheuseofdifferentfiltersforcollectionsof particles from air. Usually sampling devices are designed for specific applications and are thereforedifferent.Besidesimplecollectors(collectingallparticlesthatenteringthesampling device) measurement devices for classifying particles in two or more fractions are used (inertialseparationdeviceslikecyclonesandimpactors)(BaronandHeitbrink,2005). Forthelargerparticles(alsoknownastotalsuspendedparticlesTSP)sedimentationmethod withgravityareused.Thismethoddoesnotobtaindataonthecontentofparticlesin1m 3,but thequantityormassofparticlesperm 2ofthesurfaceintimeasmg/m 2day.Theamountof particulatematterdepositionisdependentonthedirection,currentspeedandmovementofair andprecipitation(fog,rain,snow).Forsmallparticles,whicharedepositedbydiffusionor retainedonsamplinggaugeduetocollision,thedepositiondependsonairflowatthesurface andsamplinggaugemicroporosityandadhesions(Stropnik,1994). Particulatematterdeposition Atmospheric dust (large or coarse particles) has traditionally been considered mainly as a causeofnuisanceorofhealtheffectsduetosecondarypathwaysfollowingitsdepositionto theground.Particulatematterdepositionisthereforemeasuredusingsimplepassivedevices (dry,wet,stickysamplingdevices).Twokindofmeasurementsofdust,mainlyfornuisance purposes,arecommonlymadeusingpassivesamplers,ofdepositionandofthehorizontalflux ofparticlespastasamplingstation(Halletal.,1993).However,thesemethodshavesome deficiencies due to the aerodynamic characteristics of the sampling gauge. Wind induced flowsaroundthegaugeeitherpreventtheentryofparticlesintothegaugeopeningorremoves them (after deposition) due to a wind generated circulation inside the gauge (Hall et al., 1993).Duetoexposuretovariousdisturbancessuchmeasurementarelessreliable.Thestrong dependencyofgaugeperformanceonwindspeedandparticlesizeleadstounrepresentative samplingresults(Halletal.,1993).Neverthelesswithsomeimprovementsofthemeasuring deviceresultsareindicativeandthereforeuseful.

18 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Theresultsofsuchmeasurementareexpresseding/m 2(ormg/m 2)intheunitoftime;times of collection are usually different (Bizjak, 2009). Basic principle of such measurements is gravitationalforcewhichisproportionaltoparticlemassand gravitationalaccelerationand forceparticletosettle. Depositionistheprocessbywhichaerosolparticlescollectordepositthemselvesonsolid surfacesandthusdecreasingtheconcentrationintheair. Therateofdepositionorthedepositionvelocityisfasterforparticlesofalargesize.Very largeparticleswillsettleoutquicklythroughsedimentation(settling)orimpactionprocesses, whileBrowniandiffusionhasthegreatestinfluenceonsmallparticles. Accordingtotheprocessofdepositiontwodifferenttypesofdepositionexistdryandwet. Drydepositioniscausedbygravitationalsedimentation,interception,impaction,diffusionor Brownianmotion,turbulenceandotherprocesses,suchasthermophoresis,diffusiophoresis andelectrophoresis.Wetdepositionincludessomeatmosphericphenomenawhichscavenge aerosolparticlesrain,snow,fog,cloud,dewformationandwashouttheatmosphere(Godish, 2004;Vallero,2008). The amount of dust released to atmosphere increaseswithincreasingwindspeed,withthe handlingofpowderymaterialsintheopenetc.Asimilarsituationoccurswithdustcarried awayfromstockpiles.Thenatureofsaltationprocesswhichliftsparticlesfromthesurfaceis suchthatbelowacriticalwindspeedthereisnoloss, while above it there is a very rapid increaseinthefluxofairbornedustwithsmallfurther increase in wind speed (Hall et al., 1993). Inparticledustsamplingdepositgaugesareusedatpointsofcomplaintorotherareaswhere informationondepositionisrequired(Halletal.,1993).

1.6Legislation ThebasisoftheSlovenelegislationinthefieldofambientairqualityistheEnvironmental ProtectionAct(2002)anditssubsequentDecrees.Theparticulatematterdepositionandits 19 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 limit values were regulated by the Decree on limiting values, alert thresholds and critical emission values for substances into the atmosphere (1994). The mentioned decree has providedmaximumvalueforthemonthly and annualdepositionaswellasthe contentof selectedmetalsindeposition(Table3).

Table3:Limitingvalueforparticulatematterdeposition(Decree,1994) Limiting value(calculatedon timeperiod dailydeposition) particulatematterdeposition 1month 350mg/m 2day particulatematterdeposition 200mg/m 2day Pb 100g/m 2day 1year Cd 2g/m 2day Zn 400g/m 2day In year2002inthefieldofairprotectiontheDecree on sulphur dioxide, nitrogen oxides, particulatematterandleadinambientair(2002)wasadopted.Thisdecreeannulleditsprior Decreeonlimitvalues,alertthresholdsandcriticalemissionvaluesforsubstancesintothe atmosphere(1994).However,limitingvaluesregardingparticulatematterdepositionfromthe annulleddecreewerestillinuse(accordingtointerpretationofARSO)untilJuly2007.On July27 th 2007(Decree,2007)thoselimitingvalueswerefinallyannulled.Thereforethedust depositionlimitingvaluesareusedbytheannulleddecreeasrecommendedvalues.

1.6.1LegislationregardingambientairqualityinSlovenia  Rules on the setting up of ambient air quality monitoring and methods for its implementation (Pravilnik o monitoringu kakovosti zunanjega zraka), Uradni list RS 36/07  Decree on arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambientair(Uredbaoarzenu,kadmiju,živemsrebru,nikljuinpolicikličniharomatskih ogljikovodikihvzunanjemzraku),UradnilistRS56/06  Decree on national emission ceilings for atmospheric pollutants (Uredba o nacionalnih zgornjihmejahemisijonesnaževalzunanjegazraka),UradnilistRS24/05and92/07  Decisiononthedesignationofareasandlevelofpollution caused by sulphur dioxide, nitrogen oxides,particulates, lead,benzene, carbonmonoxideandozoneinambientair (Sklepodoločitviobmočijinstopnjionesnaženostizaradižveplovegadioksida,dušikovih oksidov, delcev svinca, benzena, ogljikovega monoksida in ozona v zunanjem zraku) UradnilistRS72/03 20 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

 Decreeonozoneinambientair(Uredbaoozonuvzunanjemzraku),UradnilistRS8/03  Decreeonbenzeneandcarbonmonoxideinambientair(Uredbaobenzenuinogljikovem monoksiduvzunanjemzraku),UradnilistRS52/02  Decree on sulphur dioxide, nitrogen oxides, particulate matter and lead in ambient air (Uredbaožveplovemdioksidu,dušikovihoksidih,delcihinsvincuvzunanjemzraku), UradnilistRS52/02,18/03and121/06  Decreeonmeasuresformaintainingandimprovingambientairquality(Uredbaoukrepih zaohranjanjeinizboljšanjekakovostizunanjegazraka),UradnilistRS52/02 The particulate matter in ambient air regulated in the Decree on sulphur dioxide, nitrogen oxides,particulatematterandleadinambientair(2002)appliestotheregulationonlyoffine particles PM 10 and PM 2.5. It does not regulate particulate matter deposition. Therefore the recommended values for the dust deposition continues to use the values specified in the annulleddecree(1994).

1.6.2EUlegislation The Treaty on European Union (Treaty, 1992) on the environment is based on the precautionary principle and on the principles that preventive action should be taken, that environmentaldamageshouldasapriorityberectifiedatsourceandthatthepollutershould pay.Thepolicyontheenvironmentfollowspreserving,protectingandimprovingthequality oftheenvironmentandprotectinghumanhealth. ThechangeoftheSloveneregulationsisaconsequenceoftheharmonizationoftheSlovene legislationwiththelegislationoftheEU.Legislationrelatingtoairpollutionwithparticulate matter,primarilyaddressthefollowingthreedirectives: CouncilDirective96/62/ECof27September1996onambientairqualityassessmentand management;OfficialJournalL296,21/11/1996P.00550063, CouncilDirective1999/30/ECof22April1999relatingtolimitvaluesforsulphurdioxide, nitrogenandoxidesofnitrogen,particulatematterandleadinambientair;OfficialJournalL 163;29/06/1999P.00410060, Council Directive 2004/107/EC of 15 December 2004 relating to arsenic, cadmium, mercury,nickelandpolycyclicaromatichydrocarbonsinambientair;OfficialJournalL23, 26/1/2005P.00030016. 21 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 ThegeneralaimoftheDirectiveonambientairqualityassessmentandmanagement(1996)is todefineandestablishobjectivesforambientairqualityintheCommunitydesignedtoavoid, preventorreduceharmfuleffectsonhumanhealthandtheenvironmentasawhole,toassess the ambient air quality on the basis of common methods and criteria, to obtain adequate informationonambientairqualityandensurethatitismadeavailabletothepublicandto maintainambientairqualitywhereitisgoodandimproveitinothercases.Accordingtothis Directive(1996)amongotherairpollutantsalsofineparticulatemattersuchassoot(including

PM 10 ) and suspended particulate matter is taken into consideration in the assessment and managementofambientairquality. ThesecondEUDirective(CouncilDirective1999/30/ECrelatingtolimitvaluesforsulphur dioxide,nitrogendioxideandoxidesofnitrogen,particulatematterandleadinambientair, 1999)establishedlimitingvaluesforconcentrationsofpollutantsinambientairwithintention toavoid,preventorreduceharmfuleffectsonhumanhealthandtheenvironmentasawhole, manageassessmentforthosepollutantconcentrationsonthebasisofcommonmethodsand criteria,ensurethatadequateinformationareavailabletothepublicandmaintainambientair qualitywhereitisgoodandimproveitinothercases.AccordingtothisDirective"pollutant" shallmeananysubstanceintroduceddirectlyorindirectlybymanintotheambientairand likely to have harmful effects on human health and/or the environment as a whole, while "level"shallmeantheconcentrationofapollutantinambientairorthedepositionthereofon surfacesinagiventime. The objective of Council Directive 2004/107/EC relating to arsenic, cadmium, mercury, nickelandpolycyclicaromatichydrocarbonsinambientairestablishestargetvaluesforthe concentrationofarsenic,cadmium,nickelandbenzo(a)pyreneinambientairtoavoid,prevent orreduceharmfuleffectsonhumanhealthandtheenvironmentasawhole.Additionally,this Directivetriestosetcommonmethodsandcriteriafortheassessmentofthoseconcentrations in ambient air as well as on the deposition of particulates. Another goal is to ensure that adequateinformationonconcentrationsofmetalsandpolycyclic aromatic hydrocarbons in ambientairaswellasonthedepositionobtainedfromparticulatesandareavailabletothe public. According to this Directive "total or bulk deposition" means the total mass of pollutantswhichistransferredfromtheatmospheretosurfaces(e.g.soil,vegetation,water, buildings,etc.)inagivenareawithinagiventime. 22 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

These directives are partly revised in Directive on ambient air quality and cleaner air for Europe(Directive,2008).From11 th ofJun2010Directiveonambientairqualityassessment andmanagement(1996)andDirectiverelatingtolimitvaluesforsulfurdioxide,nitrogenand oxides of nitrogen, particulate matter and lead in ambient air (1999) will be annulled and replacedbythisDirective.

23 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

2PURPOSEOFTHESTUDY Inadditiontobeinganuisance,particulatematterdepositioncanalsobeacauseofhealthand otherproblems,eitherfromdirectinhalationoringestionorthroughsecondarypathwaysafter particleshavedeposited.InhabitantsofAnkarananditssurroundingshavebeencomplaining forseveral yearsabout dustdepositionintheir living environment (houses, backyards and gardens).They believethemajorcontributorof dustistheactivitiesatthePortofKoper, especially activities in coal and iron ore stockpiles at EET. Until now no study of the contributionofparticulatematterdepositionfromPortofKopertosurroundingareahasbeen conducted. Thepurposeofthestudywastocollect,analyzeand characterize the air borne particulate matterdepositedintheresidentialareasaroundtheportofKoperwithaimtocorrelatethese particles with port activities, especially with activities on EET terminal (coal and iron ore manipulation). Standard and modified methods for the collection of particulate matter deposition were employed. Some modifications were made in order to optimize the method, and other to maximize the number of sampling sites and minimize costs. Deposition was determined gravimetrically.Inaddition,furtheranalysisofmetalscontentinthesamples,examinationby electronmicroscopyandanalysisofstablecarbonisotopeswereperformed,allwithaimto detectandcharacterizeparticlesindepositionsamplesandattempttocorrelatetheseparticles with activities at EET. Budgetary constraints necessitated limiting analysis for metals, measurement of carbon isotope ratios and electron microscopic determination of chemical compositionandmorphologytoonlytheannualcompositesamples. Additionally, a new instrument for quick estimation of direction and quantity of airborne particulatematterandthereforedeterminationofthemainemissionsourcesofdustparticles intheobservedareawasdevelopedasaresultofthisstudy. TheresultsofthisinvestigationcanbeusedforassessmentofdustdepositioninthePortof Koper surroundings. Additionally, on the basis of the obtained results the effectiveness of preventive measures undertaken by the Port of Koper for prevention of dusting in surroundingscanbeassessed. 24 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Hypothesis 1.CoalandironoredepotatEETterminalinPortofKoperrepresentoneofthesourcesfor particulatematterdepositioninsurroundingarea. 2.AnkarananditssurroundingsisheavilyburdenedwithdustdepositionfromthePortof Koper. 3.DustpreventivemeasuresundertakenbythePortofKoperleadtoreductionofparticulate matterdepositioninsurroundingareas.

25 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

3MATERIALSANDMETHODS Pictures,usedinmasterthesisworkweretakenbyauthorduringthetimeofthestudy(2005 2008).Alsootherfigures(exceptthosecitedtosource)arealsoauthorswork.

3.1Timeschedule Theresultspresentedherearetheoutcomeoftwooneyearlongstudieswheredustemissions aroundPortofKoperwasinvestigated.Thefirst(preliminarystudy)wasconductedfrom15 th ofOctober2005to15 th ofOctober2006.Sampleswerecollectedoncepermonth.According topreliminaryresultsfromfirststudyanewmodifiedandupgradedstudywaspreparedand conductedfrom1 st ofDecember2007until30 th ofNovember2008.Sampleswerecollected andanalyzedtwicepermonth(gravimetrically)onthe1 stand15 th dayofeachmonthfora oneyearperiod.

3.2Descriptionandlocationofthesamplingsites The sampling collection sites used for identification of particulate matter deposition and estimationofinfluenceofPortofKoperontotaldustdepositiononsurroundingareawere located around Port of Koper. Some of them were placed directly in the residential environment. The choice for sampling sites location on the micro level was based on the anticipated influence of emissions in the nearby area. Micro level means location of the measurementspotandinfluencesonitbylocation(distancebetweenthenearbybuildings, treesetc.).Thesamplinggaugewasplaced1.5–2metersabovethe ground(theheightof breathingzoneofanadultperson).Noobstacles(thatcouldhaveinfluenceontheairflow passingthesamplinggauge)whereincloseproximityofthesamplingsites. InthepreliminarystudysixsamplingsitesintheareaofAnkarananditssurrounding(Figure 5)wereincluded.Somesiteswerechosenfortheirproximitytopotentialdustsources.Sites 1, 2, and 3 were located downwind from a dust source in order to estimate how distance influenceonthedustsedimentation.Thefirstfivesamplingsiteswereplacedintheprevailing directionofthewindorinthedirectiontowardtheresidentialarea.Allofthesamplingsites wereincloseproximitytothePortofKoper,orientedtowardmunicipalityofAnkaran.The sixthsamplingsitewasusedasacontrolsampleofthebackground(locatedintheresidential

26 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 areaofHrvatini,whereduetodistancefromPortofKoperandtheheightabovesealevela negligibleinfluenceoftheterminalofstrewncargoofthePortofKoperwasexpected).

Figure 5: Locations of sampling sites preliminary study (geographical source: Google Earth www.earth.google.com) DuringstudyfromDecember2007toDecember2008,tensamplingsitesalsointheareaof KoperandAnkaran(Figure6)wereincluded.EightsamplingsiteswereplacedaroundPortof Koper in prevailing wind directions or directions towards residential areas. Two sampling sites(6and7)wereusedasacontrolsampleofthebackground.Samplingsite6waslocated intheresidentialareaofHrvatini.Samplingsite7waslocatedonDebeliRtič,placefaraway fromPortofKoper.

27 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure 6: Location of sampling sites study 2007/08 (geographical source: Google Earth www.earth.google.com) Samplingsites1,2and3wereplacedinlinearline(Figure7)inpredominantwinddirection (NESW).Samplescollectedinthismannerwouldallow determination of the impact of distancefromthecoalandironoredepotontheamountofdustdeposition.

Figure7:Lineardirectionofsamplingsites1,2and3 28 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Selectionofthedirectionofthelinearsamplingsites1,2and3inpredominantwinddirection (NE SW) was based on predominant wind direction for the Port region for year 1996 (Kontičetal.,2001). Appearanceofthesamplingsitesandviewfromsamplingsitestowardcoalandironoredepot aregiveninthefollowingfigures(Figure8toFigure27).Orientationofthesamplingsites was given regarding to the starting point EET depot. Geographical source for figures a viewfromtheairwasGoogleEarth(www.earth.google.com). Legend:

Figure8:Samplingsite1;atthePortof Figure 9: A view from sampling site 1 Koperfence,about700mawayfromthe towardsEETdepot EETdepot,directionNE

Figure10:Samplingsite2;Atthehouse Figure 11: A view from sampling site 2 on the Železniška street 2, about 1100m towardsEETdepot awayfromtheEETdepot,directionNE

29 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure 12: Sampling site 3; Residential Figure 13: A view from sampling site 3 house Andrioli, Jadranska c. 2, about towardsEETdepot 1500 m away from EET depot, direction NE

Figure 14: Sampling site 4; Rožnik Figure 15: A view from sampling site 4 residentialarea,about1100mawayfrom towardsEETdepot EETdepot,directionNE

Figure 16: Sampling site 5; residential Figure 17: A view from sampling site 5 houseRažman,Jadranska19,about1200 towardsEETdepot mawayfromEETdepot,directionN

30 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure 18: Sampling site 6; residential Figure 19: A view from sampling site 6 house, Hrvatini 117, about 2600 m away towardsEETdepot fromEETdepot,directionNE(control)

Figure20:Samplingsite7;Debelirtič,st. Figure 21: A view from sampling site 7 Jernejbay,about3600mawayfromEET towardsEETdepot depot,directionNW(control)

Figure 22: Sampling site 8; center of Figure 23: A view from sampling site 8 Koper,Vergersquare,about1800maway towardsEETdepot fromEETdepot,directionSW

31 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure 24: Sampling site 9; Žusterna, Figure 25: A view from sampling site 9 beside swiming pool, about 3000m away towardsEETdepot fromEETdepot,directionSW

Figure 26: Sampling site 10; center of Figure27:Aviewfromsamplingsite10 Ankaran, about 1800 m away from EET towardsEETdepot depot,directionN

3.3Collectionofparticulatematterdeposition Thecollectionofparticulatematterdepositionwasconductedwiththestandard Bergerhoff sedimentators(Figure28)accordingtoCommissionReinhaltungderLuftimVDIundDIN GuidelineVDI2119part2(1996)MeasurementofParticulatePrecipitationsDetermination ofdustprecipitationwithcollectingpotsmadeofglass(VDI,1996).Thesamemethodwas applied also in the proposition of guidelines of the Association of clean air societies of Yugoslavianumber201(SDČVJ,1987).Thestatedmethodisusedasthestandardmethod formeasuringtheparticulatematterdepositioninSlovenia.Oneachsamplingofthesites, there were placed three (during preliminary study 2005/06) and two (study 2007/08) BergerhoffsedimentatorsaccordingtoVDIstandard(1996).

32 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure28:ComponentsofastandardizedmeasuringdevicetypeBergerhoff(VDI,1996) (Dimensionsareinmillimeters) Themethodforcollectionofparticulatematterdepositionisnotperfect,becauseitdoesnot entirely include the wind contribution. When wind blows through the sampling gauge, majority of particles are not deposited on the ground or in the sampling gauge. They are blownawaywiththewindandprecipitatewhenwindstopblowingorwhenhitstheobstacle. That'swhymetalscreenasobstacleorientedtowardoredepot(EET)wasadded.Thatisthe reasonthemethodwasmodifiedbyaddingametalscreen(20cmx30cmsamplingsites marked with letter B), which interceptedparticulatematterdepositions spreadhorizontally. TheflowchartofsamplingsitesisshowninFigure29.Toimprovemethod,distilledwater wasaddedtopreventthewindfromblowingawaytheparticulatematterdepositionfromthe containers.Themainpurposeofthemodificationwastoestablishandquantifytheparticulate matterbroughtalsobythewindfromtheobserveddirections.

33 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure29:AppearanceofsamplingsiteA,BandC. Duringpreliminarystudythreesamplecollectorswereplacedateachsamplingsite(Figure29 and Figure 30). The mass of material deposited in the first container, container A was determinedmonthly.Themassofmaterialdepositedinthesecondcontainer,containerC,was meant to be determined annually. The mass of material deposited in the third container, container B, from both (vertical deposition and additional horizontal contribution) was determined monthly. The yearly sample from container C was unusable because of the presenceofdecayedinsectsandplantleavesandcontaminationwithalgae.Forthisreasonthe yearlyvalueofparticulatematterdepositionwascalculatedbythemonthlyvalues.Therefore duringstudy2007/08thirdcontainer(C)wasomitted(Figure31).

Figure30:Viewfromsampling Figure31:Viewfromsampling site5(2005/06) site5(2007/08) Duringpreliminarystudy(2005/06)sampleswerecollectedandanalyzed(gravimetrically)on the15 th dayofeachmonthforaoneyearperiodfromOctober2005toOctober2006.During study2007/08sampleperiodwasshortenedto15days,sampleswerecollected(andanalyzed

34 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 gravimetrically)twicepermonthon1 st and15theachmonthfrom1 st ofDecember2007to 30 th November2008.

3.4Gravimetricanalysis The masses of particulate matter deposition on each sampling site were determined by gravimetricanalysis.Eachmonth,theglasscollectingbottlesfromeachsamplingsiteswere takentothelaboratory.Wheninsectsorpartsofinsects,partsofleafs,etc.wereobservedto be present. These were removed prior to the analysis. The samples were analyzed by the gravimetricmethodandtheamountofdustdeposition was determined in mg/m 2 day. The sampleswerefilteredthroughapreviouslydried(105°C±5°C)cellulosenitratemembrane filter of pore size 3 m (ME 29 Scheilcher & Schuell and Sartorius 1130247N) using a vacuumfilteringdevice.Collectingbottleswererinsedwithdistilledwatertowashoutallthe particles.AmodifiedprocedureISO11923(1997)wasused.Threeblankfilterswerecarried throughtheprocedure.Thetotalvolumeoffiltratewasmeasured,and250mLofthefiltrate wastransferredtoapreviouslydried(105°C±5°C)cooledandweighedevaporatingdish. contents of the dish were evaporated to dryness at a temperature of 80°C ± 5°C. Before analyzingthesamples,blankfiltersandevaporatingdishwerethermostatedfor60minutesat 105°C±5°C.Attheend,filterpaperandevaporatingdisheswereweightedandthetotaldust amountwascalculated.Ananalyticalbalance,capableofweighingwithaprecisionofatleast ±0,1mgwasused(MettlerToledoAT261andSartoriusME614S).Thesedatarepresent massesoftheparticleslargerthan3m(massonthefilter)andthemassesoftheparticles smaller than 3 m (mass in the evaporating dish). After the gravimetric analysis of the sample, the amount of dust deposition was calculated and represent as mg/m 2 day using Equation1and2.

35 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 (m + m ) ⋅ f Equation 1: m = 1 2 (1) A⋅ t Wherethesymbolsmeanthefollowing: mmassoftheparticulatematterdeposition(mg/m 2day)

m1massofthesedimentonthefilterparticleslargerthan3m(mg)

m2massoftheparticlesinthefiltrateparticlessmallerthan3m(mg) f10,000cm 2/m 2(conversioninm2) Acollectingarea(cm 2) tsamplingperiod(days)

V1 Equation 2: m2 = m3 ⋅ (2) V2 Wherethesymbolsmeanthefollowing:

m2massoftheparticlesinthefiltrateparticlessmallerthan3m(mg)

m3massoftheparticlesinevaporatingdish(mg)

V1totalvolumeofsampleafterfiltration(mL)

V2evaporatedvolumeofsampleafterfiltration(mL)

3.5Preparationoftheannualsamplesfordifferentanalysisfiltersprocessing During preliminary study (2005/06) samples were collected once a month. For electron microscopy,smallfractionoffiltersfromsamplingperiod15 th Februaryto15 th March2006 weretaken(Figure32).Forallotheranalysisentirefilterswereused.Noothertreatmentof filterswasmade.

36 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure32:Filterspreparedforelectronmicroscopy(15.2.200615.3.2006) Duringstudy2007/08,samplesforeachsamplingsitewerecombined.Foreachanalysis,part oforiginalfilter(Figure33)wastakenforfurtherprocessingasdescribedindetailforeach methodseparately. 1Analyzesofmetalcontent 2Aalyzesofthe12C/13Cisotoperatio 3Electronmicroscopy Figure33:Appearanceoftemplatemodelforfilterdivision

3.6Identificationofpossiblehealthrisks

3.6.1Chemicalanalysisofselectedmetalsindepositedmatter Selected metals in particulate matter deposition was determined. During preliminary study 2005/06, chemical analysis for determination of metals was done once for each sampling locationon1yearsample(particulatematterdepositionwascollectedforentireyearbefore beinganalyzed)byatomicabsorptionspectrometry.Theanalysiswasdoneinthelaboratory ofthePublicHealthInstituteofKoper.InTable4methods for chemicaldeterminationof selectedparticlesarepresented.

37 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Table4:Methodsforchemicaldeterminationofselectedparameters Parameter Method Iron EPA7380 Aluminium SISTENISO15586:2003 Copper SISTISO8288 Zinc SISTISO8288 Cadmium SISTENISO15586:2003 Lead SISTENISO15586:2003 Totalchromium SISTENISO15586:2003 Nickel SISTENISO15586:2003 Formetalanalysisofthesamplescollectedinthe2007/08study,halfofeachfilter(Figure 33)wascombined.Thetotalannualsamplethereforerepresenta24halffiltersfromeach15 dayperiod.Theseanalysisofmetalswasconductedinalaboratoryforsanitarychemistryof thePublicHealthInstituteofCelje.Sampleswerepreparedbymicrowavedigestionwiththe

addition of 10 mL HNO 3 followed by dilution up to final volume of 500 mL. The measurementwascarriedoutbyICPMSandtheresultsweregiveningofeachmetalinthe sample,asfollows: Measuredvaluesarecalculatedandgivenasgofmetalpersample. Annualsampleforeachsamplingsiterepresentsatotalof24samplescollectedtwiceper monthduringstudy2007/08. Onlyhalfofthefilterswereusedfortheanalysisofmetals,remainsoffilterswereusedfor otheranalyzes. Forvariousreasons(vandalism,mechanicaldestructionofthesample,organicpollution) someoffilterswerediscardedwithoutmakingtheanalyses(Annex1). TheconversionofmetalsinthesamplewascarriedoutusingEquation3. m ⋅ 2 Equation 3: m = ms (3) m π ⋅r 2 ⋅t Wherethesymbolsmeanthefollowing: 2 mmmassofthemetalinyearlysample(g/m day)

mms massofthemetalinsample(g) 2factor2(using1/2ofthefilter) π 3,14(Pi) rradiusofcollectingpot(m) tsamplingperiod(days) 38 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

3.6.2Gammarayemitteractivitymeasurementsincoalandironoresamples Becauseoftheimpuritiescoalcouldincludesomeradionuclides(VanHook,1979;Dowdall et al., 2004; Ward and SuárezRuiz, 2008) and thus represent health risk, the gammaray emittersactivitywasfirstmeasuredinthesamplesofcoalandironore.Whenthegammaray emitters activity is found to be above background, further analyses of the samples of particulatematterdepositionwereperformed. Thegammarayemitteractivityinthesampleofcoalandironorewasmeasuredusinghigh resolution gammaray spectrometry (HRG) following LMRDN10 (Korun and Glavič Cindro, 2003) procedure in the Jožef Stefan Institute. The reported uncertainties were calculated in accordance with GUM guidelines (1995). The results of the measurement of sampleswithgammarayspectrometeraretheactivitiesofallgammarayemitterspresentin thesampleinconcentrationsexceedingtheirMinimumDetectableActivities.Themeasured activityof 40 Kmakespossibleacomparisoninconcentrationofthisvaluewiththeresultofa chemical analysis, offering a way for an independent check of activity measurements. The specificactivityof 40 Kmeasuredinthesampleofcoalwas25±4Bq/kgcorrespondingto780 ±120ppmofpotassium.Specificactivityof 40 Kmeasuredinthesampleofironorewas35± 6Bq/kgcorrespondingto1100±190ppmofpotassium.Theactivityof 226 Raisdetermined from activities of shortlived radon progenies ( 214 Pb and 214 Bi). The factor describing the equilibrium between radium and radon progeny was calculated fromtheemanationrateof radonfromthesampleandthetimeintervalbetweensamplepreparationandmeasurement. TheactivityofuraniumisdeterminedassumingthatU238isinequilibriumwithprogenies 234 Thand 234m Paandthattheratioofconcentrationsof 235 Uand 238 Uequalsitsnaturalvalue. Analyzeswereperformedonlyduringpreliminary study(2005/06)onsamplesofcoaland ironoregatheredintheoredepotontheEETterminalinPortofKoper.Specificactivitiesof gammarayemitterswerecalculatedbacktothedate25.8.2006.Thesubsampleof0.35kgof coaltakenfromthe0.9kgoforiginalsamplematerialandthesubsampleof1.16kgofiron oretakenfromthe1,3kgoforiginalsamplematerialwereanalyzed.Additionallyasampleof soil(fromuncultivatedlandareainSlovenia)wasanalyzedasexampleofnormalamountof radionuclidesinthesoil.

39 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 3.7ApplicationofSEM/EDXS(ScanningElectronMicrosopy/EnergyDispersiveXray Spectroscopy) Thepresenceofcarboninthesamplescouldbeanalyzedusingseveraltechniques.However, problems occur whenever it is necessary to distinguish the individual sources of carbon. Organicandinorganiccarboncanbedeterminedinseveralways. However,problemsareencounteredwhenattemptingtoidentifyandquantifyparticlesofcoal inenvironmentalsamplescontainingplantfragments,insectfragments,pollen,et.cetera.For this reason SEM/EDXS (scanning electron microscope with energy dispersive Xray spectroscopy) allowed the detection of the morphology structure of particles in particulate matterdepositionaswellasthedeterminationofthechemicalcomposition.TheSEM/EDXS measurements were made in the Department for Nanostructured Materials at Jožef Stefan Institute. Surface of samples were scanned using electron beam with high energy (20 keV). Upon irradiation with electrons, atoms that make up the sample produce a signal that contains informationaboutthesample(surfacetopography,chemicalcompositionandotherproperties suchaselectricalconductivity).MoreaboutSEM/EDXSmethodologycanbefoundinreview byGoldsteinetal.(2003),Russ(1984),Scottetal.(1995)andHeinrichetal.(1991). Duringpreliminarystudyonlysamplesfromsamplingperiodfrom15 th ofFebruaryto15 th of March2006wereanalyzedwithelectronmicroscopysinceduringthistimeperiodpresenceof highamountofcoalinthefilterswereexpected.Onlyasmallfractionofeachfilterwastaken fromtheoriginalforanalysis(Figure32).Inordertodeterminatecoalandironoreinsamples ofparticulatematterdeposition,originatingfromEETdepotatthePortofKoper,shape,size and elemental chemical composition of collected particulate matter was determined. AdditionalsamplingsiteatBeliKrižareainPortorož(Figure34)wasusedforcollectionof particulatematterdepositioninordertoanalyzeitasacontrolfortheelectronmicroscopy.

40 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure34:LocationofadditionallyreferencesamplingsiteatBeliKriž(geographicalsource:Google Earthwww.earth.google.com) Forelectronmicroscopyduring2007/08study,samplesfromindividualsamplingperiodin oneyearlysampleforeachsamplingsitewerecombined.Foranalysis,apartoforiginalfilter wastobeprocessedfurther.Sampleswereanalyzedqualitativelyandquantitatively. Samples were prepared by our own method, which was performed as described. Cellulose nitratemembranefilters(poresizeof3m)havinganoveralldiameterof47mmandan effectivediameterof41mmwereused.Fromeach1/4offilter(No.3inFigure33)thecircle diameterof6mm(1/61thesurfaceofthesample)wascut.Duetovariousreasons(deliberate contaminated sample (sand, firecracker, etc..), organic polluted sample (leaves and the droppings of birds), the error in the process (spilled filter with alcohol, the occurrence of copperoxide)andtheoccurrenceofsaltsinthesample),itwasnecessarytoeliminatefrom furtheranalysisafewsamplesfromindividualmonitoringsitesthroughouttheyear(Annex 1).Cutsectionsofthefilter(2r=6mm)werecombined(inannualterms)andinsertedinto50 mLtesttubes. Forresuspensionindistillatedwatersamplesweretreatedbythefollowingprotocol: 1.Cutsectionofthefilterswasadded15mLofdistilledwater

41 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 2.Homogenizationonorbitalshaker(Vibromix10) 3.Treatmentwithanultrasonicprobe(cycle0.9,amplitude100%)forthreeminutes 4.10minutesbreak 5.Treatmentwithanultrasonicprobe(underthesameconditions)forfiveminutes 6.Homogenizationonorbitalshaker(Vibromix10)andvisualassessment 7.10minutebreak 8.Treatmentwithanultrasonicprobe(underthesameconditions)forfiveminutes 9.30minutesbreak 10.Treatmentwithanultrasonicprobe(underthesameconditions)foroneminute 11.Homogenizationonorbitalshaker(Vibromix10) 12.Removalofwashedcutsectionofthefilters(2r=6mm) 13.Intesttubedistilledwaterwasaddedupto50mL During this procedure yearly sample from each sampling site was prepared. From such prepared sample, 10 mL were taken out using automatic pipette and transferred to the MachereyNagelpolycarbonatemembranefilter(poresize0.4m,2r=47mm)andfiltered usingavacuumfilteringdevice.SamplespreparedinthiswayweretransferredtoDepartment forNanostructuredMaterialsatJožefStefanInstitute,wheretheanalyseswereconducted. A qualitative analysis for chemical composition, morphological appearance and size of individualparticleswasperformed.Alsoquantitativestereologicalanalysiswasperformed thenumberoftheparticleswerecountedonasizeknownarea.Resultsweregivenasnumber ofparticlesonthefiltersurface. Fromtheprepreparedpolycarbonatefilters(poresize0.4m)approximately5x5mmparts werecutoutinthecenterofthefilterandpreparedforprocessingintheSEM. Pieces of filters were fixed on sample holder using doublesided selfadhesive conductive tape.Upto14filtersampleswereplacedononesampleholder.Thinlayerofcarbonwas deposited on filter samples with Balzers carbon coater. Sample holder was transferred to scanningelectronmicroscopeforfurtherinvestigations.

42 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Thesampleswereinvestigatedat500xmagnification.Oneachsampleupto12areaswere investigatedasseeninFigure35andFigure36.Theresultsweregivenasaveragenumberof particlesonthefilter(number/cm 2).

Figures35and36:SEMmicrographsoffiltersamplewhereinvestigatedareascouldbe seen(duetochargebuiltupthoseareashavebrightcontrast) Inthecaseofthecontrolsample(blankcellulose nitratefilterporesize3m)onlysmall piecesoffilter(Figure37)weredetected.Noparticleswerefoundincontrolsamples.

Figure37:Pieceofcellulosenitratefiltercontrolsample

43 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 The number of particles on each analyzed area (Figure 38) was calculated per cm 2 of the filter.Oneachsampleseveralareaswereusedforcountingofparticlesandaveragenumber of particles was calculated. The average number of particles has been multiplied by the numberof2551.02(normalizationto1cm 2).Theresultwasgivenastheaveragenumberof particlespercm 2ofthefilter.

Figure38:SchematicofanareaofaSEMimagetakenat500xmagnification(observed areais39200m 2)

3.8Theratioofcarbonisotopes 13 C/ 12 Cmeasurementinthesample Stable isotopes of light biogenic elements (including carbon) are ideal for monitoring the naturalfluxofbiogeochemicalandtransportprocessesindifferentenvironments.Using 13 C, circulationofcarbonintheenvironmentcanbemonitored.Inaddition,theoriginoforganic carbon can be determined. Different sources of carbon in the environment have a specific ratioofcarbonisotopes 13 C/ 12 C.Analyzesof 13 C/ 12 Cisotoperatioinsamplesofparticulate matter deposition was therefore used for the estimation of the proportion of carbon in the sampleswhichoriginatedfromthecoal. Theratioofstablecarbonisotopes 13 C/ 12 Cindifferentsamplesfromtheenvironment(water, biological material, soil, sediment) was determined with mass spectrometry. The isotopic compositionortheratiobetweentheheavierandlighterisotopesofcarbonisexpressedas δ value. δvalue represents the relative difference of isotopiccompositionofresearchsample (sa)accordingtotheselectedstandard(st)andisexpressedin‰.

44 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

R − R Equation 4: δ 13C= sa st *1000 (4) Rst Wherethesymbolsmeanthefollowing: 13 12 R sa C/ Cisotoperatiointhesample 13 12 R st C/ Cisotoperatioinstandard Internationalstandardsforisotopicmeasurementsare provided by the International Atomic Energy Agency (IAEA) in Vienna. Standards are selected accordingly to similarity of the average prevalence of certain isotopes in nature. For carbon a carbonate standard VPDB

(ViennaPeeDeeBelemnite)isusedwithR st =0.0112372(Craig,1957). Theratioofcarbonisotopes 13 C/ 12 Cwasmeasuredonlyinsamplesfromstudy2007/08.One quarter of each filter from different sampling period was used (No. 2 in Figure 33). For analyzestwofiltersfromsamemonthwerecombined.Inthiswayforeachsamplingsite12 monthlysamples(total240samples)wereobtained.Samplewasscrapedfromeachquarterof thefilterusingsurgicalscalpelandplacedintesttube(volume10mL).Furtheranalysisofthe samples was performed at the Department of Environmental Sciences of Jozef Stefan Institute.Eachsamplewasinsertedintothesilvercapsule(Serconsc0037,Pkof250;Silver Capsules5x9mm)andanalyzedusingfollowingprocedure: On samples in silver capsule first 3 M HCl for removing inorganic carbon was applied. Preparedsamplewaslaterdriedinthesandbathat60°Cuntilthesamplewascompletelydry. Thesamplesizedependsonthecarboncontent.Foranalysisminimum200gofcarbonis needed.Measurementsofcarbonisotopiccompositionwasperformedonmassspectrometer foranalysisoflightisotopes(IsotopeRatioMassSpectrometryIRMS)EuropaScientific20 20 with preparation module for solid and liquid samples. Accuracy and precision of the measurements was monitored with the use of laboratory standards. For carbon urea C standard with δ 13 C value of 30.6 ± 0.2‰ was used. Additionally the quality of the measurementsweremonitoredusingreferencestandards IAEANBS(oil), IAEACH7and IAEACH6withδ 13 Cvaluesof29.7±0.2‰,31.8±0.2‰and10.4±0.2‰,respectively. Theprecisionofmeasurementwasusually0.2‰.

45 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 UnderthesameconditionsthecontrolsampleandasampleofcoalfromEETlandfillwere analyzed.Onthebasisofthemeasuredratiosofstablecarbonisotopes 13 C/ 12 Cinthemonthly samples, control and coal from EET depot content of the coal in samples were calculated accordingtoisotopicmassbalanceequations(Equation5).

δ13C = F *δ13C + F *δ13C Equation 5: sample coal coal control control (5) 1 = Fcoal + Fcontrol Wherethesymbolsmeanthefollowing: 13 δ Csample isotopiccompositionofthesample 13 δ Ccoal isotopiccompositionofthecoal 13 δ Ccontrol isotopiccompositionofcontrol

Fcoal thefractionofcoalinthesample

Fcontrol thefractionofcontrolinthesample

3.9 Alternative method for quick estimation of direction and quantity of particulate matterdepositionandimpactionparticlescounting Foraquickestimationofthedirectionandquantityofparticulatematterand,therefore,the determinationofthemainsourcesofemissionsofdustparticlesinthestudyarea,asimple alternative measurement device based on deposition and/or adhesion was developed. The basic idea was to collect the particulate matter from air on adhesive material (medical Vaseline).Thismeasurementdeviceenabledcollectionofparticlesinboththehorizontaland verticaldirections.Aplasticballof20cmdiameter,coveredwithmedicalVaselinewasused forthemeasuringdevice(Figure39).Ithasholeatthebottomforwoodenstickservedasa carrier.Samplingdeviceswereplaced1.5to1.7mabovetheground(theheightofbreathing ofanadultperson)andlocatedaroundthecoalandironoredepotinPortofKoper.

46 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Thediameteroftheball20cm(0.20m) Calculated area of the ball (the trap surface) = 1256 cm 2 (0.1256m 2) Figure39:Samplingdevice1 Samplingdevicetype1wasputonthesamplingsite1,2,3,4,5and10atdifferenttime intervals during the study 2007/08.Oneachball,thepointsofthecompassweremarked. Samplingdevice1wasinstalledbesidethestandard Bergerhoff sedimentators. Location of samplingsitesmarkedwiththedirectionoftheball,orientedtowardsEETdepotandPortof KoperisshowninFigure40.

47 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure 40: Location of the measuring device type 1 ball (geographical source: Google Earth www.earth.google.com) Thediameteroftheballis20cm(0.20m),calculatedareaoftheball(thetrapsurface)is 1256cm 2(0.1256m 2).Eachballonthemeasuringsitewasexposedfor1month.Afterthe exposure time, balls were analyzed in laboratory. Particles were counted manually using magnifier lenses on each main points ofthe compass(N,S,EandW)andfurtherinthe directionorientedtowardsEEToredepot.Particlesoneachsideoftheballwerecounted5 timesonsurfaceof1cm 2usingtemplatemodel(Figure41).

1 2

3

4 5 Figure41:Appearanceoftemplatemodelforparticlescounting Additionally,digitalphotographyofeachballwastakenwithsinglelensreflexcameraCanon EOS350Dforfurtheranalyses.Picturesfrom15 th ofOctoberto15 th ofNovember2008were processed andanalyzed;asopposedtomanualcounting of particles, where six onemonth averagesampleswereanalyzed.

48 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Computer software IT 3.0 (Image Tool 3) was used for counting particles on the digital images.AcomputerprogramIT3version3.0isanopencodeprogramfortheanalysisand image processing. The program was developed by a group of experts Don Wilcox, Brent DoveDossMcDavidandDavidGreerfromtheUniversityofTexasHealthSciencecenterin SanAntonio(UTHSCSA).Programenablesviewing,editing,analyzing,compressing,storing andprintingimages.Theprogrammayprocessdifferenttypesofimageformats,including BMP,PCX,TIFF,GIFandJPEG.Programenablesautomaticparticlecounting(blackdots) inprepreparedpictures.Resultsofcountingwerepresentedasnumberofparticlespercm 2. Additionaly scanning electron microscope with energy dispersive Xray spectroscopy (SEM/EDXS) was used for detection of the morphology structure of particles trapped on samplingdevice(plasticball)aswellasthedeterminationofthechemicalcomposition.The SEM/EDXS measurements were made in the Department for Nanostructured Materials at Jožef Stefan Institute. The surface of 1 cm 2 were scraped and transferred on the Macherey Nagel polycarbonate membrane filter (pore size 0.4 m, 2r = 47 mm) and examined by SEM/EDXS.

49 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4RESULTS PARTIpreliminarystudy

4.1Resultsofpreliminarystudy(15 th October200515 th October2006)

4.1.1GravimetricanalysisofparticulatematterdepositionsamplingsiteA Themonthlyparticulatematterdepositionwascollectedonthe15 th ofeachmonthforaone yearperiodfromOctober2005toOctober2006. InTable 5 and Figure 42, the measured monthly deposition of particulate matter using standardized method of collection of particulatesdeposition(samplesmarkedwithletterA)ateachsamplingsites(inmg/m 2day) arepresented.Verticaldepositionwasdifferentiatedfromverticalplushorizontaldeposition asAandB,respectively.Additionallymassesofparticlessmallerthan3marepresented (Table6).TheparticulatematterdepositionanditslimitvalueswereregulatedbytheDecree on limiting values, alert thresholds and critical emission values for substances into the atmosphere(1994),whichwasannulledinJuly2007,thereforeforresultsfromtimeperiod 2005/06thoselimitingvalueswerestillused.

Table5:MonthlymassofparticulatematterdepositionsamplingsitesA(mg/m 2day) 1A 2A 3A 4A 5A 6A limitingvalue** 15.10.15.11.2005 23 38 16 65 45 54 350 15.11.15.12.2005 24 66 29 20 51 168 350 15.12.15.01.2006 33 52 44 29 66 62 350 15.01.15.02.2006 34 14 35 85 13 13 350 15.02.15.03.2006 40 209 390 1216 365 255 350 15.03.15.04.2006 132 71 46 357 65 142 350 15.04.15.05.2006 145 203 164 327 313 279 350 15.05.15.06.2006 53 262 300 328 537 324 350 15.06.15.07.2006 128 635 288 344 738 201 350 15.07.15.08.2006 63 32 77 75 220 177 350 15.08.15.09.2006 * 182 168 210 102 154 350 15.09.15.10.2006 1260 213 1201 4283 844 166 350 *samplewasnotanalyzed(samplewasdestroyed) **limitingvalueaccordingtoDecree,1994

50 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure 42: Monthly mass of particulate matter deposition sampling sites A (vertical depositioncollectedbystandardizedmethod).

Table 6: Monthly mass of particulate matter deposition sampling sites A particles smallerthan3m(mg/m 2day) 1A 2A 3A 4A 5A 6A 15.10.15.11.2005 18 28 5 54 37 31 15.11.15.12.2005 15 48 13 5 30 97 15.12.15.01.2006 28 25 39 23 49 52 15.01.15.02.2006 13 5 24 39 5 5 15.02.15.03.2006 35 198 365 329 341 245 15.03.15.04.2006 115 53 25 125 42 110 15.04.15.05.2006 129 178 122 146 247 176 15.05.15.06.2006 45 229 291 301 498 279 15.06.15.07.2006 115 625 265 311 712 149 15.07.15.08.2006 50 23 56 34 152 148 15.08.15.09.2006 * 68 149 180 79 53 15.09.15.10.2006 1228 207 1094 4157 828 148 *samplewasnotanalyzed(samplewasdestroyed) During the sampling period from October 2005 to October 2006, the total amount of particulatematterdepositionatallsamplingsitesintheareaofthemunicipalityofAnkaran

51 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 and surroundings exceeded the emission limit value of 350 mg/m 2 a day eleven times, correspondingto15%ofallmeasurements. The highest monthly values were measured in the period from 15.9.2006 to 15.10.2006. During this period, the monthly emission limit value was exceeded at nearly all of the samplingsites.Asimilarincreaseofparticulatematterdepositionvalueswasobservedinthe periodfrom15.2.2006to15.3.2006andintheperiodfrom15.6.2006to15.7.2006. Maximummonthlyvaluewasmeasuredatthesamplingsite4(Rožnikresidentialarea)in timeperiod15.9.15.10.2006(4283mg/m 2day).Atthesamesamplingsiteextremelyhigh valueswereobservedalsoduringtimeperiod15.215.3.2006(1216mg/m 2day).Insampling sites1,3and5veryhighvalueswereobservedduringtimeperiod15.9.15.10.2006.The highestvaluesofdustdepositionwerethereforemeasuredparticularlyintheperiod15.9.2006 to15.10.2006.Thesecouldbeattributedtostrongwind,whichblewfromthedirectionofthe seaacrosstheorestoragepiletowardtheresidentialareaforashorttime(afewhours).The consequences were reported also by the local residents as dust deposition seen on yards, gardensandfacades.Figure3and4weretakenintheproximityofthesamplingsite4in October2006,intheperiodwhenthevaluesofparticulatematterdepositionwasextremely high.

4.1.2GravimetricanalysisofparticulatematterdepositionsamplingsiteB With the modification of the sampling deviceby addingametalscreen(20cmx30cm) oriented towards the iron ore and coal storage piles, more dust (Table 7) was obtained in samplesthanwasobtainedwiththestandardmethod (see Figure 42 and Figure 43). With metal screen also the horizontal transport of the dust with wind could be collected. The additionofdistilledwatertothecollectionvesselpreventedthelossofdrydustsamplebythe action of strong wind. It is important to emphasize that the limiting value was set for collectionofparticulatematterdepositionusingstandardized measuring device and not for modifiedone.LimitingvaluesincaseofsamplingsitesBarepresentedasorientationvalues.

52 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Table7:MonthlymassofparticulatematterdepositionsamplingsitesB(mg/m 2day) 1B 2B 3B 4B 5B 6B limitingvalue** 15.10.15.11.2005 803 71 59 69 37 137 350 15.11.15.12.2005 38 49 12 53 100 * 350 15.12.15.01.2006 94 91 17 54 8 49 350 15.01.15.02.2006 104 16 96 37 42 14 350 15.02.15.03.2006 270 201 233 782 304 218 350 15.03.15.04.2006 153 102 74 114 154 151 350 15.04.15.05.2006 816 127 336 633 459 456 350 15.05.15.06.2006 711 999 1521 942 637 603 350 15.06.15.07.2006 257 326 1341 346 650 307 350 15.07.15.08.2006 159 94 31 194 190 261 350 15.08.15.09.2006 113 663 168 30 142 240 350 15.09.15.10.2006 1193 640 1329 5743 1072 91 350 *samplewasnotanalyzed(samplewasdestroyed) **limitingvalueaccordingtoDecree,1994

Figure43:MonthlymassofparticulatematterdepositionsamplingsitesB(verticalplus horizontaldepositioncollectedbymodifiedmethod).

53 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Table 8: Monthly mass of particulate matter deposition sampling sites B particles smallerthan3m(mg/m 2day) 1B 2B 3B 4B 5B 6B 15.10.15.11.2005 88 57 32 54 18 117 15.11.15.12.2005 23 15 5 45 46 * 15.12.15.01.2006 64 81 12 47 5 16 15.01.15.02.2006 78 8 77 19 24 5 15.02.15.03.2006 165 171 203 419 281 139 15.03.15.04.2006 92 63 49 70 113 85 15.04.15.05.2006 687 79 265 217 256 231 15.05.15.06.2006 613 916 1305 846 591 599 15.06.15.07.2006 222 290 1286 309 605 203 15.07.15.08.2006 108 75 20 160 140 234 15.08.15.09.2006 64 628 111 17 100 146 15.09.15.10.2006 1145 625 1317 5657 918 58 *samplewasnotanalyzed(samplewasdestroyed)

Theresultsshowconsiderabledifferencesbetweenindividualmonthsatbothsamplingsites, A and B. It seems that the quantity of particulate matter deposition is dependent on the weather, the wind and rain, the manipulation of the ore and the quantity of ore at the stockpilesonEETdepot.

4.1.3Particulatematterdepositioncalculatedyearlyresults Theaverageparticulatematterdepositionperyear(Figure44)wascalculatedfromtheresults of the monthly sampling intervals. Only sampling sites A (vertical deposition) were comparablewiththelimitingvaluebecausethelimitingvaluewassetformeasurementsmade bythestandardizemethod.Inanyindividualmonthaswellasonanannualbasis,thehighest amountswerecollectedatthesamplingsite4–Rožnik,whichliesapprox.1000mnorth– north east from the EET storage piles. These elevated amounts could be attributed to the morphologyoftheterrainandthepositionofsamplingsiteregardingtheproximityofthecoal andironoredepot.

54 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

700

600 day

2 500

400

300

200 yearlyparticulatematter

M assflowinm g/m deposition 100 limitedvalue

0 1a 2a 3a 4a 5a 6a Figure 44: Mass of particulate matter deposition sampling sites A calculated yearly results(mg/m 2day)

4.1.4ComparisonamongsamplingdeviceAandBoneachsamplingsites HighervaluesofparticulatematterdepositioninsamplingsitesBcomparedtothesampling sitesAcanbeobservedatalmostallsamplingsiteswiththeexceptionofafewmeasurements duringindividualtimeperiods(Figure45toFigure50). Spearman's(rho)correlationcoefficientforsamplingsitesAandBarerelativelyhigh,only exceptionissamplingsite1,wherenocorrelationwereobserved.Forsamplingsite2AandB correlationis0,84(p=0.001),forsamplingsite3AandBis0.797(p=0.002),forsampling site4AandBis0.699(p=0.011)forsamplingsite5AandBis0.902(p=0.000)andfor samplingsite6AandBis0.783(p=0.003).SamplingsitesBappeartoconsistentlycollect moreparticulatematterthansamplingsitesA. Inthecaseofdustcarriedbythewind(especiallystrongwind)dustparticlesare"released" whentheyhitanobstacle.Inourcasetheobstacleisthemetalscreenonsamplingdevice.In natureobstaclesrepresentbuildings,treesandothervegetation.Consequently,theamountof particulatematterdepositionishigherinsamplingsitesBthenA.

55 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

1400 1200 1000 1A 800 1B 600 400 limitedvalue 200 0

2 .1 .2 .5 .8 .1 5 5 5 5.7 5 5.11 1 1 1 1 1 1 1 .4 6 5. 5.315.4 5. 1 15.215.31 15 15.515.61 15.7 15.815.9 5.111515.12 15.9.15.10 15.101 Figure45:Comparisonbetweentheverticaldeposition(A)andhorizontalcontribution(B) toparticulatematterdeposition(samplingsite1)

1200 1000 800 2A 600 2B 400 limitedvalue 200 0

1 .6 .7 .1 5 5 5 15.2 1 1 15.8 5.10 1 15.12 1 5 6 7 .1 1 5. 5. 5. 5. 9 1 1 15.215.315.315.415.415.51 1 1 15.815.95. 5. 15.1215.1 1 15.101 Figure46:Comparisonbetweentheverticaldeposition(A)andhorizontalcontribution(B) toparticulatematterdeposition(samplingsite2)

1600 1400 1200 1000 3A 800 3B 600 limitedvalue 400 200 0

3 5 7 .9 .11 .12 5 15. 15. 15. 15 15.1 2 .515.6 .715.8 .1 .11 15.115.215.2 15.315.415.4 15 15.6 15 15.815 15 15.9.15.10 15.10115 Figure47:Comparisonbetweentheverticaldeposition(A)andhorizontalcontribution(B) toparticulatematterdeposition(samplingsite3)

56 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

7000 6000 5000 4A 4000 4B 3000 limitedvalue 2000 1000 0

.1 .4 .6 .8 .11 15 15 15.3 15.5 15.7 15.9 15.10 .2 .4 .6 8 . 0 .12 5 5 5 9 .1 .1115.125 15.115.21 15.3151 15.5151 15.71515. 5 5 1 15. 1 1 Figure48:Comparisonbetweentheverticaldeposition(A)andhorizontalcontribution(B) toparticulatematterdeposition(samplingsite4)

1200 1000 800 5A 600 5B 400 limitedvalue 200 0

.1 5 5.3 5.5 5.7 5.9 .10 15.2 1 15.4 1 15.6 1 15.8 1 15.11 15.12 1 2 3 4 5 6 7 8 .121 .9.15 5 15. 15. 15. 15. 15. 15. 15. 15. 5 1 1 15.10 15.11 Figure49:Comparisonbetweentheverticaldeposition(A)andhorizontalcontribution(B) toparticulatematterdeposition(samplingsite5)

700 600 500 6A 400 6B 300 200 limitedvalue 100 0

1 2 .2 .4 .6 .1 .1 5 5 5 5 5 15.1 5.10 2 .1 1 101 111 5. 15.1115.215.315.3115.415.515.5115.615.715.715.815.815.9 5. 5. 1 15.9 1 1 Figure50:Comparisonbetweentheverticaldeposition(A)andhorizontalcontribution(B) toparticulatematterdeposition(samplingsite6control)

4.1.5Meteorologicaldataforthetimeperiodfrom15.10.2005to15.10.2006 Meteorological data of wind direction and strength were obtained from Port of Koper Department of Environment and Occupational Health. Time interval of entire preliminary

57 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 studywasadoptedtothetimeintervalofacquiredwinddata(from15 th ofthemonthtothe 15 th ofnextmonth).Forfurtherworkonly%ofwindblowingacrossEETdepotofcoaland ironoretowardindividualsamplingsiteswereused(Table9).

Table9:%ofwindblowingindirectiontowardsamplingsites %ofwind 1(SW) 2(SW) 3(SW) 4(SW) 5(S) 15.10.15.11.2005 1.4 1.4 1.4 1.4 8 15.11.15.12.2005 2.4 2.4 2.4 2.4 12.6 15.12.15.01.2006 * * * * * 15.01.15.02.2006 1.3 1.3 1.3 1.3 9.7 15.02.15.03.2006 2.8 2.8 2.8 2.8 8.7 15.03.15.04.2006 3.2 3.2 3.2 3.2 5.8 15.04.15.05.2006 3.2 3.2 3.2 3.2 5.8 15.05.15.06.2006 2.8 2.8 2.8 2.8 6.4 15.06.15.07.2006 2.5 2.5 2.5 2.5 4.5 15.07.15.08.2006 2.1 2.1 2.1 2.1 6.8 15.08.15.09.2006 2.6 2.6 2.6 2.6 8.4 15.09.15.10.2006 * * * * * *datawasnotavailable

SomeadditionalmeteorologicaldataforpreliminarystudywasacquiredfromARSO.August 2006wasextremelywetmonth(Figure51),speciallyinthecoastalarea(Figure52).Weather conditionswasprobablyalsooneofthereasonsforlowdustdepositionduringsummertime.

Figure51:PrecipitationsinSloveniaAugust2006(Source:ARSO,http://www.arso.gov.si/)

58 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure52:PrecipitationincoastalareaPortorož(mm)(Source:ARSO,http://www.arso.gov.si/) Sincealotofgapsinmeteorologicaldataduringpreliminary study occur improvement in acquiringthesedatawasoneoftheimprovementsforthestudythatfollows.

4.1.6 Correlation among strength and direction of the wind and the particulate matter deposition Data on wind direction and strength involved in the study were obtained from the meteorologicalstationinPortofKoper,providedbytheirDepartmentofEnvironmentaland Occupational Health. Available data represent the direction and strength of the wind, expressedas%offrequency.Measuringintervalrepresenttheperiodfrom15 th ofthecurrent monthto15 th ofthefollowingmonth.Windspeedisgivenintwointervals,firstupto1m/s andsecondover1m/s.Dataonthefrequencyofwindatindividualdirectionsregardlessof strengthwereincludedinstudy.Foreachsamplingsiteonlyfrequencyofwindsblowingfrom thedirectionofEETtowardindividualsamplingsitesweretakenintoaccount.

1400 3,5 1200 3 1000 2,5 day

2 800 2 600 1,5

400 1 %ofwind mg/m 200 0,5 0 0

1 .2 .4 .5 .6 .7 .9 .1 5 5 5 5 5 1 15 1 15.8 15 .3 .5 .6 .7 .8 5 5 5 5 5 15.11 15.215.3 1 15.41 1 1 1 1 15.1215.1 15.9.15.10 15.101 15.1115.12 1A 1B limitedvalue %ofw ind Figure53:Correlationamongparticulatematterdepositionandwindsamplingsite1 59 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

1200 3,5 1000 3 800 2,5 day

2 2 600 1,5 400 1 %ofwind mg/m 200 0,5 0 0

1 .1 .3 .6 .8 .1 5 5 5 5 5 1 1 1 1 15.4 15.9 15.10 1 2 .2 3 .5 .7 8 . 0 .1 5 5 5 .9 .1115.12 5 15.115.2 1 15. 15.415.5 1 15.615.7 1 15. 5 5 1 1 15.1 1

2A 2B limitedvalue %ofw ind Figure54:Correlationamongparticulatematterdepositionandwindsamplingsite2

1600 3,5 1400 3 1200 2,5

day 1000 2 2 800 600 1,5

1 %ofwind

mg/m 400 200 0,5 0 0

1 .1 .3 .6 .8 .1 5 5 5 5 5 1 1 1 1 15.4 15.9 15.10 1 2 .2 3 .5 .7 8 . 0 .1 5 5 5 .9 .1115.12 5 15.115.2 1 15. 15.415.5 1 15.615.7 1 15. 5 5 1 1 15.1 1

3A 3B limitedvalue %ofw ind Figure55:Correlationamongparticulatematterdepositionandwindsamplingsite3

1800 3,5 1600 3 1400 1200 2,5 day 2 1000 2 800 1,5 600 1 %ofwind

mg/m 400 200 0,5 0 0

1 .1 .3 .6 .8 .1 5 5 5 5 5 1 1 1 1 15.4 15.9 15.10 1 2 .2 3 .5 .7 8 . 0 .1 5 5 5 .9 .1115.12 5 15.115.2 1 15. 15.415.5 1 15.615.7 1 15. 5 5 1 1 15.1 1

4A 4B limitedvalue %ofw ind Figure56:Correlationamongparticulatematterdepositionandwindsamplingsite4

60 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

1200 14 1000 12 800 10 day

2 8 600 6 400 4 %ofwind mg/m 200 2 0 0

1 1 .2 3 6 7 .8 .9 0 .1 5 5. 5. 5. 5 5 .1 5 1 1 1 1 5 1 .1 .2 .5 .6 .1 0 5 5 5 5 9 .1115.12 1 1 15.315.4 15.415.5 1 1 15.71 15.81 5. 5 15.1215. 1 15.1 1

5A 5B limitedvalue %ofw ind Figure57:Correlationamongparticulatematterdepositionandwindsamplingsite5 Correlationsbetweentheamountofdustdepositionandfrequencyofwindfromthedirection ofEET(Figure53toFigure57)duetoinsufficientdataofthewindspeed(onlyinformation aboutthewindspeedaboveandunder1m/s)andtoolongmeasurementinterval(1month) can not be confirmed (highest Spearman's rho correlation is 0.48). Increased emission concentrationscouldbe expectedduringstrong winds blowing through the EET, therefore usingselectedmethodofdataacquisitionisnotpossibletodetecttheimpactoftheextremely strongwindthatblowsforonlyaveryshortperiodoftime. Forthetimeperiod15.9.15.10.2006,therefore,thereisnocorrelationbetweentheincreased particulatematterdepositionandthewindalthoughtheresidentsfromRožnikresidentialarea detected increased deposition of dust in their living environment after the strong Mistral. During same time period also increased amount of deposition were measured, however increasedlevelsofwindwerenotdetected.Forexampleifthewindblows5hourswithhigh windspeeditrepresent only0.5%ofwindfrequency on monthly average data, although manydustparticlescanbetransportedfromthelandfilltosurroundingenvironmentduring thisshorttimeevent.

4.1.8Comparisonamongparticulatematterdepositionandcoalandironoremanipulationat EEToneachsamplingsite DataaboutquantitiesofcoalandironoremanipulationonEETterminalinPortofKoper wereprovidedbyDepartmentofEnvironmentalandOccupationalHealthofPortofKoper. Fromthecollecteddatacorrelationbetweenamountofparticulatematterdepositionandore 61 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 manipulationatEETcannotbeconfirmed(highestSpearman'srhocorrelationis0.44).Data intervaloforemanipulationwere adjusttotimeintervals of other data (particulate matter deposition, wind speed and direction). Comparison among particulate matter deposition at eachsamplingsiteandcoalandironoremanipulationatEETispresentedinFigures58to62.

700.000 1.200 600.000 1.000 500.000

dan 800 2 400.000

600 300.000 ton 400 200.000 mg/m 200 100.000 0 0

2 .1 .2 .4 .6 .8 .11 5 5 5 5 5 .10 5 5.1 1 1 15.5 1 1 5 1 1 1 1 .3 .4 5 .615.7 .7 0 5 5 5 5 .9. .1 15. 15.215.3 1 1 15. 1 1 15.815.9 5 5 15.121 1 1 15.11

1A 1B limitedvalue oremanipulation Figure 58: Comparison among particulate matter deposition and ore manipulation at terminalEETsamplingsite1Aand1B

1200 700.000 1000 600.000 800 500.000 day

2 400.000 600 300.000 ton 400 200.000 mg/m 200 100.000 0 0

1 2 .2 .3 4 .5 .7 .8 0 1 .1 5 5 5 5 5 1 1 1 1 1 15 5.1 .2 .7 .1 1 5 5.4 5 .9 .1015. 15.1 1 15.315. 1 15.515.6 15.6 1 15.815.9 5 5.1 15.1215.1 1 15 1

2A 2B limitedvalue oremanipulation Figure 59: Comparison among particulate matter deposition and ore manipulation at terminalEETsamplingsite2Aand2B

62 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

1600 700000 1400 600000 1200 500000

day 1000 2 400000 800 300000 ton 600 200000

mg/m 400 200 100000 0 0

2 .1 .3 .5 .6 .8 1 5 5 5 5. 15 15 1 1 1 1 2 .2 4 .5 .7 1 .1 5 5. 5 5 1 5 15.115.2 1 15.315.4 1 1 15.615.7 1 15.815.9 5. 1 15.9.15.10 15.1015.111

3A 3B limitedvalue oremanipulation Figure 60: Comparison among particulate matter deposition and ore manipulation at terminalEETsamplingsite3Aand3B

1800 700000 1600 600000 1400 1200 500000 day

2 1000 400000

800 300000 ton 600 200000

mg/m 400 200 100000 0 0

2 .1 .3 .5 .6 .8 1 5 5 5 5. 15 15 1 1 1 1 2 .2 4 .5 .7 1 .1 5 5. 5 5 1 5 15.115.2 1 15.315.4 1 1 15.615.7 1 15.815.9 5. 1 15.9.15.10 15.1015.111

4A 4B limitedvalue oremanipulation Figure 61: Comparison among particulate matter deposition and ore manipulation at terminalEETsamplingsite4Aand4B

1200 700000 1000 600000 800 500000 day

2 400000 600 300000 ton 400 200000 mg/m 200 100000 0 0

2 .1 .3 .5 .6 .8 1 5 5 5 5. 15 15 1 1 1 1 2 .2 4 .5 .7 1 .1 5 5. 5 5 1 5 15.115.2 1 15.315.4 1 1 15.615.7 1 15.815.9 5. 1 15.9.15.10 15.1015.111

5A 5B limitedvalue oremanipulation Figure 62: Comparison among particulate matter deposition and ore manipulation at terminalEETsamplingsite5Aand5B

63 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Quantityofparticulatematterdepositionishigherduringsummertime.Oneofthereasonsis probably dryness of surroundings and also strong winds, which blows from sea through landfilltowardsresidentialareaofRoznikandAnkaranandit’sprobablynotcorrelatedwith theunloadingofcoalandironorebecausetheamountoforemanipulationdoesdecrease duringsummer.

However,thepresence ofironinemissionmeasurements of PM 10 was confirmed in other studies.TheproportionofironinPM 10 particlesinthestudy"Measurementsofairpollution inAnkaranfrom28 th ofJuneto11 th ofSeptember2005"performedbyARSO(2005)varied between6.6and13.9mg/kgwithhighcorrelationbetweenironandPM 10 concentration.Also the study, conducted by Žitnik et al. (2005) reported a correlation between the iron ore transferintheEETandtheironconcentrationinPM 10 .Perhapsthemethodforcollecting particulate matter deposition is not accurate enough to detect such correlations, especially sincethesamplingintervalisrelativelylong.Accordingtoresultsfromstudy,conductedby Topič (2009), iron ore on the surface of stockpile developed a special film that prevents dustingtothesurroundingarea.Dustingoccurs,therefore,mainlyduringmanipulationwith ore,whichhasbeenshowninotherstudieswithcorrelationbetweenironoremanipulation andironconcentrationsinairparticles.Contrarytothesituationwithironore,coalstorage and manipulation represent continuously source of dusting since coal on the surface of stockpiles does not develop some special films. In addition, coal must be continuously compressedinordertopreventspontaneousignition.Thereforeincase ofstrongwind,the coalstockpilerepresentpossiblesourceforairborneparticles.

64 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4.1.8InfluenceofdistancefromtheEETdepotonamountofparticulatematterdeposition Samplingsites1,2,3wereplacedinlineardirection(Figure7)inpredominantwinddirection (NESW)toevaluatetheimpactofdistancefromtheEETdepotforcoalandironoreonthe amountofparticulatematterdeposition.ThemorphologyofterrainisshowninFigure63.

4

3

1

2

Figure 63 : The potential transport of suspended particles from the EET depot towards samplingsites1,2,3and4

3000 3500

3000 2500

2500 2000

2000 3A 3B day day 2 2 1500 2A 2B 1A mg/m 1B mg/m 1500

1000 1000

500 500

0 0

6 6 6 6 6 e 5 6 6 6 6 6 6 e 05 0 0 06 0 0 0 g 0 0 0 0 0 0 g 0 0 0 0 0 0 a 0 0 0 0 0 0 ra .2 .2 .20 .2 .2 .200 .2005 2 2 2 .2 .2 .2 e 1.2 3 4 5.2 8 9 0 ver 1 8 9 0 v .12.2005.01.2006 .0 .06.2006 a 1 .03.2006.04.2006.05. .06. .07. .0 .0 .1 a 5 5 5 5 5 5 5 5 5 5 5 5 15.1 1 1 15.0 15.0 1 1 15.0 15.0 15.1 1 15. 15.12 1 1 1 1 1 . . . . . . .15.07.2006. . . . . 0 1 2 3 4 5 8 9 0. 7 8 9 .1 .1 1 .02. .0 .0 .0 .0 .0 .1 .11. .12.15.01.2006.01.15.02.2006 5 5 5 5 5 5 5 5 5 5 5 5.0 1 1 15. 15.01.15.02.200615 1 1 1 15.0615.07.1 1 1 1 1 1 15.02.115.03.115.04.15.05.15.06.15.0 15.0 1 Figure64:Amountofparticulatematter Figure65:Amountofparticulatematter depositiononsamplingsites1,2and3 depositiononsamplingsites1,2and3 samplingsitesA samplingsitesB

65 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

100% 100%

80% 80%

60% 3A 60% 3B 2A 2B 40% 1A 40% 1B

20% 20%

0% 0% 6 6 6 6 5 6 6 6 6 e 05 0 0 06 0 06 06 0 e 0 06 0 06 0 06 0 06 0 g 0 0 0 0 0 0 0 0 .2 .20 .2 .2 .2 .20 .2 .2 .2 .2 era 3.20 5.20 7.2006 1.20 4.20 9.20 v .12.2005 .0 .0 .0 averag .1 .01 0 .06 0 a 5 5.01 5 5 5 5.10 5 5 5.03 5 5.08 15.11 15.04 15.06 15.08 1 1 15.02.201 15. 1 15.07.201 15. 1 1 1 1 1 . . . . . . . . ...... 0 2 2 3 4 5 7 9 0 2 5 1 1 0 0 0 0 0 1 .1 .0 ...... 5. 5.01 5.03 5.06 5.08 5 5 5 5 1 15.11.15.12.200515 1 15.02.1 15.04.15.05.200615 1 15.07.1 15.09.15.10.2006 1 15.11.115 15.01.15.02.200615 1 15.0 1 15.06.1 15.08.15.09.200615 Figure 66: % of particulate matter Figure 67: % of particulate matter depositiononsamplingsite1,2and3 depositiononsamplingsite1,2and3 According to results on sampling sites B (Figure 67) higher amount of particulate matter depositionwereobservedonsamplingsitesclosertoEETdepot(samplingsite1).Onlyinthe caseofextremevaluesofparticulatematterdepositionarevaluesonsamplingsite1lower thaninothertwosamplingsites.Otherwise,theshareoftotalamountexceeded40%.Onthe samplingsitesAthistrendwerenotobserved(Figure66),theproportionofdustdepositionat sites 1, 2 and 3 is approximately evenly spread (due to the fluctuations in different time periods).Iftherearenoextremewindconditionsandthereforeamountofparticulatematter deposition is relatively low, on sampling sites B the trend that the proportion of dust deposition with distance from the landfill decrease (sampling site 1 > sampling site 2 > samplingsite3)canbeobserved. Excludinglasttimeinterval(15.9.15.10.2006)themedianvaluesshown(Figure68)decrease massofparticulatematterdepositionwithdistancefromEEToredepotincaseofsampling device B, however this trend did not appear in case of standardize sampling device A. Spearman's(rho)correlationcoefficientforsamplingsite2and3arerelativelyhigh;for2A andBis0.85(p=0.001),forsamplingsite3AandBis0.78(p=0.004).Nocorrelationwas foundforsamplingsite1.

66 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

180

160

140 day) 2 120

100

80

60

40

medianmassflow(mg/m dev iceA 20 dev iceB 0 samplingsite1 samplingsite2 samplingsite3 Figure68:Trendinmassflowondifferentsamplingsites

4.1.9.Chemicalanalyzes

4.1.9.1Chemicalanalysisofcoal,ironoreandsoil Heavy metals were determined in coal, iron ore and the surrounding soil. The results are showninTable10.

Table10:Thecontentofmetalsincoal,ironoreandsoil COAL * SOIL * IRONORE * IRONORE ** (mg/kgd.w.) (mg/kgd.w.) (mg/kgd.w.) (mg/kgd.w.) Fe 4800 29600 649000 558240 Al 9800 13500 3200 3150 Cu 8.9 46.9 41.1 40 Zn 15.1 116.8 18.7 16 Cd <1 <1 <1 0.1 Pb 2.5 25.0 3.6 10 Cr 5.9 66.7 6.5 9 Ni 4.5 94.8 1.6 5 *PublicHealthInstituteKoper **PublicHealthInstituteCelje Analyses were made in Chemical laboratory of Public Health Institute Koper and Sanitary chemical laboratory of Public Health Institute Celje. According to results no significant amounts of specific metals other than iron and aluminum were found in iron ore or coal comparabletosoilsample.Highvalueofironinsampleofsoilcouldcontributetofactthat surroundingsoil“terrarosa”isrichiniron.

67 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 4.1.9.2Chemicalanalysisofdifferentmetalsindepositedmatter(Annualsample) Theresultsfromthedeterminationsofaluminum,cadmium,chromium,copper,iron,nickel andzincintheone–yearsamplesofparticulatematterdepositionshowthatthelimitvalueof the metals for Zn, Cd and Pb (Decree, 1994) were not exceeded (Table 11). The only exception was the concentration of zinc at the sampling site 4A. The regulations do not specifylimitsforamountsofAl,Cr,Cu,FeandNi.ResultsalsoshowincreasedvaluesofFe, Al,Cu,ZnandPbatthesamplingsite4.Highvaluesofmetalsinthedepositionarepresent alsoonthecontrollocation(samplingsite6A). ItwasnotpossibletodistinguishthecoalandironoreoriginatingfromthePortofKoper from other organic sources of carbon (burning of fossil fuel, traffic, pollen, etc.) and iron compoundsinthesoilonthebasisoftheresultsfromthemetaldeterminations.

Table11: Valuesofmetalsintheyearlysampleof particulate matter deposition (g/m 2 day). sampling site Fe Al Cu Zn Cd Pb Cr Ni 1A 3054 2584 66 146 <0,3 25 27 14 2A 7740 7263 93 239 <0,3 35 39 26 3A 14433 16805 93 278 <0,3 40 90 35 4A 29450 31942 371 861 1,2 87 98 50 5A 6892 6110 80 93 <0,3 24 28 14 6A 13081 8748 172 324 <0,3 60 46 42 Limiting value / / / 400 2 100 / / /limitingvalueisnotdetermined

68 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4.1.9.3Thecontentofironinsamplesfrom15.5.to15.6.2006 Theignitionresiduesofsamplescollectedintimeperiodfrom15.5.to15.6.2006(particles<3 mm)wascoloredred. Therefore additionalmeasurementsweremadeto determinetheiron contentbyflameAAS.ResultsareshowninTable12.

Table12:Contentsofironinsampleignitionresiduesfromsamplescollectedon15.6.2006 samplingsite Fe(g/m 2day) Fe(mg/kgd.w.) 1A 15 18113 1B 1549 11690 2A 47 11337 2B 128 968 3A 51 2173 3B 191 1448 4A 13 2312 4B 219 1656 5A 6 695 5B 78 586 6A 9 1763 6B 255 1927 Figure69:Redignitionresidue Theresultsshowsthattheironcontentduringobservedperiodoftimeishigheratsampling sites B (vertical plus horizontal deposition). Also higher amount of particulate matter depositionwasobtainedduringsameperiodoftime,particularlyonsamplingsitesB.

4.1.9.4Determinationofsamplesignitionresidue Many of dust particles collected as particulate matter deposition have organic origin, includingpollen,plantparts,algae,smallanimalsetc,aswellascoalparticles,soot...With determinationofsamplesignitionresidue(Table13)theproportionofinorganicandorganic partwereidentified.

Table13:Ignitionresidueofdeposition(particlessmallerthan3m)%ofinorganicpart

1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 15.05.15.06.2006 * 13 * 4 * 1 * 7 * 2 * 1 15.06.15.07.2006 1 7 1 4 2 4 1 4 10 9 5 7 15.07.15.08.2006 * * * * * * <1 4 4 12 <1 13 15.08.15.09.2006 * 5 3 8 13 18 26 30 8 0 11 6 15.09.15.10.2006 10 10 3 4 4 11 10 12 12 10 6 1 *nodataavailable

Resultsshowsthatparticulatematterdeposition,smallerthan3miscomposedmainlyof organicmatter.Inorganicrepresentsfrom<1to30%ofthecomposition. 69 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 4.1.10Resultsofgammarayemitter'sactivitymeasurementsofironore,coalandsampleof soil In nature there are many natural radioactive isotopes,whichcouldbeasimpuritiespresent alsoincoalandironore(VanHook,1979;Dowdall et al., 2004; Ward and SuárezRuiz, 2008).ForthisreasonrepresentativesampleofcoalandironorefromEETdepotinPortof Koperwasanalyzedforgammarayemitters’activity(Table14andTable15). Specific activities of gammaray emitters were calculated back to the date 25.8.2006. The number followingthe±symbolisnumericalvalueofthecombinedstandarduncertaintyofthespecific activity and corresponds to the confidence interval with a 68 % confidence. The number following the < symbol is numerical value of the minimal detectable activity for a given radionuclideandcorrespondstotheconfidenceintervalwitha68%confidence.

Table14:Specificactivityofgammarayemittersincoalsample Specificactivity isotope (Bq/kg) 134 Cs <0.07 137 Cs <0.25 210 Pb 8.7±2.8 214 Bì 10.2±1.1 226 Ra 9.8±1.1 228 Ra 7.7±0.6 228 Th 7.9±0.5 238 U 7.6±2.1

70 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Table15:Specificactivityofgammarayemittersinironoresample Specificactivity isotope (Bq/kg) 134 Cs <0,04 137 Cs <0.04 210 Pb 19±11 214 Bì 21±2 226 Ra 21±2 228 Ra 6.1±0.3 228 Th 6.1±0.2 230 Th 70±34

238 U 14±3

Table16:Specificactivityofgammarayemittersinsoilsample Specificactivity isotope (Bq/kg) 7Be 2.1±1.2 40 K 364±36 137 Cs 32.4±1,6 210 Pb 63±40 214 Bi 39,0±3,9 226 Ra 39.0±2.7 228 Ra 30.1±1,3 228 Th 29.0±1,5

230 Th <90.6

238 U 19.6±5.3 Forsoilanalyzes(Table16)soilfromSloveniaarea(uncultivatedland)asexampleofnormal amountofradionuclidesinthesoilwereused(source:JožefStefanInstitute).Amongother radioactiveisotopes 137 CsispresentinsoilsampleduetoChernobylaccidentandalsonuclear experiments, performed in atmosphere. That is the mayor difference between results of gammarayemitter'sactivityincoalandironoresamplesandresultsofgammarayemitter's activityinsoilsample.

71 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Because the activity of the gammaray emitters fromsampleofcoalandironorewasnot significantlyincreasedadditionalanalyzesofsamples of particulate matter deposition were notperformed.

4.1.11Resultsofelectronmicroscopy Electron microscopy of particulate matter deposition was used to confirm presence of coal andironoreparticlesinparticulatematterdepositioncollectedaround EETdepot(Portof Koper). Presence of both coal and iron ore particles linked the dust deposition with the activityonthecoalandironoredepot.Forpurposeofpreliminarystudyonlysamplesfrom time period from 15 th of February to 15 th of March 2006 were analyzed. During that time presenceofcoalwasdetectedwithvisualinspectionofthefilteredsamples(Figure70,Figure 71andFigure72),alsohigherparticulatematterdepositionwasdetectedinallsamplingsites, especially in sampling site 4. Presence of coal was confirmed with morphological and chemicalanalysisbyelectronmicroscopy(Figures73to78)ofthefilters.

Figures70,71and72:Sampleofparticulatematterdepositionsamplingsite4from15 th Februaryto15 th March2006

72 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Coalparticles

Figure73:Sample4A(85xmagnification,imagewidth1.55mm)

Figure74:TypicalEDXSspectrumofcoalparticle

Coalparticle

Figure75:Sample4A(220xmagnification,imagewidth600m) 73 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Alumosilicates

Coal

Ironore (probably Fe 2O3)

Figure76:Sample4A(330xmagnification,imagewidth400m)

Coal

Bauxite

Fe 2O3

Figure77:Sample4B(350xmagnification,imagewidth377m)

Figure78:TypicalEDXSspectrumofFe 2O3 Figure 79: Typical EDXS spectrum of alumosilicates 74 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

TiO2

Bauxite

Figure80:Sample3A(750xmagnification,imagewidth176m)

Figure81:TypicalEDXSspectrumofTiO 2

Figure82:TypicalEDXSspectrumofbauxite

75 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure83:Sample6Acontrol(1200xmagnification,imagewidth110m)

Figure84:TypicalEDXSspectrumofironinthepresenceofsiliconoraluminum In reference sampling site in Beli Križ area (Portorož) SiO2, Ca and Mg carbonate were detected.Nocoalorironoreweredetected(Figure85and86).

76 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure85:Referencesample(850xmagnification,imagewidth155m)

Figure86:Referencesample(1200xmagnification,imagewidth110m) In samples of particulate matter deposition from time period 15.2.2006 15.3.2006 at sampling sites 1 to 5, iron oxide and coal particles were detected. In the sample at the samplingsite6,ironwasalsopresent,howevernotasFe 2O3butalwaysinthepresenceof siliconandalumina.Thereforeitcouldbespeculatedthattheoriginofsuchironisprobably fromthesoilfromthesurroundingenvironment.Coalparticlesinthesampleatsamplingsite

77 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 6(control)werenotdetected.Alsomorphologicalcharacteristics of the rust (scale), which couldcontaminatethesamples,werenotdetected.Inthereferencesampleatthesamplingsite

BeliKriž(Portorožarea)ironandcoalparticleswerenotdetected.OnlySiO 2,Cacarbonate andMgcarbonatewerefound.

Figures87and88:WaxclothswimmingpoolcoverageinŽusterna Additionallyanalyzesweremadeonsamplesfromthe wax cloth swimming pool coverage

(Figures87to91)fromŽusterna(Koper).ParticlesofbauxiteandTiO 2weredetected.

Bauxite

TiO 2

Figure89:Swimmingpoolcoverage(waxcloth)fromŽusterna(450xmagnification,image width293m)

78 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure90:TypicalEDXSspectrumofbauxite

Figure91:TypicalEDXSspectrumofTiO 2 FromresultswithSEMwecanconcludethatwarehousingandhandlingwithcoalandiron ore on EET depot in Port of Koper have an influence on increased particulate matter depositioninsurroundings.Withanalysisofmorphologyandchemicalstructureofparticulate matter deposition using Electron microscope, the presence of coal and iron ore were confirmed.Thequantitativeanalyzescouldnotbedonewiththesamplescollectedbecause theyweretooconcentrated.

79 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 PARTIIstudy2007/08

4.2.Resultsofstudyfrom1 st December200730 th November2008

4.2.1Gravimetricanalysesofparticulatematterdepositionmeasurementintervaltwiceper month Sampleswerecollectedandthedepositionsofairborneparticulatematterweredeterminedby gravimetric analysis at each sampling site on every 1 st and 15 th of each month. Values of particulatematterdepositioninTable17arepresentedinmg/m 2dayforeachsamplingsite usingstandardizedmethodofcollectionofparticulatesdeposition(samplesmarkedwithletter A).

Table17:MassofparticulatematterdepositionsamplingsitesA(mg/m 2day) recommended 1A 2A 3A 4A 5A 6A 7A 8A 9A 10A value 1.12.15.12.2007 95 94 56 85 202 102 98 159 / * 98 350 15.12.20071.1.2008 32 63 86 43 131 71 43 / * / * 63 350 1.1.15.1.2008 191 85 64 126 100 63 59 79 110 44 350 15.1.1.2.2008 72 94 54 114 76 62 77 107 94 55 350 1.2.15.2.2008 38 31 47 36 82 48 38 302 105 39 350 15.2.1.3.2008 44 39 39 211 94 67 42 109 54 54 350 1.3.15.3.2008 36 59 56 69 188 77 54 / * 182 213 350 15.3.1.4.2008 105 90 257 217 225 123 129 133 / * 70 350 1.4.15.4.2008 57 63 95 71 139 230 42 150 235 65 350 15.4.1.5.2008 75 78 60 96 189 59 71 129 80 94 350 1.5.15.5.2008 21 46 29 28 159 75 69 92 29 46 350 15.5.1.6.2008 123 176 156 177 389 130 269 210 123 141 350 1.6.15.6.2008 61 61 86 48 296 78 145 92 65 67 350 15.6.1.7.2008 / * 126 84 75 310 97 159 88 69 93 350 1.7.15.7.2008 70 157 92 105 324 305 205 146 129 90 350 15.7.1.8.2008 100 111 124 276 147 74 157 111 72 94 350 1.8.15.8.2008 57 311 128 167 / *** 213 241 59 / ** 364 350 15.8.1.9.2008 80 77 51 46 186 66 149 97 152 65 350 1.9.15.9.2008 77 102 106 95 213 95 131 113 / * 146 350 15.9.1.10.2008 15 54 18 20 33 56 34 / * 49 20 350 1.10.15.10.2008 56 88 105 83 105 88 52 116 54 59 350 15.10.1.11.2008 119 114 92 130 / *** 174 130 180 123 102 350 1.11.15.11.2008 62 75 67 169 / *** 59 71 134 75 46 350 15.11.1.12.2008 56 58 38 43 349 369 49 99 / ** 63 350 *samplewasnotanalyzed(samplewasdestroyed) **highvaluesduetopresenceofNaClorCucompounds ***highvaluesduetopresenceoforganicpollutionofsample(decaypartsofplantsorinsects,algae)

80 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

450 1A

400 2A 350 3A 300 4A 250 day 2 200 5A

mg/m 150 6A

100 7A 50 8A 0 9A 008 008 .2008 2 2008 2008 2 10A 1 .1.2008 3.2008 .5.2008 8.2008 9.2008 1.8. 1.3. 15. 1.4.200815.4. 15. 1.9. 15. 1.11.2008 1.12.2008 2. 3. 15.7.2008 8. 7. 0. recomended 1.1.1515.1.1.2.20081.2.15.2.200815. 1.3. 15. 1.4. 15.4.11.5.15.5.200815.5.1.6.20081.6.15.6.200815.6.1.7.20081. 15.7. 1.8. 15. 1.9. 1 15.9.1.10.2008 1.12.15.12.2007 1.10.15.10.200815. 1.11.15.11.200815.11. value 15.12.20071. Figure92:MassofparticulatematterdepositionsamplingsitesA Therecommendedvaluesof350mg/m 2dayforparticulatematterdepositionwasestablished in the annulled Decree on limit values, alert thresholds and critical emission values for substancesintotheatmosphere(1994).Itisstillinuse.Duringentiremonitoringperiod,only four from 240 samples approached or exceeded the recommended value. They are the samplingsite5Aduringtheperiod15.5.1.6.,thesamplingsite10Aduringtheperiod1.8.to 15.8.andsamplingsites5Aand6Aduringtheperiod15.11.1.12.Inalloftheseperiods,the wind blew with increased intensity (longer period of time as well as higher speed) in the directionofSandSWfromtheEETdepottowardsthesamplingsite5and10(windroses for observed periods Figure 93, Figure 94 and Figure 95). However, it is important to emphasizethatthemassofmonthlyparticulate matter deposition were considerably lower anddoesnotexceedtherecommendedvaluesinanycase(seeTable23andFigure107).

Figures93,94and95:Windrosesfortimeperiodof16.5.to31.5.,1.8.to15.8.and16.11. to30.11.2008 Inthefollowingtablesandfigures,themassesofparticulatematterdepositionatthesampling sitesA(aswellasinsamplingsitesB)areshownseparatelyfortheparticlesizebelowand

81 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 above 3 m. The particles are divided into major and minor fractions on the basis of the analytical method. Cellulose nitrate membrane filter of pore size 3 m were used for filtration.Thereforeparticlesweresplittothoseremainingonthefilter(particleslargerthan3 m)andparticulatematterinthefiltrate(thesmallerparticlesandthedissolvedsubstances). Duringsuchdivisionsomeparticles,smallerthen3mcouldremainonfiltersduetofilters poresaturation.However,resultsarestillindicativeenoughforthepurposeofthisstudy. Theconcentrationofparticleslargerthan3minsamplingsitesArarelyexceedvaluesof80 mg/m 2dailywhilethevaluesforparticlessmallerthan3musuallyrangingbetween50and 200mg/m 2perday. Dustparticlessmallerthan3m(Table19andFigure97)makeagreatercontributiontothe totalparticulatematterdepositionthandoparticleslargerthan3m(Table18andFigure96). Thesmallerparticlesarealsointermsofimpactonthehealthmoreproblematicbecausethey areabletopenetratedeeperintotherespiratorysystemuponinhalation.

82 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Table18:MassofparticulatematterdepositionsamplingsitesAparticleslargerthan3 m(mg/m 2day) 1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 1.12.15.12.2007 46 36 16 29 49 41 38 49 / * 36 15.12.20071.1.2008 8 23 28 18 20 31 15 / * / * 25 1.1.15.1.2008 31 26 15 41 33 13 16 20 26 3 15.1.1.2.2008 12 25 8 15 9 6 12 23 20 6 1.2.15.2.2008 10 10 13 13 23 18 11 61 15 20 15.2.1.3.2008 4 2 0 21 11 9 5 18 0 7 1.3.15.3.2008 7 15 13 23 56 23 18 / * 88 118 15.3.1.4.2008 11 5 29 25 31 15 14 14 / * 8 1.4.15.4.2008 31 34 41 28 39 103 28 67 36 38 15.4.1.5.2008 26 25 18 33 25 8 18 48 25 38 1.5.15.5.2008 5 18 5 8 56 26 28 28 13 23 15.5.1.6.2008 45 69 74 74 9 41 40 80 46 68 1.6.15.6.2008 8 11 15 5 52 18 48 16 7 20 15.6.1.7.2008 / *** 43 36 26 95 29 51 18 11 34 1.7.15.7.2008 21 48 34 38 72 79 34 23 34 25 15.7.1.8.2008 8 15 14 28 31 31 29 32 12 14 1.8.15.8.2008 13 90 18 34 / *** 36 29 25 / ** 26 15.8.1.9.2008 18 15 14 11 48 20 5 8 11 14 1.9.15.9.2008 15 31 39 23 41 13 20 31 / * 33 15.9.1.10.2008 2 11 7 11 7 21 15 / * 2 13 1.10.15.10.2008 7 8 20 7 3 3 8 15 5 7 15.10.1.11.2008 26 17 6 22 / *** 35 12 14 31 26 1.11.15.11.2008 29 29 33 36 / *** 26 31 33 29 20 15.11.1.12.2008 5 11 8 10 44 82 7 28 / ** 15 *samplewasnotanalyzed(samplewasdestroyed) **highvaluesduetopresenceofNaClorCucompounds ***highvaluesduetopresenceoforganicpollutionofsample(decaypartsofplantsorinsects,algae)

140 1A 120 2A 100 3A day 2 80 4A

mg/m 60 5A

40 6A

20 7A

0 8A

8 8 8 8 08 08 9A 007 008 008 008 00 2 200 .2008 20 2008 2008 2 200 .2008 20 2008 200 .2008 2 1. 3. 4. 6. 8. 8. 0.2 .3. .7. 12.2 1 5.5. 1. 10A 5.12. 1 . 15 5.1 1. 1 .1.1.2 .2. .3.1.4.2008 .4.1.5.2008 .5 . .7.1. .8.1.9 1 1.15. .2.15.2.2008 3.15. 4.15. 5 6.15.6 7 8.15. .9.15.9.2008.9.1.10.2008 2. 1. 15 1 15 1. 15 1. 1 1.5. 15 1. 15.6.1.7.20081. 15 1. 15 1 0. .10.1.11. 11. 1 15 .1 1. 1 15 1.11.15.11.200815. .12.20071.1.2008 15 Figure96:MassofparticulatematterdepositionsamplingsitesAparticles>3m

83 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Table19:MassofparticulatematterdepositionsamplingsitesAparticlessmallerthan3 m(mg/m 2day) 1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 1.12.15.12.2007 50 58 39 56 152 61 60 110 / * 62 15.12.20071.1.2008 25 40 58 25 111 40 28 / * / * 38 1.1.15.1.2008 160 59 49 85 67 50 43 60 84 40 15.1.1.2.2008 60 69 46 99 67 56 65 84 74 49 1.2.15.2.2008 28 21 34 23 59 29 27 242 90 20 15.2.1.3.2008 40 37 39 190 84 58 37 91 54 47 1.3.15.3.2008 29 44 43 46 133 55 35 / * 94 95 15.3.1.4.2008 94 86 228 193 194 108 115 119 / * 63 1.4.15.4.2008 26 29 54 43 100 127 14 83 199 28 15.4.1.5.2008 49 53 42 63 165 51 53 82 55 56 1.5.15.5.2008 16 28 25 20 103 49 41 64 16 23 15.5.1.6.2008 78 107 82 103 379 89 229 130 77 74 1.6.15.6.2008 52 50 71 43 243 60 98 76 58 47 15.6.1.7.2008 / * 84 48 49 215 67 108 70 57 59 1.7.15.7.2008 49 110 57 67 252 226 170 123 94 66 15.7.1.8.2008 92 95 111 249 117 43 127 78 60 80 1.8.15.8.2008 44 221 110 133 / *** 177 211 34 / ** 337 15.8.1.9.2008 61 61 37 35 138 46 144 89 141 51 1.9.15.9.2008 62 70 67 72 172 82 111 82 / * 113 15.9.1.10.2008 13 43 11 8 26 34 20 / * 48 7 1.10.15.10.2008 49 80 85 76 102 85 44 102 49 52 15.10.1.11.2008 93 97 86 108 / *** 138 118 166 92 76 1.11.15.11.2008 32 46 34 133 / *** 33 40 101 46 26 15.11.1.12.2008 51 47 29 33 305 287 43 72 / ** 49 *samplewasnotanalyzed(samplewasdestroyed) **highvaluesduetopresenceofNaClorCucompounds ***highvaluesduetopresenceoforganicpollutionofsample(decaypartsofplantsorinsects,algae)

400 1A 350 2A 300 3A 250 4A day 2 200 5A

mg/m 150 6A

100 7A 50 8A 0 9A

8 8 08 008 08 10A 2008 2008 2008 2008 2008 2008 2.2007 1.2008 2.2008 5.2008 7.2008 1.2008 10.20 10.2008 12.2008 .1 1.4. 1. 5.8.2008 5.9.2008 . .1 .11. . 15. 15. . 15. 1 1 1. 15 4. 15 . 1. 2. 7. .8. .9. 9. 0.1 1. 15.1.1.2.1. 15.2.1.3.1.3.15.3.2015.3 1.4.15.4.215. 1.5.15.5.15.5.1.6.20081.6.15.6.15.6.1.7.20081. 15.7.1.8.2001 15.8.1.9.2001 .1 .11.1 12 15. 11. 1. 1.10.1515 1. 15 15.12.20071.1.2008 Figure97:MassofparticulatematterdepositionsamplingsitesAparticles<3m

84 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

ParticulatematterdepositionatsamplingsitesB,reflectingbothverticalandhorizontalinput of dust (especially contribution with wind) was measured by gravimetric analysis. Results showthatthemassofparticulatematterdepositionrangedfrom80250mg/m 2dayandrarely reachorexceedtherecommendedvalueof350mg/m 2day(Table20andFigure98).

Table20:MassofparticulatematterdepositionsamplingsitesB(mg/m 2day) recommended 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B value 1.12.15.12.2007 128 118 90 84 269 138 98 278 / * 111 350 15.12.2007 1.1.2008 40 69 8 45 66 78 89 / * / * 83 350 1.1.15.1.2008 140 121 52 91 125 89 94 108 48 246 350 15.1.1.2.2008 66 103 57 100 91 96 76 147 227 98 350 1.2.15.2.2008 41 139 62 80 82 141 43 206 / ** 66 350 15.2.1.3.2008 109 42 72 119 95 146 49 / * 95 90 350 1.3.15.3.2008 79 43 57 102 159 151 168 / * / ** 164 350 15.3.1.4.2008 323 122 136 145 240 137 181 204 219 85 350 1.4.15.4.2008 233 109 107 177 / *** 101 145 197 196 107 350 15.4.1.5.2008 384 86 80 83 174 100 140 132 54 119 350 1.5.15.5.2008 46 51 46 72 143 149 111 139 49 41 350 15.5.1.6.2008 213 157 / * 217 / *** 180 230 268 180 187 350 1.6.15.6.2008 74 101 99 298 400 134 122 129 120 92 350 15.6.1.7.2008 147 102 69 67 / *** 164 136 141 97 110 350 1.7.15.7.2008 128 / * 108 249 431 116 359 / * 213 133 350 15.7.1.8.2008 247 160 91 98 198 58 160 367 126 65 350 1.8.15.8.2008 259 88 131 / * / *** 293 262 / ** / ** 172 350 15.8.1.9.2008 190 138 35 89 149 78 / * 349 207 60 350 1.9.15.9.2008 87 206 121 131 177 139 197 167 / * 102 350 15.9.1.10.2008 28 67 20 41 34 129 48 / * 95 57 350 1.10.15.10.2008 123 84 80 84 136 157 69 200 66 92 350 15.10.1.11.2008 160 85 78 94 / *** 165 178 167 138 125 350 1.11.15.11.2008 85 67 107 117 151 73 92 141 111 47 350 15.11.1.12.2008 85 66 46 189 516 109 110 / * / ** 155 350 *samplewasnotanalyzed(samplewasdestroyed) **highvaluesduetopresenceofNaClorCucompounds ***highvaluesduetopresenceoforganicpollutionofsample(decaypartsofplantsorinsects,algae)

600 1B

500 2B 3B 400 4B day 2 300 5B mg/m 200 6B

7B 100 8B 0 9B 8 8 08 08 008 08 2008 2008 2008 2008 2008 10B 2.2007 2.2008 4.2008 6.2008 7.2008 9.2008 11.2008 .1 5.1.20081. 1. 5.8.20081. .10. .11.2008. .12. 1 15. 15. 1 1 1 15 1. 5. 8. 15 15 . 5.2.1.3.2008 4. 7. .8. recomended 20071.1.2001.1. 15. 1.2.15.2.201 1.3.15.3.15.3.1.4.2001. 15.4.1.5.1.5.15.5.200815. 1.6.15.6.15.6.1.7.20081. 15.7.1.8.21 15. 1.9.15.9.20 .10. 1. .11. 12 15.9.1.10.2010. 1 value 1. 12. 1. 15 1. 15 15. Figure98:MassofparticulatematterdepositionsamplingsitesB 85 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Inmostsampleswithparticleslargerthan3m(Table21)thevaluesofparticlesdeposition werebetween10and100mg/m 2day,whilethevalueoftheparticlesmallerthan3m(Table 22)werebetween60and200mg/m 2day.ItappearsthateveninthecaseofsamplingsitesB themajorityofparticlesrepresentfineparticlessmallerthan3m.Maximummeasuredvalue for particles on filters (larger than 3 m) was 167 mg/m 2 dayintimeperiodfrom15.4.to 1.5.2008insamplingsite1whilemaximumvaluefor smaller particles in filtrate was 460 mg/m 2dayintimeperiod15.11.to1.12.2008insamplingsite5.

Table21:MassofparticulatematterdepositionsamplingsitesBparticleslargerthan3 m(mg/m 2day) 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 1.12.15.12.2007 38 38 34 34 7 46 43 111 / * 33 15.12.20071.1.2008 17 17 12 18 29 9 28 / * / * 34 1.1.15.1.2008 29 34 16 38 34 18 41 34 0 49 15.1.1.2.2008 8 31 9 14 11 18 12 40 37 18 1.2.15.2.2008 26 13 10 25 23 59 15 92 / ** 31 15.2.1.3.2008 19 7 23 23 14 47 4 / * 7 19 1.3.15.3.2008 36 16 23 39 44 87 69 / * / ** 82 15.3.1.4.2008 74 14 23 48 51 45 37 66 6 15 1.4.15.4.2008 116 56 56 51 / *** 33 74 90 46 57 15.4.1.5.2008 167 33 28 25 8 10 61 43 25 49 1.5.15.5.2008 15 21 21 25 48 69 43 54 26 20 15.5.1.6.2008 63 57 / * 98 / *** 40 97 95 65 86 1.6.15.6.2008 15 23 29 51 57 33 13 28 11 25 15.6.1.7.2008 36 36 20 18 / *** 66 38 46 21 44 1.7.15.7.2008 41 / * 38 98 61 56 70 / * 49 59 15.7.1.8.2008 26 22 28 14 72 14 35 46 25 18 1.8.15.8.2008 121 25 39 / * / *** 75 39 / ** / ** 54 15.8.1.9.2008 51 49 6 37 45 37 0 78 25 26 1.9.15.9.2008 21 136 52 72 43 62 39 82 / * 36 15.9.1.10.2008 20 18 16 15 15 72 29 / * 34 39 1.10.15.10.2008 8 15 10 11 13 15 5 2 7 16 15.10.1.11.2008 15 11 3 22 / *** 55 18 18 20 18 1.11.15.11.2008 38 31 46 41 25 31 38 52 29 20 15.11.1.12.2008 18 13 10 51 56 36 26 / * / ** 43 *samplewasnotanalyzed(samplewasdestroyed) **highvaluesduetopresenceofNaClorCucompounds ***highvaluesduetopresenceoforganicpollutionofsample(decaypartsofplantsorinsects,algae)

86 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

180 1B 160 2B 140 3B 120 4B

day 100 2 5B 80 6B mg/m 60 7B 40 8B 20 9B 0 10B 7 8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .2 .2 .2 .200 .2 2 .2 2 .2 .2 2 .2 .2 2 2.2008 5.2008 1 2 1 .1 . .3 .4 .4 . .6 .7 .9 5 1 5 1.5. 1 5 1.8.2008 1 .10.2008.1 .1 5. 1 . 1 . . 15.6. 1 . 15.9. 5 1 1 1 071.1.20. .2 .15.3.2008 .4 .5 . . .7 .8. . 1 . 0 .1 5 3 5 5 .6 .7 5 .9 . 1 1 15.1.1.2.20081.2.151 1. 15.3.11.4. 1 1.5.151 1 15.6.1.7.20081 1 1.8.15.8.200815 1 0 .1 15.9.1.10.2008.1 .11.15.11.20085 1.12. 1 15.10. 1 1 15.12.2 Figure99:MassofparticulatematterdepositionsamplingsitesBparticles>3m

87 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Table22:MassofparticulatematterdepositionsamplingsitesBparticlessmallerthan3 m(mg/m 2day) 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 1.12.15.12.2007 90 80 56 49 262 92 56 167 / * 79 15.12.20071.1.2008 23 52 5 26 37 69 61 / * / * 49 1.1.15.1.2008 111 86 36 53 90 71 53 73 48 197 15.1.1.2.2008 58 73 48 86 80 78 64 107 190 80 1.2.15.2.2008 15 126 52 56 59 82 28 115 / ** 34 15.2.1.3.2008 90 35 49 97 81 98 46 / * 88 70 1.3.15.3.2008 43 26 34 62 115 64 99 / * / ** 82 15.3.1.4.2008 249 108 113 97 190 92 144 138 213 70 1.4.15.4.2008 117 53 52 126 / *** 68 72 107 150 50 15.4.1.5.2008 217 53 52 59 165 90 79 89 29 70 1.5.15.5.2008 31 29 25 48 95 80 69 85 23 21 15.5.1.6.2008 151 100 / * 118 / *** 140 133 173 115 101 1.6.15.6.2008 59 78 69 248 342 101 109 101 108 67 15.6.1.7.2008 111 66 49 49 / *** 98 98 95 75 66 1.7.15.7.2008 87 / * 70 151 370 61 289 / * 164 74 15.7.1.8.2008 221 138 63 84 126 45 124 321 101 46 1.8.15.8.2008 138 64 92 / * / *** 218 223 / ** / ** 118 15.8.1.9.2008 140 89 29 52 104 41 / * 270 183 34 1.9.15.9.2008 66 70 69 59 134 77 157 85 / * 66 15.9.1.10.2008 8 49 3 26 20 57 18 / * 61 18 1.10.15.10.2008 115 69 70 72 123 143 64 198 59 75 15.10.1.11.2008 144 74 75 73 / *** 110 160 148 118 106 1.11.15.11.2008 47 35 61 76 126 42 55 88 81 27 15.11.1.12.2008 67 52 36 138 460 73 84 / * / ** 112 *samplewasnotanalyzed(samplewasdestroyed) **highvaluesduetopresenceofNaClorCucompounds ***highvaluesduetopresenceoforganicpollutionofsample(decaypartsofplantsorinsects,algae)

500 1B 450 2B 400 350 3B 300 4B day 2 250 5B 200 mg/m 6B 150 7B 100 8B 50 9B 0 10B 008 008 08 2008 2008 2008 2008 2008 2.2007 2.2008 3.2008 4.2008 5.2008 7.2008 8.2008 9.2008 2.2008 10.20 10.2008 .1 1.2. 1. 5.3.2008 1. 1. . .11.2008.11. .1 . 15. 1 15. 15. 15. 1. 1 15 2. . 6. 7. 15 15 . 2. 5.4.1.5.20085. 9. 9. 1.1 1.1.15.1.215.1 1. 15. 1.3. 15.3.1.4.21.4 1 1. 15.5.1.6.20081.6.15.6.15. 1.7.15.7.15. 1.8.15.8.200815.8.1.9.1. 0. .10. .1 12 15. 1 5 11. 1. 1. 1 1. 15 15.12.20071.1.2008 Figure100:MassofparticulatematterdepositionsamplingsitesBparticles<3m

88 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4.2.2Particulatematterdepositiontrendatvarioussamplingsites Resultsofparticulatematterdepositionarewellcorrelated (Figure 101 and Figure 102) at somesamplingsites.Onotherssitescorrelationamongdifferentlocationisnotsogreat,it's rathernegative(Figure103andFigure104).

350

300

250

200

day 2A 2 7A 150 mg/m

100

50

0 time(1.12.200730.11.2008) Figure101:Particulatematterdepositioncorrelationamongsamplingsites2Aand7A

400

350

300

250

day 2A 2 200 10A

mg/m 150

100

50

0 time(1.12.200730.11.2008) Figure102:Particulatematterdepositioncorrelationamongsamplingsites2Aand10A

89 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

450

400

350

300

250

day 1A 2 200 5A mg/m 150

100

50

0 time(1.12.200730.11.2008) Figure103:Particulatematterdepositioncorrelationamongsamplingsites1Aand5A

400

350

300

250

day 1A 2 200 10A mg/m 150

100

50

0 time(1.12.200730.11.2008) Figure104:Particulatematterdepositioncorrelationamongsamplingsites1Aand10A If trends of the particulate matter deposition at sampling sites 1, 2 and 3 are compared, correlationatsamplingsitesA(standardizedmethod)isverygood(Figure105).However,in the case of the sampling sites B (modified sampling gauge) there is no longer correlation among results from individual sites (Figure 106). Possible explanation could be fact that screenofmodifiedsamplingdevicewereorientedindirectiontowardEETandPortofKoper. If predominant wind blows from any other direction, sampling gauge was practically protectedfromsuchinfluence(whilesamplingsiteAwasnot).

90 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

350

300

250 1A 200 day 2 2A 150

mg/m 3A 100

50

0 time(1.12.200730.11.2008) Figure 105: Trends of the particulate matter deposition at sampling sites 1, 2 and 3 standardizedmethod

450 400 350 300 1B

day 250 2 2B 200

mg/m 3B 150 100 50 0 time(1.12.200730.11.2008) Figure 106: Trends of the particulate matter deposition at sampling sites 1, 2 and 3 modifiedsamplinggauge

91 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4.2.2Gravimetricalanalysesofparticulatematterdepositioncalculatedmonthlyresults Theresultsofparticulatematterdepositionwerecalculatedasmonthlyresultsasshownin Table23and24.MassofparticulatematterdepositionatthesamplingsitesA,calculatedona monthly time period during entire monitoring interval from December 2007 to November 2008hasneverexceededtherecommendedvalueof350mg/m 2day.

Table23:MassofparticulatematterdepositionsamplingsitesAmonthlyresults(mg/m 2 day) recommended 1A 2A 3A 4A 5A 6A 7A 8A 9A 10A value December2007 63 78 71 63 165 86 70 159 / * 80 350 January2008 130 89 59 120 87 62 68 94 102 49 350 February2008 41 35 43 120 88 57 40 209 80 47 350 March2008 72 75 160 145 207 101 92 133 182 139 350 April2008 66 71 77 83 164 144 56 140 157 79 350 May2008 74 113 95 105 278 104 172 153 78 95 350 Jun2008 61 94 85 62 303 87 152 90 67 80 350 July2008 86 133 109 193 233 186 180 128 100 92 350 August2008 69 190 88 105 186 137 193 78 152 209 350 September2008 46 78 62 57 123 75 83 113 49 83 350 October2008 89 101 98 107 105 132 92 149 90 81 350 November2008 59 67 52 106 349 214 60 117 75 55 350 *samplewasnotanalyzed(samplewasdestroyed)

400 1A

350 2A 300 3A 250 4A day 2 200 5A mg/m 150 6A 100 7A 50 8A 0 9A 8 8 0 08 08 08 008 20 008 200 20 0 20 2 2 2 r2008 10A y h t er e pril us b arc A Jun2008 July2008 g May2008 u anuar M A recomended J ptem Octob ovember February e N value December2007 S Figure107:MassofparticulatematterdepositionsamplingsitesAmonthlyresults

92 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Table24:MassofparticulatematterdepositionsamplingsitesBmonthlyresults(mg/m 2 day) recommended 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B value December2007 83 93 48 63 164 107 94 278 / * 97 350 January2008 102 112 55 96 107 93 85 128 140 170 350 February2008 74 92 67 99 88 143 46 206 95 77 350 March2008 205 83 98 124 201 143 174 204 219 123 350 April2008 309 98 94 130 174 101 142 165 125 113 350 May2008 132 105 46 147 143 165 173 206 117 117 350 Jun2008 111 101 84 183 400 149 129 135 108 101 350 July2008 182 168 91 151 301 101 229 358 148 94 350 August2008 224 114 82 89 149 182 262 349 207 114 350 September2008 57 137 70 86 106 134 122 167 95 79 350 October2008 142 84 79 89 136 161 125 183 103 109 350 November2008 85 66 76 153 333 91 101 141 111 101 350 *samplewasnotanalyzed(samplewasdestroyed)

450 1B

400 2B

350 3B 300 4B

day 250 2 5B 200 mg/m 150 6B 100 7B

50 8B

0 9B 7 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 10B 2 2 2 2 r 2 2008 r ry2008 h y er be a rc be u Jun2008 b recomended m n April2008 Ma July2 mber o m Ma te value Ja August2008 Oct February2008 Dece Sep Nove Figure108:MassofparticulatematterdepositionsamplingsitesBmonthlyresults Accordingtomonthlyresults,seasonalfluctuationsofparticulatematterdepositioninstudy areaarepresent.Themassofparticulatematterdepositionwasobservetoincreaseduringhot dryperiods.Sincethecorrelationbetweenthehumidityinthesoilandtheamountofdust were not determined future monitoring of the moisture in the soil is recommended. ComparisonamongsamplingdeviceAandBoneachsamplingsitesarepresentedinSection 4.2.6.

93 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 4.2.3Particulatematterdepositioncalculatedyearlyresults The Decree (1994), which was subsequently annulled, provided for annual limit lower threshold value (200 mg/m 2day)thanrequiredforthemonthlyvaluesof350mg/m 2 day. Thesevaluewerenotexceededovertheentiresamplingperiodonanylocation(Figure109). Highconcentrationsweremeasuredinsamplingsite5Aand5B(probablyduetothepresence oforganicimpuritiesinthesample)andsamplingsite8B(mostlikelyduetotheinfluenceof strongNEwind)(Table25).Inallcases,withthesingleexceptionofsamplingsite3, theamountofdustdepositionislowerinsamplinggaugeA(verticaldeposition)thaninthe samplinggaugeB(verticaldepositionandhorizontalwindcontribution).Suchresultswere expectedduetoadditionalcontributionfromthewind.

Table25:MassofparticulatematterdepositionsamplingsitesAandBcalculatedyearly results(mg/m 2day) samplingsite 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B particulatematter 71 142 94 101 83 76 105 120 187 191 deposition(mg/m 2 day) recommended samplingsite 6A 6B 7A 7B 8A 8B 9A 9B 10A 10B value particulatematter 116 130 105 137 129 197 100 132 91 109 200 deposition(mg/m 2 day)

250 A B recommendedvalue 200

day 150 2

mg/m 100

50

0 1 2 3 4 5 6 7 8 910 samplingsite Figure109:MassofparticulatematterdepositionsamplingsitesAandBcalculated yearlyresults(mg/m 2day)

94 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4.2.4Chemicalanalysisofdifferentmetalsindepositedmatter(Annualsample) Selected toxic metals were determined in particulate matter deposition. Annulled Decree (1994)setlimitingvaluesforonlythreemetals,lead,cadmiumandzinc.Thelimitingvalues regulatedinthisdecreeremainsasrecommendedvalues.Noneofthethreemetalsapproached theserecommendedmaximumvalueinanysamplesofparticulatematterdepositioncollected duringentirestudy. EU Directive 2004/107/EC of the European Parliament and of the Council from 15 th of December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air (2004) expects monitoring of these elements in fine particles

(PM 10 )aswellasinparticulatematterdeposition.OneoftheobjectiveofDirectiveisalsoto ensurethatadequateinformationonconcentrationsofarsenic,cadmium,mercury,nickeland polycyclic aromatic hydrocarbons in ambient air as well as on the deposition of arsenic, cadmium,mercury,nickelandpolycyclicaromatichydrocarbonsisobtainedandensurethatit ismadeavailabletothepublic.Fortheanalysisofparticlesdeposition,specificstandard(Air QualityAmbientAirDeterminationoflead,nickel,arsenicandcadmiuminatmospheric depositions;oSISTprEN15841:2008)wasenforced.Thisstandardspecifiesthemethodof samplecollectionandanalysis.However,limitingortargetvaluesformetalsindeposition havenot yetbeensetby theEU,norhavelimiting values been promulgated in Slovenia. NeverthelessallfourmetalmentionedinDirectiveaswellassomeotherswereanalyzed. Amongallmetalsanalyzed(Table26andFigure110)highestvalueswereobservedforiron andaluminum;possiblesourceorreasonforhighvaluescouldbenaturalcompositionofthe surroundingsoil,howeverhighvaluesofironcouldbelinkedalsototheimpactofironorein theoredepotatEETinPortofKoper.Increasedlevelsofcoppermayresultfromleachingof copperinthesamplefromacopperwire,addedinto the collecting tank for algae growth prevention. In addition to the metals mentioned, presence of TiO 2 was detected (see the resultsofelectronmicroscopy),howevertitaniumwasnotanalyzed.

95 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Table26:Resultsofdifferentmetalsintheannual sample at each sampling site (g/m 2 day)

samplingsite Cr Pb Cd As Ni Zn Cu Fe Al 1A 1.4 4.2 <0.1 0.1 1.4 37.9 313.1 654.4 407.2 1B 2.7 2.7 <0.1 0.1 <1 31.0 165.6 544.0 447.0 2A 10.8 6.7 <0.1 0.3 5.4 52.5 255.8 2688.9 723.1 2B 1.3 4.0 <0.1 0.1 1.3 33.7 245.1 659.8 356.8 3A 1.5 4.6 <0.1 0.2 1.5 55.5 337.4 859.7 579.3 3B <1 1.3 <0.1 <0.1 <1 21.5 246.4 263.9 164.3 4A 2.7 2.7 <0.1 0.1 1.3 33.7 368.9 735.2 542.6 4B 1.5 3.1 <0.1 0.2 <1 20.0 436.0 480.7 278.9 5A 3.6 3.6 <0.1 0.2 1.8 23.4 444.7 777.7 511.3 5B 2.7 4.0 0.1 0.1 2.7 78.1 228.9 933.1 519.7 6A 1.3 4.0 <0.1 0.1 1.3 33.7 210.1 514.4 320.5 6B 2.8 2.8 <0.1 0.1 1.4 25.3 130.6 883.2 421.3 7A 7.0 4.2 <0.1 0.1 2.8 36.6 228.1 1437.8 650.6 7B 1.4 2.8 <0.1 <0.1 <1 16.9 200.8 415.6 254.2 8A 1.7 3.4 <0.1 0.2 1.7 27.2 295.9 588.4 363.9 8B 1.3 1.3 <0.1 <0.1 <1 22.9 344.7 246.4 130.6 9A 1.4 2.8 <0.1 0.1 1.4 26.8 247.8 501.3 364.7 9B 1.9 3.8 <0.1 0.2 1.9 26.5 351.6 776.9 604.9 10A 1.9 3.8 0.2 0.2 1.9 32.3 341.6 698.3 491.5 10B 1.3 1.3 <0.1 0.1 <1 14.8 160.2 421.5 325.9 recommended value 100 2 400 <1;<0,1valueofeachmetalbelowthedetectionlimit

10000,00 Cr

Pb

1000,00 Pbrecomended value Cd

Cdrecomended 100,00 value As day 2 Ni g/m 10,00 Zn

Znrecomended value Cu 1,00 Fe

Al

0,10 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B 10A 10B Figure110:Portionofindividualmetalintheannualsampleateachsamplingsite

96 Masterthesis.UniversityofNovaGorica.Gradu

4.2.5Thecarbonisotopes 13 C/ 12 Cratioresults

Table27:Thevaluesof 13 C/ 12 Cisotoperatioofcoalandblankfilter JerebG.Collection,analysisandcharacterizationo

sample δ13 C(‰) coal 28.2 controlblankfilter 25.0

Table28:δ13 Cvaluesdeterminedinparticulatematterdeposition

1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B 10A 10B

December 26.4 26.6 26.0 26.4 25.5 26.5 25.7 25.9 26.7 25.4 26.4 26.2 25.9 26.5 25.8 26.7 26.1 25.8

January 26.2 26.3 26.5 25.8 25.3 25.3 25.9 26.2 26.2 25.2 25.3 29.4 25.8 25.4 25.9 26.4 26.1 26.2 26.0 25.3

February 26.6 27.1 28.1 27.4 26.3 27.1 31.0 26.7 28.2 27.6 27.5 28.0 26.9 26.0 27.7 26.7 28.7 25.9 26.2 26.1

97 March 25.5 28.4 27.2 25.1 25.8 25.7 25.5 25.2 25.5 25.4 25.4 25.9 25.5 25.1 26.1

April 28.9 27.3 27.6 25.4 28.2 28.6 34.8 27.7 29.9 29.4 25.9 26.6 29.1 29.7 31.7 27.6 26.5 28.1 21.5 27.2

May 25.1 24.5 26.0 25.5 26.9 25.2 22.5 25.3 25.9 25.6 25.0 23.5 26.7 26.9 25.8 25.0 25.7 25.9 26.7 25.4

Jun 25.6 26.0 25.4 26.0 25.0 23.9 25.7 25.5 26.0 26.1 26.1 24.7 25.4 24.8 26.4 fparticulatematterdepositioninandaroundKoper

July 25.4 25.2 24.4 25.2 24.6 25.3 25.5 26.0 24.5 26.3 25.4 25.9 25.6 25.5 25.1 25.5 24.8 25.5

August 25.1 26.0 26.0 25.2 24.8 25.2 24.5 24.4 25.9 25.4 24.2 24.7 25.0 25.0 24.4 25.9 24.9 25.1 25.8 25.0

September 25.8 25.7 26.2 26.2 26.6 23.5 26.6 26.3 26.4 26.2 26.3 26.9 25.0 26.3 25.3 26.9 26.1 26.9 25.7 26.1

October 25.1 24.7 25.3 24.8 25.6 23.6 24.1 24.7 23.1 24.7 24.1 24.8 23.9 25.2 26.4 24.1 24.8 25.1 24.9 25.7

November 25.0 26.6 26.4 25.8 27.2 26.2 24.4 26.0 25.5 25.4 25.5 26.4 25.9 26.6 26.9 29.0 27.7 28.7 valuesof 13 C/ 12 Cisotoperatiocomparabletovaluesinthecoal controlsamplingsites(6and7)

Attemptsweremadetodeterminethepresenceofcoal insamplesofparticulatematterdepositionbymeasuringtheratioofcarbonisotopes ateschool,2010 13 C/ 12 C.Coalfromonesourcehasmoreorlessconstantisotopicratioofcarbonisotopesandthereforethesameδ13 Cvalues.Analysisofcoal fromEETdepotshowedthatδ 13 Cis28.2(Table27).Theresultsofisotoperatiosofcarbonisotopes 13 C/ 12 Cfromdifferentsamplingsitesare . JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 presentedinTable28.Withresultsfromcarbonisotopesratioofeachmonthlysampleand resultsfromthecoalandcontrolthecontentofthecarboninsampleswhichoriginfromcoal wasestimated(Figure111andFigure112).

100,0 December

January

80,0 February

March

April 60,0 May

June

40,0 July estimated%ofcoal August

20,0 September October

November 0,0 1A1B2A2B3A3B4A4B5A5B6A6B7A7B8A8B9A9B10A10B Figure 111: % of carbon determined in samples which probably originated from coal resultsaccordingtodifferentsamplingsites

100 1A 1B

90 2A 2B

80 3A 3B

70 4A 4B

60

ofcoal 5A 5B

50 6A 6B

40 7A 7B estimated% 30 8A 8B

20 9A 9B

10 10A 10B

0 December January February March April May June July August September October November Figure 112: % of carbon determined in samples which probably originated from coal resultsaccordingtodifferentsamplingperiod Theconclusiondrawnfromthesemeasurementsisthelargestamountofcarboninsamples which could be associated with coal appears in the period of February and April 2008, especiallyinFebruaryalmostinallsites.However,itisdifficulttocorrelateresultswiththe influence of wind or other weather parameters. In the observation time period (February 2008) prevailing N and NE wind (Bora) was noticed. But relatively low temperature (potentialimpactoftheheatingofdwellingsusingfossilfuels)wasobservedthroughoutthe winterperiodinassociationwiththelowerδ13 Cvaluesindicatingthatcarboncouldoriginate 98 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 fromcoal.Temperatureswerepracticallythesameduringentirewinterandwerenotlower duringFebruary.Thereforeitisdifficulttocorrelatetheresultswiththeamountofparticulate matter deposition. Amount of dust deposition was relatively low during February, higher amountswereobtainedduringdryandhotsummerperiod.Howevertheamountofparticulate matterdepositionrepresentstotalsuspendedparticlesthatsettletothegroundasopposedto theobservedmeasurementsofcarbon(whichcomesfromcoal)isotopiccomposition.Atsites B (vertical plus horizontal deposition) higher amounts of carbon originating from the coal thaninsitesAwereobserved.SinceallmodifiedsamplingdeviceswereorientedtowardEET andPortofKoperwecanassumethatsourceofcoalcouldbecoaldepotatEET. Butitisnecessarytopointoutthatthechosenmethodrepresentsnewapproachforassessing thesourceofcarbon.Thepossibilityofanerrormust be highlighted because the samples investigatedwerenothomogeneousincompositionandstructure.Rather,theyconsistedof different particles from environment. Among others sources carbon could have originated from particles of coal, scrap of insects (parts of legs or skeleton), pollen, plant parts (decomposeleavesinthesample),algae,soot(heatingofbuildings,cars,transportetc.)and others.Theisotopicvalue(δ 13 C) is specific for each of these sources and in case of non homogeneous sample measured δ13 Cvaluescouldrepresenttheaveragevalueofdifferent sources, which may indicate the wrong conclusion about the origin. In addition, the assessment with which the proportion of carbon originating from coal was estimated was givenin%ofcarboninthesample.Withthemethod,theamountofcarboninsamplewere notdetermined.Therefore,thecorrelationbetweenthecarboninthesample,whichprobably originated from the coal at each sampling sites and the amount of particulate matter deposition(gravimetricanalysis)cannotbemadewiththedatacollectedtodate.Forfurther investigation,therefore,quantificationofcarboninsamplesaswellasimprovingthemethod wouldbenecessary.

4.2.6ComparisonbetweensamplingdeviceAandBoneachsamplingsites Since method for collection of particulate matter deposition using standard Bergerhoff sedimentatorsaccordingtoVDIandDINguideline(VDI,1996)(detaileddescribedinSection 4.2) may be flawed because it does not capture the entire amount of the horizontal wind contribution.ThemethodwasmodifiedaddingmetalscreenorientedtowardEETdepoton 99 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 samplingdevicesmarkedwithletterB.Resultsshowsthatthehorizontalcontributionofthe wind(metalscreensamplingsiteB)significantlycontributedtoincreasedquantitiesofdust atthesamplingsite1,whichisthenearesttothelandfill(Figure113).Outof24observations, themassesofparticulatematterdepositiononsamplingsitesBwerehigherthanthemassesat thecorrespondingAsamplingsites.TheSpearman's(rho)correlationcoefficientforsampling sites1Aand1Bisalmost0.7withpvalue0.000.Asimilarobservationwasdetectedonother samplingsites(Figures114to122),onsamplingsites1,2,6,7,8and10atleast15outof24 times, mass of particulate matter deposition on sampling sites B is higher than mass on samplingsiteA.Additionally,onallsamplingsitesatleastinhalfofthetimeintervals(12x) massofdustdepositionishigherinsamplersBtheninsamplersA. However,oneofthereasonswhyinsomecasesamountofparticulatematterdepositionis higherinsamplingsitesAcomparedtosamplingsitesBcouldberelativelylowamountof particulatematterdepositionduringentireperiodofmonitoring;anotherreasoncouldbegood weathercondition(lowwindvelocityinobserveddirections).Alsomodifiedsamplingdevice wereorientedindirectiontowardEETandPortofKoper.Ifpredominantwindblowsfrom any other direction, sampling gauge was practically protected from such influence (while samplingsiteAwasnot).

450 400 350 300 250 1A 200 150 1B 100 recommended 50 value 0

7 8 8 8 8 8 8 8 8 8 8 0 08 08 0 0 08 08 08 0 0 0 08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .2 .2 .20 .2 .2 .2 .20 .2 .2 .20 .20 .2 .2 2 1 4 4 5 7 7 .3 .6 .9 10 11 12 .1 5. 1.2.2 1.3.205 1. 5. 1. 1.6.205 1. 5. 1.8.2008 1.9.205 . . . 5 1 . . 1 . . 1 . 071.1.2008.1 .1 .3 .4 .1 .6 .7 .1 .1 15 .1 .1 0 .1. 5 3 5 .4. 5 6 5 .7. 5 9 9 . 1 2 1 1 1.2.15.2.200815.2.1. 1 1 1 1.5.15.5.200815.5. 1. 1 1 1 1.8.15.8.200815.8.1. 5. 1 .1 .1 1 .1 5 1 1.10.15.10.200815.10.1.11.20081 1 15.12.2 Figure113:Comparisonbetweentheverticaldeposition (A) and horizontal contribution (B)toparticulatematterdeposition(samplingsite1)

100 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

400 350

300 250 2A 200

150 2B 100 recommended 50 value 0

7 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 08 08 0 0 0 0 0 .2 .20 .2 .2 .2 0 2 12 .6.20 .8 .8.20.9.20 .9 . 1.2.2008 1.4.2008 1.5.20 1.6.205 1.7.20 5 5 .1 .1 . . . . . .1 .1 5 1.11.2008 1 15 .15.3.20 .15.5.20 .1 .15.7.20.7 .1 .8 .1 . .1.15.1.2008 3 5 6 7 8 9 .1 .15.11.21. 2 1 15.1 1.2.15.2.200815.2.1.3.20081. 15.3 1.4.15.4.200815.4 1. 15.5 1. 15.6 1. 15 1. 15 1. 0 1 1 .1 15.9.1.10.2008.1 .1 5. 1 1 15.10.1 1 15.12.20071.1.2008 Figure114:Comparisonbetweentheverticaldeposition (A) and horizontal contribution (B)toparticulatematterdeposition(samplingsite2)

400

350 300 250 3A 200

150 3B 100 recommended 50 value 0

8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 08 0 08 08 08 08 08 08 0 08 08 08 08 0 0 0 0 0 0 0 0 0 0 0 0 0 20 .20 .20 .20 20 20 .20 20 .20 20 .2 .2 .2 .2 .1. 1 2 2 .3. .3. 4 .4.2 .5. 5 .6.2 .6.2 .7.2 .7.2 .8.2 .9.2 .9.2 0. 0 1 1 2 1 5. 1. 5. 1. 5. 1 .1 .1 .1 .1 7 1 . 1 .1 15 . 15 .1 1 .1 15 .1 15 .1 15.8.2.1 15 5 5 0 .1 .2 . .3 . .4 5 . 6 . 7 . 8 . .1. 1 1 5 .2. 5 .3 5 .4 5 .5. 5. .6 5. .7 5. .8 5. .9 9 .1 0. .1 1. 20 1.1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5. 0 .1 1 .1 2. 1 5 .1 1.12.15.12.20071 1.1 1 1 15 5. 1 Figure115:Comparisonbetweentheverticaldeposition (A) and horizontal contribution (B)toparticulatematterdeposition(samplingsite3)

400 350

300 250 4A 200 150 4B

100 recommended 50 value 0

7 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 08 0 0 08 0 008 00 008 00 008 00 0 0 0 .2 .2 .2 .2008 .2 .2 .2008 .2 .2 .2 .20 .2 .2 2 2 5 9 0 1 1 .1 .4 .5 .8 .8 10 .1 5 1. 5.2.201.3.20 1.4.20085 1 5. 1.6.20 1.7.20 1 5 1. 5.9.20.1 . .1 .1 .12.2008 5 . 1 . 1 . . . 1 5 .1 .1 .2 .1 .4. .5 .6 .15.7.2008.7. .1 .8 .1 1 1 .1 0071.1.20081 5 .2. 5 .3.15.3.204 .5. 5 .6.15.6.205 7 8 5 .9. 9 0. .1 1. 2 2 1. 1 1 1 1 15.3.1. 15 1 1 1 1 1. 15 1. 1 1 5. 1 1 1 .1 2. 1 5. .1 5. 1 1 1.10.151 1 1 5. 1 Figure116:Comparisonbetweentheverticaldeposition (A) and horizontal contribution (B)toparticulatematterdeposition(samplingsite4) 101 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

600

500

400

300 5A

200 5B

100 recommended value 0

8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 00 00 00 00 00 00 008 .2007 .20 .2 .200 .2008 .2 .2 .2 .2008 .2 .200 .2008 .2 .2008 .2 .2008 .20 1 3 .6 6 8 .9 2 5. 1.2 5.2.20081.3 5. 1.4 5.4.20081.5 5.5.2008 5. 1.7 5.7.20081.8 5. .11.20 .1 . 1 . . 1 . 1 .1 . 1 . .1 1 1 .1 .1 .5 .1 .1 .8 . . .1 .2. .3 .4. .5. 5 .6 .7. .8 5 .9.15.9.2008 20071.1.201 15.1 1 15.2 1 15.3 1 15.4 1 1 1 15.6 1 15.7 1 1 1 10 11 . 15.9.1.10 5. 5. 1.12.15.12.12 1.10.15.101 1.11.15.111 5 1 Figure117:Comparisonbetweentheverticaldeposition (A) and horizontal contribution (B)toparticulatematterdeposition(samplingsite5)

400

350 300 250 6A 200 150 6B 100 50 recommended value 0

8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 00 00 00 00 00 00 00 008 .2007 .2 .2 .2008 .200 .20 .2 .2 .20 .20 .2 .2 .2 .2 .20 1 .2 3 4 .5 6 7 2 5. 5 1.6 5. 5. 10.200.10 .11.20 .1 .1. .1. .1 . 1. 1 1 .1 .1 2 3 .4 .1 .1 . .1 .2 5. 5. 5 .6 .7 5.8.1.9.20089. .15 .15.11 1 15.1.1.2.20081 1 1.3.15.31 1.4.15.4.20081 1.5.15.5.200815.5 1 15.6.1.7.20081 15.7.1.8.20081.8.15.81 1.9.15.95. 0 .10. 1 11 .20071.1.2008 1 5. 1.12.15.122 1.1 15 1.1 1 15.1 Figure118:Comparisonbetweentheverticaldeposition (A) and horizontal contribution (B)toparticulatematterdeposition(samplingsite6)

400

350

300

250

200 7A 150 7B 100

50 recommended value 0

8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 08 0 008 00 00 00 00 00 0 2 .2 .2008 .2 .2008 .2 .200 .20 .2 .20 .2 .2008 .20 .20 2 4 .6 8 9 0 1.2 1.20082 5.3 5.7 .1 1 1.1. .1.2 1.5 .1.6 .1.9 1 7 1 .15. .1 3.1. 4. 5 .15 .1 7.1. 8 .15. .2 5. 5. .6 5. .9 0. .15. 200 1.1.15.1.20015. 1 15.2.1.3.2001.3 1 1.4.15.4.2001 1.5.15.5.200815. 1 15.6.1.7.20081.7 1 1.8.15.8.20015. 1 1 . 15.9.1.10.20085.1 1.12.15.12.2007 1.10.15.11 1.1 15.11.1.1 15.12 Figure119:Comparisonbetweentheverticaldeposition (A) and horizontal contribution (B)toparticulatematterdeposition(samplingsite7) 102 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

400

350 300

250

200 8A 150 8B 100 50 recommended value 0

8 8 8 8 08 08 08 08 08 007 0 008 00 008 0 008 00 008 0 008 008 00 008 008 008 .2 20 .2 .2 2 .2 .2008 .2008 .20 .200 .2 2.2 4.2 7.2 9.2 1 .12 5.1.2 5.5.2 5.6.2 .11 1 .1. 15.2.2008 15.3 15. .1.5.20081 .1.6 1 .1. 15.7. 15.8 .1.9.200815. 1 . . 4 . 8 .1.10 .15 5.1 .4. 5.5 5.6 .8. .9. 9 0. .15.1 1.1. 1 1.2 15.2.1.3.21.3 15.3.1.4.21 15. 1.5. 1 1.6. 1 1.7 15.7.1.8.21 15. 1 1 2.20071.1. 15. 5.1 1.12 1 1.10.15.101 1.1 15.11.1.12 15. Figure120:Comparisonbetweentheverticaldeposition (A) and horizontal contribution (B)toparticulatematterdeposition(samplingsite8)

400

350

300

250 9A 200 150 9B 100

50 recommended value 0

7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 08 0 0 0 0 0 0 0 0 08 00 00 00 0 .20 20 .200 .20 .2 .2008 .200 .20 .2 .20 .200 .20 .2 .20 .20 .20 2 .1. .2 3 .4 6 .7 8 .9 1 1.2 5.5 .1 71 .1.3 .1.4 .1.8 0 .15.11.1 2 .15. 3 .15 .1 5.1. .15.66.1 7 .15. .15 1.1 5. 3 .4 5. 5. .8 .9 .9.1.10.200. .15 1.1 1 1.2.15.2.200815. 1. 15. 1 15.4.1.5.20081.5 1 1.6 1 1.7.15.7.200815. 1 15.8.1.9.2001 1 .20 15 5.1 1.12.15.1.12 1.10.15.10.20081 1.1 15.11.1.12.2008 5 1 Figure121:Comparisonbetweentheverticaldeposition (A) and horizontal contribution (B)toparticulatematterdeposition(samplingsite9)

400

350 300

250

200 10A 150 10B 100 50 recommended value 0

8 8 8 8 08 08 08 08 00 008 008 0 008 008 00 008 00 008 0 008 008 008 008 008 .2007 2 .2 .2 .2 2 2 .2 .20 .2 1.20 2.2 2.2 4.2 5.2 9.2 11 5.3.2 1.7.2 5.8.2 .12 71. 15.1.2008.1. 15. .1.3.1 .1. 15.4 15. .1.6 15.6.2008. 15.7 .1.8.20081 .1. 15.9. 1 0 . 2 . 5 . 7 . 15.10 .2. 5.3 .7. 5.8 . 0.1. .15.11.2001. 1.1 15.1 1 15. 1.3. 1 1.4 15.4.1.5.20081.5. 15. 1.6 15.6 1 15. 1.8. 1 1.9 1 15.9.1.10.5.1 1.12.15.122.20 1.10 1 1.1 15.1 5.1 1 Figure122:Comparisonbetweentheverticaldeposition (A) and horizontal contribution (B)toparticulatematterdeposition(samplingsite10)

103 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4.2.7Correlationbetweenparticulatematterdepositionandcoalandironoremanipulationat EET Data of coal and iron ore manipulation at EET were obtained from the Department of Environmental and Occupational Health in Port of Koper. In Figure 123 and Figure 124 correlationamongparticulatematterdepositionandoremanipulationatEETinPortofKoper ispresented.Accordingtotheresultsofpreliminarystudytheconfirmationofthecorrelation wasnotexpectedsincethemethodofparticulatematterdepositionmonitoringisnotsensitive enoughandthesamplingintervalforsearchingsuchcorrelationweretoolong.OnFigures 125 to 134 correlation between particulate matter deposition and coal and iron ore manipulationatEEToneachsamplingsiteispresented.

400 900000 1A 350 800000 2A 700000 3A 300 4A 600000 day

2 250 5A 500000 200 6A tons mg/m 400000 7A 150 300000 8A

100 200000 9A 10A 50 100000 IRONORE 0 0 COAL December January2008 February2008 March2008 April2008 May2008 Jun2008 July2008 August2008 September October2008 November SUM 2007 2008 2008 Figure 123: Correlation between particulate matter deposition and coal and iron ore manipulationatEETsamplingsitesA

450 900.000 1B 400 800.000 2B 350 700.000 3B

300 600.000 4B day tons

2 5B 250 500.000 6B 200 400.000 mg/m 7B 150 300.000 8B 100 200.000 9B

50 100.000 10B IRONORE 0 0 COAL December January2008 February2008 March2008 April2008 May2008 Jun2008 July2008 August2008 September October2008 November 2007 2008 2008 SUM Figure 124: Correlation between particulate matter deposition and coal and iron ore manipulationatEETsamplingsitesB

104 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4.2.7.1Correlationbetweenparticulatematterdepositionandcoalandironoremanipulation atEEToneachsamplingsite AsseenfromFigures125to134,thedatashownocorrelationsbetweencoalandironore manipulation and amount of particulate matter deposition in Port's surroundings, so correlationcouldnotbeconfirmed.

350 900000 300 800000 700000 1A 250 600000 1B day 200

2 500000

150 400000 tone ore

mg/m 300000 100 unloading 200000 50 100000 0 0

08 0 t2 s er2008 pril2008 u b A May2008Jun2008July2008 March2008 January2008 Aug February2008 October2008 December2007 September2008Novem Figure 125: Correlation between particulate matter deposition and ore manipulation at terminalEETsamplingsite1Aand1B

350 900000 300 800000 700000 2A 250 600000 2B

day 200 500000 2

150 400000 tone ore 300000 mg/m 100 unloading 200000 50 100000 0 0

8 8 8 07 8 8 8 0 0 08 0 0 0 08 200 0 0 0 0 0 00 2 2 2 2 2 2 r20 r h y n t r e ary ry2 c u s e u a r J u ru a April2008Ma July2008 mb mb M ug e e eb A t v Jan p October2008 Decembe F Se No Figure 126: Correlation between particulate matter deposition and ore manipulation at terminalEETsamplingsite2Aand2B

105 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

350 900000 300 800000 700000 250 3A 600000

day 200 500000 2 3B

150 400000 tone 300000 mg/m 100 ore 200000 unloading 50 100000 0 0

8 8 8 07 8 8 8 0 0 08 0 0 0 08 200 0 0 0 0 0 00 2 2 2 2 2 2 r20 r h y n t r e ary ry2 c u s e u a r J u ru a April2008Ma July2008 mb mb M ug e e eb A t v Jan p October2008 Decembe F Se No Figure 127: Correlation between particulate matter deposition and ore manipulation at terminalEETsamplingsite3Aand3B

350 900000 300 800000 700000 250 4A 600000

day 200 500000 2 4B

150 400000 tone 300000 ore mg/m 100 200000 unloading 50 100000 0 0

8 8 8 8 8 0 0 08 08 00 0 0 0 0 200 2 2 200 2008 r2007 2 t2 r2 r r ry h2008 y n e e be ary a c u b be u u J m r April2008Ma July2008ugus mb o m b Mar A te Jan p Oct Fe Dece Se Nove Figure 128: Correlation between particulate matter deposition and ore manipulation at terminalEETsamplingsite4Aand4B

400 350 900000 300 800000 700000 5A 250 600000 5B day 200 500000 2

150 400000 tone ore 300000 mg/m 100 unloading 200000 50 100000 0 0

8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2008 2008 2 r2007 2 2008 r r2 ry ry h ril2008 n ly2 a a ay u u e u M J n arc Ap J a M Augusttemb ctobe J p O Febru e Decembe S November2008 Figure 129: Correlation between particulate matter deposition and ore manipulation at terminalEETsamplingsite5Aand5B

106 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

350 900000 300 800000 700000 6A 250 600000 6B day 200 500000 2

150 400000 tone ore 300000 mg/m 100 unloading 200000 50 100000 0 0

7 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 00 008 20 20 2 2 2 2 20 r2 r r ry2008 y n ly st e e e a Ju u u b b b M J m m April2008 cto cember anua March2008 te e J Aug p O February20 Nove D Se Figure 130: Correlation between particulate matter deposition and ore manipulation at terminalEETsamplingsite6Aand6B

350 900000 300 800000 700000 7A 250 600000

day 200 500000 7B 2

400000 tone 150 ore 300000 mg/m 100 unloading 200000 50 100000 0 0

7 8 8 8 8 8 8 0 0 08 0 0 0 0 0 0 0 0 0 008 20 0 20 2 2 2 2 2 r r ry2008 y n ly er e e a u u b b b April2008M J J m cto cember anua March2 tem e J August2008p O February20 Nove D Se Figure 131: Correlation between particulate matter deposition and ore manipulation at terminalEETsamplingsite7Aand7B

350 900000 300 800000 700000 8A 250 600000

day 200 500000 8B 2

150 400000 tone 300000 ore mg/m 100 200000 unloading 50 100000 0 0

8 8 8 8 07 08 0 0 08 0 0 0 00 0 2 200 2008 r2 l20 t2 r r h ri ly2008 s e e be rc p u u m A May2008Jun2008J g mb mb e e ebruary2Ma Au v January2008F October2 Dece Sept No Figure 132: Correlation between particulate matter deposition and ore manipulation at terminalEETsamplingsite8Aand8B

107 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

350 900000 300 800000 700000 9A 250 600000 9B day 200 500000 2

150 400000 tone ore 300000 mg/m 100 unloading 200000 50 100000 0 0

8 8 8 8 8 8 07 08 0 0 0 08 0 0 0 0 0 2 200 200 20 r2 l20 20 t r h ri ly s e be rc p u u m A May2008Jun2008J g mber mb e e ebruary2Ma Au v January2008F October2 Dece Sept No Figure 133: Correlation between particulate matter deposition and ore manipulation at terminalEETsamplingsite9Aand9B

350 900000 300 800000 700000 250 600000 10A

day 200 500000 2 10B 150 400000 tone 300000 mg/m 100 ore 200000 unloading 50 100000 0 0

8 8 8 8 8 07 08 0 0 0 0 0 0 00 2 200 2008 r2 l20 20 t2 r r h ri ly s e be p u u be m A May2008Jun2008J mb m ug e ebruary2Marc A t January2008F p October2008 Dece Se Nove Figure 134: Correlation between particulate matter deposition and ore manipulation at terminalEETsamplingsite10Aand10B The proportion of particulate matter deposition increased during dry summer months. The reason for this is most likely dryness of ground which contributed to the dustiness in surroundings. In addition, during the summer period wind blows predominant from sea towards land (across ore depot). This is reflected in increased quantities of measured particulatematterdeposition.Theamountoforeuploadingandunloadingisratherconstant during entire year with slightly increased values of coal unloading during winter. For this reason the hypothesis that the emission values of dust particles at the source significantly affectstheprocessofuporunloadingoforeatEETcannotbeconfirmed.However,results ofcarbonC13/12 ratioshowthatduringtimeperiodofmaximumoremanipulation(February 2008)atallsamplingsites%ofcoalassourceofcarboninsampleincreased(inrelationto theothermonthsseeFigure112).

108 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4.2.8Meteorologicaldatafortheperiodfrom1.12.2007to30.11.2008 Sincewind,humidity,andtemperaturecouldinfluencedustdeposition,meteorologicaldata are considered also. Meteorological data on temperature,amountofprecipitationandwind direction and strength were obtained from the Environmental Agency of the Republic of Slovenia(ARSO)andPortofKoper(measuredbyPrimorskaInstituteforNaturalSciences andTechnologyPINT). Data on wind direction and strength included in the study were acquired from the meteorologicalstationslocatedwithinthePortofKoper(roofoftheadministrativebuilding EET). Data on temperature and amount of precipitation (and also data of wind speed and direction)wereacquiredfromthemeteorologicalstationKoper(locatedonthehillMarkovec of Koper). Both meteorological stations are managed by ARSO. From the Department of Environmental and Occupational Health of Port of Koper, information on the speed and directionofwind,measuredatthemeteorologicalstationinthePortofKoperwereobtained (measurements performed by the PINT). Unfortunately, the data included a lot of blank entries, and only for daily values were provided. It is likely that there are discrepancies betweenthedata forthewinddirectionandspeedat the measuring station of the Port of Koper(PINT)anddataobtainedbymeasuringbyARSO(meteorologicalstationMarkovec andPortofKoperEET)seeFigures135to137.Althoughthedistancebetweenthistwo measuringlocationsislessthen4km,significantdifferencescanbeobserved,mostprobably duetotheconfigurationoftheterrain.

Figures135,136and137:WindRoseforthetimeperiodDecember2007November2008 (stationEETARSO;insideofPortofKoperPINT;meteorologicalstationMarkovec, KoperARSO)

109 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Figures 135 to 137 show how the results of the measurements of meteorological data on differentlocations(PortofKoperandMarkovec)differ.Itisnecessarytoemphasizethatthe resultsoftheautomatedmonitoringstationatMarkovec(ARSO)gaveahalfhourdata,the measuringstationonthebuildingEET(ARSO)providedhourlydata,butthemeasurement stations within the Portof Koper (PINT) provided only singleday value for the observed parameter.ThedatameasuredontheEET(ARSO)wereusedinthisstudy.Theinterpretation ofresultsrequireadditionalcare,becausethemeasuredvaluesfromallthreemeasuringsites differandprobablydependonthemicrolocationandthemorphologyoftheterrainonsite. Forexample,duringoneperiodoftime,themeasuringstationwithinEETrecordedmaximum wind speed 10.8 m/s (38.9 km/h), the measuring station at Markovec recorded a slightly higher maximum value (12.4 m/s or 44.64 km/h) during the same period of time, but measuringstationinsidePortofKoperinthemanagementoftheInstitutePINT,themeasured maxvalueswas7.3m/s(26.3km/h).

4.2.8.1Dailytemperaturesandamountofprecipitation Maximumtemperatureovertheentiretimeperiodwas34.6°Cmeasured26 th ofJun2008at 15:30hour.Maximumrainfallwasrecordedon18 th ofJulywhen35.5L/m 2ofprecipitation wasreceived.Dailyfluctuationsintemperatureandamountsofprecipitationarepresentedin Figure 138. These data show 910 mm of precipitation fell during entire time of the study (December1,2007to30November2008).Mostoftherecordedrainfallonthecoastalarea was observed in the summer. Almost 60% (526 mm) of the precipitation fell during five summermonthsfromApriltoAugust.Consequentlywetgroundprobablyattributedtothe lowervalueofdustdepositionduringthesummermonths.

110 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

40

35

30 25

20

15

10 5

0 r r y il y r ar rch pr ber be u A Ma Jun July obe m m e br Ma August ct v January Fe pte O Decembe e No temperature(°C) precipitation(mm) S Figure138:Dailytemperatureandamountofprecipitation for time period 1.12.2007 to 30.11.2008automaticmeasuringstationMarkovecARSO

4.2.8.2Speedanddirectionofwinds In Table 29 wind roses for individual sampling interval (monitoring of particulate matter deposition)arepresented(from1 st to15 th inandfrom16 th tothelastdayofthemonth)from 1.12.2007to30.11.2008. Dataonwinddirectionaredividedintoeightpointsofthecompass(N,NE,E,SE,S,SW,W, NW),andthedataforwindspeedaredividedintosixcategoriesorintervals:from0to1m/s; from1to2m/s;from2to3m/s,from3to4m/s,from4to5m/sandgreaterthan5m/s.In eachchart,informationofthecalmsispresentedtoo.Datawereobtainedfrommeasurements made at the administrative building of EET in Port of Koper managed by ARSO (EnvironmentalAgencyoftheRepublicofSlovenia). Recordedmaximumwindspeedwasduringobservedtimeperiod10.8m/s(38.9km/h).

111 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Table29:Windrosesforindividualsamplinginterval(windspeedanddirection)

Tablecontinue

112 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

ContinuationoftheTable29

Tablecontinue

113 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 ContinuationoftheTable29

Data which were available represent wind directions and wind speed expressed as % of frequency. 114 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Thesedatashowthedominantwinddirectionisfromtheeast,andtheseeasterlywindsarethe strongest.Thedominantwinddirectionchangeswiththeseason.FromApriltoJune,thewind comesfromnorthwest.FromSeptembertoNovemberwindfromthesoutheastisfrequent.As already mentioned in the interpretation of preliminary study results, occasionally strong Mistral (west northwest) winds blow for very short periods of time in the study area. Residents of Rožnik detect high pollution of their living environment with black particles after such events. Usually particulate matter deposition from these strong winds of short durationarenotdetectedbecauseofthelongtimescale(14daysoreven1month)between samplecollections. Moreover,duringthetimeperiodDecember2007November2008therewerenorecordsof extremeweatherevents,suchasthesuddenemergenceofastrongwind,blowingfromthe landfillEETtowardtheselectedsamplingsites.Alsothesurroundingresidentsduringthat timehavenotpointedoutsuchevents.However,theresultsofthepreviousstudiesshowthat sucheventsarepossible(MarchandOctober2006).

4.2.9Resultsofelectronmicroscopy SEM/EDXSwasemployedtodifferentiateparticlesfromthecoalandironoredepotatEET inPortofKoperfromotherparticlescollectedinthesamplingdevice.Particlesofcoal,iron ore and bauxite were distinguished from other particles in dust deposition on the basis of morphologyandchemicalcomposition.Sinceonlysurfaceofsamplecanbeanalyzedsamples weredilutedprioranalysis.

4.2.9.1Identificationofparticlesregardingmorphologyandchemicalcomposition Intheannualsamples(timeperiodfrom1.12.2007to1.12.2008),thepresenceofparticlesof coal,alumina,compoundswithAl,SiandK(silicates,alumosilicates,etc.),titaniumdioxide and iron oxides (FeO, Fe 2O3, Fe 3O4) were detected. Particles were identified according to theirchemicalcompositionandmorphologicalstructure.ResultsareshowninFigures139to 145.

115 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure139:SEMmicrographoftypicalcoalparticle(particlediameterof~25m)

Figure140:TypicalEDXSspectrumofcoal

Figure141:Coalparticlewithimpurities(particlediameterof~35m)

116 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure142:Bauxite(alumina)(particlediameterof~10m)

Figure 143: Typical EDXS spectrum of Figure144:TypicalEDXSspectrumof bauxite(alumina) TiO 2

Figure 145: SEM micrograph (back scattered electrons (BSE) image) of particles of titaniumdioxide(TiO 2)(particlediameterof~from1upto5m) 117 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Basedontheseresults,thecontributionofactivitieswithinthePortofKoper(coalandiron oredepotandoremanipulation,aluminamanipulationaswellastransshipmentofotherbulk cargoes)onparticulatematterdepositionsinthesurroundingareacanbeconfirmed.Inorder toestimateimpactondustdepositionfromPortof Koper to surroundings, the samples of airborneparticulatematterwere analyzedquantitativelyusingSEM.Particlesonindividual samplingsiteswerecounted.

4.2.9.2Quantificationofparticlescollectedintheannualsample Withanalysisofsamplesfromthepreliminarystudy(2005/06)usingSEM,thepresenceof coalinparticulatematterdepositionwasdemonstrated.Itisforthisreason,samplesfromonly onetimeinterval(15.2.15.3.2006)wereanalyzed.Duringstudyof2007/08,samplesfrom theentirestudywereanalyzedaftercombiningsamplesfromindividualsamplingperiodinto oneyearlysampleforeachsamplingsite.Foranalysisapartoffilterwasselectedforfurther processing.Sinceparticleswerenotanalyzedonlyqualitatively(size,chemicaldepositionand morphology of individual particles) but also quantitatively (number of particles from individual sampling sites), dilution of samples was required. Since particulate matter depositionwasratherlowduringentiresamplingperiod(comparedtopreliminaryresults), lowernumbersofparticleswereexpected.Correspondingly,lowernumbersofcoalandiron ore particles were expected too. This prediction was demonstrated by SEM since more particlesofalumosilicatesoriginatedfromsurroundingsoilweredetectedthanwereparticles of coal and iron ore. Even residents of nearby residential areas Rožnik did not detect disturbingemissionsofblackdustoverthetimeperiodofthestudy. Thenumberofparticlespercm 2ofthefilteriscalculatedfromthenumberofparticlesonthe filterafterdilution.Fortheconversionofthisnumbertotheentiredustdeposition,theresults shouldbemultipliedbyafactor3079.5.Becauseall the samples were processed using the sameprocedure,thevaluesaregivenasthenumberofparticlespercm 2oftreatedfilterfor all samples. Results given according to the size and chemical composition of a particles groupedbyindividualsizeclassesareshowninTable30.

118 Masterthesis.UniversityofNovaGorica.Gradu

Table30:Theaveragenumberofparticlespersquarecentimeteroffiltersurfacearea size compoundswithAl,Si,K ironoxides particles,containing (m) titaniumdioxide (silicates,alumosilicates,…) (FeO,Fe2O3,Fe3O4) carbon(coal) JerebG.Collection,analysisandcharacterizationo 5 > SUM sample <1 15 510 >10 <1 15 10 10 <1 15 510 >10 <1 15 510 >10 1A 0 20918 4082 1020 2041 4082 0 0 0 1531 0 0 0 510 0 0 34,184

1B 0 7289 1822 364 1093 3644 0 0 1093 2551 364 364 0 1822 364 364 21,137

2A 0 5102 1701 850 9354 14456 0 0 0 850 0 0 0 0 0 0 32,313

2B 0 5952 6803 0 11054 9354 850 0 0 850 0 0 0 0 7653 2551 45,068 0 0 0 0 638 0 0 0 0 0 0 0 0 1913 638 0 3,189

119 3A

3B 1020 1276 255 0 765 1020 0 0 255 0 0 0 0 510 0 255 5,357

4A 283 1134 0 0 850 567 0 0 0 283 0 0 0 283 283 0 3,685 fparticulatematterdepositioninandaroundKoper

4B 1786 2041 0 0 255 255 0 0 255 0 0 0 0 255 255 255 5,357

5A 0 425 0 0 0 0 0 0 0 0 0 0 0 0 0 0 425

5B 0 1160 696 0 4638 0 0 0 0 232 0 0 0 696 928 232 8,581 Tablecontinue ateschool,2010

. Masterthesis.UniversityofNovaGorica.Graduatesch JerebG.Collection,analysisandcharacterizationo

ContinuationoftheTable30 size compoundswithAl,Si,K ironoxides particles,containing (m) titaniumdioxide (silicates,alumosilicates,…) (FeO,Fe2O3,Fe3O4) carbon(coal) 5 > SUM sample <1 15 510 >10 <1 15 10 10 <1 15 510 >10 <1 15 510 >10 6A 0 2551 5102 0 1701 17857 0 0 0 0 0 0 0 2551 4252 0 34,014

6B 0 5102 638 1913 7015 6378 638 0 0 0 0 0 0 0 3189 2551 27,423 fparticulatematterdepositioninandaroundKoper

7A 0 1701 0 0 5952 0 0 0 0 0 0 0 0 3401 850 0 11,905 ool,2010

7B 6633 14286 510 0 7143 4592 0 0 0 0 0 0 0 0 2551 1020 36,735

8A 3189 9566 0 0 4464 5102 0 0 0 0 0 0 0 638 1276 0 24,235

120 8B 1913 5740 0 638 5102 0 0 0 638 1276 0 0 0 0 0 0 15,306 9A 1913 7653 638 638 3827 4464 0 0 0 0 0 0 0 0 1276 0 20,408

9B 3189 16582 5102 0 1913 8929 0 0 0 0 0 0 0 1276 5102 0 42,092

10A 18707 52721 2551 850 3401 20408 0 0 0 0 0 0 0 0 0 2551 101,190

10B 12755 38265 51020 2551 58673 114796 0 0 0 0 0 0 0 0 0 7653 285,714 .

JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Onlythesurfaceofthe particlesismeasuredbySEM.Therefore,dilutionofsamplesprior analyzes were necessary. In Table 30 the number ofparticles per cm 2 of the filter (sample after preparation) on each sampling site is presented. Results show size and chemical compositionofvariousfractionsofparticlesontheindividualsamplingsite. According to results the highest number of particles in samples were alumosilicates (compoundsofAl,Si,KandO),mostlyinthesizerangefrom1to10m.Themajorityof theseparticleshavenaturalorigin.Anextremelylargenumberofparticlesoftitaniumdioxide

(TiO 2),allofwhicharepresentmainlyinthesmallersizefractions(lessthan1mupto5 m). Coalparticles, majority of them larger than 5 m, were also detected. None of coal particlesweresmallerthen1m.Coalparticleswerealsofoundatthecontrolsamplingsites 6and7.Possiblytheir originisthe coaltransportedbyboatdaily fromportofKoperto Triestefortheneedsoflocalindustry. Onlyfewparticlesofironoxideweredetected,majorityofthemwererathersmall(from1 m to 5 m). Most of the iron particles were detectedatthesamplingsite1,whichisthe nearestsamplingsitetoEETdepot.Adifferenceinthenumberofparticlesbetweensampling sitesA(verticaldeposition)andB(verticaldeposition + horizontal contribution) could be observed.InthreesamplingsiteshighernumberwasobservedatsamplingsiteA(sampling site1,6and8).InallothershighernumberwereobservedinsamplingsiteB.Highesttotal numberofparticleswereobservedatsamplingsite10,locatingincenterofAnkaran. Figure146represent%ofthevariousfractionsofparticlesatindividualsamplingsites.The largerfractionsarealumosilicates,mostprobablyofnaturalorigin.However,somebauxite (alumina)particleswerefoundtoo.ThesecouldcomefromthebauxitetransshippedinPortof Koper.Thepresenceoftheseparticlesisanotherindicationoftheinfluenceofportactivities ondustinessofthesurroundings.TiO 2isalsoafraction,whichoccursveryoften.Fewercoal particleswereobserved,buttheleastofallparticlespresentwerethoseofFeO.

121 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

100%

80%

60%

40% COAL FeO 20% TiO2 ALUMOSILICATES 0% 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B 10A 10B Figure146:%ofdifferentparticlesatindividualsamplingsite However,itshouldbenotedthatonlyparticles trapped on the filters were analyzed using electron microscopy. Theoretically, only particles larger than 3 m should be present. Particles, trapped in the filtrate (particles smaller than 3 m), were determined only gravimetrically.

4.2.10Theresultsofalternativemethodfortheparticlesmonitoringsamplingdevicetype1 (theball)particlecounting

4.2.10.1Visualperception For quick estimation of the direction and quantity of particulate matter and therefore the determination of the main sources of emissions of dust particles in the area under investigation,asimplealternativemeasurementdevice,basedondepositionandadhesionwas developed. The basic idea was to collect particulate matter from air on adhesive material (medicalVaseline).Thissimplemeasuringdeviceenabledcollectionofparticlesinboth,the horizontal and vertical directions. Sampling devices were placed in the residential zones aroundthecoalandironoredepotofPortofKoper. Aftervisualassessmentofsamplingdevices(Figure79to82)indicatedthattheywerequite effective. Uneven depositions of particles were observed on the surface of the ball. These

122 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 couldbeassociatedwiththedirectionfromwhichthedustparticlescame.Toquantifythe results,thenumberofparticlesperunitareawerecounted.

Figures147,148and149:Collectedparticlesonthesurfaceofasamplerorientedtoward PortofKoperandEETdepot

Figures150,151and152:Collectedparticlesonthesurfaceofasamplerorientedaway fromPortofKoperandEETdepot AsshownonFigures147to152andalsoresultsofparticlescounting(Table31)thissimple samplingdeviceappearedtobeusefulandefficientforassessingtheimpactoftheEETdepot onthesurroundings(contributiontotheincreasednumberofdustparticlesinthesurrounding area).

123 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4.2.10.2Manualcounting Resultsshowthatparticlesonthealternativesamplerarenotevenlydistributed.Differences ofuptotentimesormorehavebeenobservedinthenumberofparticlesatdifferentlocations on the sampler (the main point of the compass) for each ball. The maximum number of particles was detected on the side of the sampler oriented toward Port of Koper and EET depot(Table31).ThesideofthesamplingdeviceorientedtowardPort ofKoper andEET depotinTable31andFigure153islabeledwithanasterisks,*. Timeintervalsfrom1 st Aprilto1 st May,1 st Mayto1 st Jun,1 st Augustto1 st September,15 th Septemberto15 th Octoberand15 th Octoberto15 th Novemberwereselectedrandomly.For analysessamplingsites1,2,3,4,5,and10wereselectedduetotheirlocation.Samplesfrom all sampling sites and time intervals were analyzed by manual counting while counting particles using computer software were performed onlyonsamplesfromtimeinterval15 th Octoberto15 th November.

124 Masterthesis.UniversityofNovaGorica.Gradu

Table31:Numberofparticleson1cm 2samplingdevice1(theball)

location samplingsite1 samplingsite2 samplingsite3 samplingsite4 samplingsite5 samplingsite10 JerebG.Collection,analysisandcharacterizationo direction N S E W SW* N S E W SW* N S E W SW* N S E W S.SW* N S E W S* N S E W S*

15 57 32 146 134 21 12 17 130 108 3 71 12 32 134 41 11 13 101 85 11 200 15 39 200 20 85 41 25 85

21 64 24 149 184 25 15 26 124 78 0 98 18 34 184 33 12 8 154 103 21 151 8 51 151 26 84 44 16 84

7 94 31 178 148 20 16 10 149 42 2 98 26 26 148 28 21 13 95 128 19 209 15 17 209 21 88 40 20 88 1.4.do1.5.2008

17 204 8 31 204 25 63 23 20 63

No.ofparticles/cm² 23 187 17 67 187 13 79 36 16 79

averageNo.ofparticles/cm² 14.3 71.7 29 157.7 155.3 22 14.3 17.7 134.3 76 1.7 89 18.7 30.7 155.3 34 14.7 11.3 116.7 105.3 18 190 13 41 190 21 80 37 19 80

41 84 11 186 309 2 17 3 16 17 125

28 53 19 232 301 14 25 2 17 25

34 63 25 211 292 7 17 4 19 17 fparticulatematterdepositioninandaroundKoper

1.5.do1.6.2008 39 86 36 141 248 4 10 3 6 10

No.ofparticles/cm² 28 45 35 238 224 8 20 1 10 20

averageNo.ofparticles/cm² 34 66.2 25.2 201.6 274.8 7 17.8 2.6 14 17.8

28 99 46 85 153 16 47 18 50 102 13 5 17 60 16 68 25 29 69 52 29 52 26 27 52 19 26 36 26 26

31 53 50 117 152 15 39 21 56 93 15 19 33 39 19 60 14 41 91 62 31 36 40 23 36 13 28 38 29 28

31 79 36 95 136 17 30 16 53 96 20 16 15 42 14 59 22 25 87 47 32 24 26 7 24 8 34 24 20 34

30 78 36 64 150 7 34 19 39 69 8 6 16 41 14 59 26 21 61 27 9 29 9 11 29 5 37 39 18 37 1.8.do1.9.2008

No.ofparticles/cm² 32 45 44 116 148 14 31 8 47 66 19 10 12 48 7 35 17 22 58 45 13 20 12 14 20 12 33 42 21 33 ateschool,2010

averageNo.ofparticles/cm² 30.4 70.8 42.4 95.4 147.8 14 36.2 16.4 49 85 15 11 18.6 46 14 56 20.8 27.6 73.2 46.6 23 32.2 23 16 32.2 11 32 36 23 32 *directiontowardsEETdepot Tablecontinues . Masterthesis.UniversityofNovaGorica.Graduatesch JerebG.Collection,analysisandcharacterizationo

ContinuationoftheTable31

location samplingsite1 samplingsite2 samplingsite3 samplingsite4 samplingsite5 samplingsite10

direction N S E W SW* N S E W SW* N S E W SW* N S E W S,SW* N S E W S* N S E W S*

41 35 74 171 / 53 57 36 28 /

49 29 109 184 / 29 60 63 36 /

27 37 89 153 / 53 49 49 17 /

14 33 62 131 / 48 39 31 16 /

15.9.do15.10.2008 No.ofparticles/cm² 11 34 89 159 / 32 40 28 13 /

averageNo.ofparticles/cm² 28.4 33.6 84.6 159.6 / 43 49 41.4 22 / fparticulatematterdepositioninandaroundKoper o,21 ool,2010 40 173 55 68 332 12 65 39 82 177 48 29 23 101 153 32 68 33 67 87 48 146 15 23 146 34 109 49 14 109

126 26 111 82 117 324 12 42 49 103 174 53 35 32 128 92 32 39 39 77 81 47 159 18 41 159 35 129 48 20 129 22 181 83 108 283 10 60 33 99 158 51 37 21 120 101 31 54 27 52 85 29 124 17 21 124 27 105 39 21 105

26 186 71 42 228 11 77 38 80 194 14 31 18 108 115 36 30 21 57 86 13 91 24 25 91 31 122 40 12 122 15.10.do15.11.2008 No.ofparticles/cm² 24 111 84 101 256 6 57 42 113 131 25 45 22 123 73 15 32 49 64 77 27 105 18 16 105 37 116 49 13 116

averageNo.ofparticles/cm² 27.6 152 75 87.2 284.6 10 60.2 40.2 95.4 167 38 35 23.2 116 106.8 29 44.6 33.8 63.4 83.2 33 125 18 25 125 33 116 45 16 116 *directiontowardsEETdepot

.

JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Figure153:Thenumberofparticlesonasamplingdeviceaccordingtothemainpointof directionofthecompassindifferenttimeperiods(*inchartindicatesthedirectiontowardsEETdepot) InFigure154,thenumberofparticlesatthesamplingsite1,2and3arepresented.Withthe exceptionoftimeintervalfrom1.4.to1.5.2008inallothercases,theresultsshowdecreasein thenumberofparticleswiththedistancefromthelandfill.Theminimumnumberofparticles isobservedonsamplingsite3andmaximumnumberofparticlesweremeasuredonsampling site1.Atallthreesamplingsitesonlynumbersofparticulatesonsampler,orientedtoward EETcoalandoredepotwerecompared.

127 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

300

2 250

200

150

100

averageNo.ofparticles/cm 1.4.1.5.2008 50 1.8.1.9.2008 15.10.15.11.2008 0 samplingsite1 samplingsite2 samplingsite3 Figure154:Comparisonofsamplingsite1,2and3numberofparticlesper1cm 2

128 Masterthesis.UniversityofNovaGorica.Gradu

4.2.10.3Computersoftware(IT3,0)counting Table32andFigure155representthenumberofparticlespercm 2usingcomputersoftware(IT3,0)countingonalternativesamplingdevice JerebG.Collection,analysisandcharacterizationo (ball).Numberofparticleswerecountingonlyfortimeperiodfrom15 th ofOctoberto15 th ofNovember2008.Maximumnumberofparticles observedoneachsamplingdevicewasonpart,orientedtowardsEETdepot.Individualdeviationscanbeexplainedbymistakesindetermining theexactdirectionformainpointofdirectionofthecompassateachsamplingdevice.

Table32:Numberofparticleson1cm 2countingwithsoftwareIT3,0

location samplingsite1 samplingsite2 samplingsite3 samplingsite4 samplingsite5 samplingsite10

direction N S E W SW* N S E W SW* N S E W SW* N S E W S.SW* N S E W S* N S E W S*

30 185 64 46 450 14 257 30 45 122 79 52 35 119 125 53 55 45 50 104 8 141 15 40 141 13 128 55 6 128

96 95 58 107 475 9 269 31 33 142 111 48 35 123 120 55 52 87 63 92 12 140 18 38 140 20 150 52 18 150 129

43 154 62 61 429 14 209 58 57 194 69 40 48 134 108 17 34 27 47 80 14 163 14 39 163 26 161 30 19 161 fparticulatematterdepositioninandaroundKoper 26 89 57 84 408 7 103 51 70 179 94 60 55 158 143 25 36 61 78 82 25 124 41 16 124 24 178 28 7 178 15.10.do15.11.2008 No.of particles/cm² 33 103 65 43 445 16 88 14 78 173 73 74 48 142 90 44 33 38 66 85 37 112 42 28 112 27 179 45 15 179 averageNo. ofparticles/ 45 125 61 68 441 12 185 37 57 162 85 55 44 135 117 39 42 52 61 89 19 136 26 32 136 22 159 42 13 159 cm² *directiontowardsEETdepot ateschool,2010 . JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

450

2 400 350 300 250 N 200 S 150 E 100 W

averageNo.ofparticles/cm 50 * 0 sampling sampling sampling sampling sampling sampling site1 site2 site3 site4 site5 site10 Figure 155: Number of particles on 1 cm 2 alternative sampling device (the ball) computersoftwarecounting(15.10.15.11.2008)

4.2.10.4Comparisonofbothcountingmethods Trend in the number of particles, counted using computer software, is consistent with the numberofparticlesobservedbymanualcounting(Figure156).Trendcanbeobservedalso for the average number of particles (Figure 157). Results shows very good correlation between both methods (manual and computer counting). Spearman's (rho) correlation coefficientforcomputercountingvs.manualcountingisrelativelyhigh,correlationis0,874 (p=0,000).Howeverinspotswhereenormousnumberofparticleson1cm 2wereobserved, computer counting gives us higher number of particles. Probably in such cases results are more accurate using computer software, especially if a large number of particles appear in smallareaandthereforemistakesusingmanualcountingaremorelikely.Itishardtofocuson eachindividualparticleincaseofhighsaturation.Suchexampleareresultsforsamplingsite 1, where 35% more particles were counted using IT 3,0 compare to manual counting. Although,thetrendstaysthesame,thedataobtainedbymanualcountingprovideisadequate forassessingthedirectionfromwhichtheparticulatemattercame.

130 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

500 450 manualcounting1 manualcounting2 400 manualcounting3 350 manualcounting4 300 manualcounting5 250 computercounting(IT3,0)1 200 computercounting(IT3,0)2 150 computercounting(IT3,0)3 100 computercounting(IT3,0)4 50 computercounting(IT3,0)5 0 S E S E S E S E S E S E N N N N N N W W W W W W S* S* SW* SW* SW* S,SW*

samplingsite samplingsite samplingsite samplingsite samplingsite samplingsite 1 2 3 4 5 10 Figure156:Comparisonbetweenmanualandcomputercounting

450

400

2 350

300

250

200

150

averageNo.ofparticles/cm 100

50

0 N S E W SW* N S E W SW* N S E W SW* N S E W S,SW* N manualcounting S E W S* N S IT3,0counting E W S* Figure157:Comparisonbetweenmanualandcomputercountingaverageresults

131 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

4.2.10.5 Identification of particles regarding morphology and chemical composition using SEM/EDXS Dustparticlescollectedusingthealternativecollector(ballsamplingdevicetype1)were analyzedusingelectronmicroscopywithaimtoconfirmpresenceofparticlesfromEETdepot inPortofKoper. The SEM/EDXS analysis of the material collected using the simple measuring device detectedparticlesofcoal,ironoxide,titaniumoxide, as well as particles of organic origin fromthenaturalenvironment(Figure158).Especiallyparticleofcoalaswellparticlesofiron oxidescouldoriginatefromdepotofcoalandironoreatEETinPortofKoper.Theparticles recovered from the alternative collector were morphologically similar to the particles collectedintheconventionalsamplingdevices(Section4.2.9).

coalparticle

ironoxides

TiO 2 particle

algae

Figure 158: Sample from simple measuring device (ball) analyzed using electron microscopy

132 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

5DISCUSSION Atmospheric dust (large or coarse particles) has traditionally been considered mainly as a nuisanceratherthanahealthhazard.Thereforeparticulatematterdepositionrepresentamajor concernduetonuisanceforpeople,butcanalsobeacauseofhealthandotherproblems, eitherfromdirectinhalationoringestionortroughsecondarypathways afterparticleshave deposited(onvegetables,fruits,orindrinkingwater). FormanyyearstheinhabitantsofAnkaran(distancefromtheironoreandcoalstoragesitesat EETisapproximately1800m)anditssurroundings(theclosestresidentialareais1000m fromthestoragesites)havebeenpointingouttheproblemofthepollutionoftheirresidential areawithemissionsfromtheterminalEETinthePort of Koper. They believe the mayor contributorofdustisactivitiesatthePortofKoper,especiallyactivitiesoncoalandironore depotatEET.Inhabitantsvisiblyperceivedparticulatematterdepositionontheiryards,places of residence, linen and vegetables. These perceptions of the inhabitants were one of the reasonsforstartingthestudyaimedtorevealtheimpactofPortofKoperondustpollutionof thesurroundingarea. Thepurposeofthestudywastocollect,analyzeand characterize the air borne particulate matterdepositedintheresidentialareasaroundtheportofKoperwithaimtocorrelatethese particles with port activities, especially with activities on EET terminal(coal and iron ore manipulation).Theaimofthestudywasthereforenottomaketheriskassessmentregarding the impact of dust deposition on the health of the people. Although such study would be reasonable to made in the future. Such risk assessment should be focused on respiratory disease incidence. According to the results of epidemiological study (Eržen et al., 2003) additionalepidemiologicresearchonrespiratoryproblemsintheimpactareawouldalsobe reasonabletomake.

5.1Legislation ThebasisoftheSlovenelegislationinthefieldofoutdoorairqualityistheEnvironmental ProtectionAct(2002)anditssubsequentDecrees.Theparticulatematterdepositionandits limit values were regulated by the Decree on limiting values, alert thresholds and critical emission values for substances into the atmosphere (1994). This decree has provided

133 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 maximum value for the monthly and annual deposition as well as the content of selected metalsindeposition.TheDecreeonsulphurdioxide,nitrogenoxides,particulatematterand leadinambientair(2002)wasadopted.ThisDecreeannulleditspriorDecreeonlimitvalues, alert thresholds and critical emission values for substances into the atmosphere (1994). Howeverlimitingvaluesregardingparticulatematterdepositionfromannulleddecreewere stillinuse(accordingtointerpretationofARSO)untilJuly2007.OnJuly27 th 2007(Decree, 2007)thoselimitingvalueswerefinallyannulled. Particulate matter in ambient air is regulated in the Decree on sulphur dioxide, nitrogen oxides,particulatematterandleadinambientair(2002),whichappliestotheregulationonly fineparticles(PM 10 andPM 2.5).Itdoesnotregulateparticulatematterdepositionanymore. Thereforetodaythedustdepositionlimitingvaluesareusedbytheannulleddecree(1994)as recommendedvalues. The Ministry of Environment and Spatial Planning of Republic of Slovenia (MOP) has provided no informastion about the reasons for the removal of dust deposition (and thus coarseparticles)fromthelegislation.Thefactisthatfineparticlesrepresentgreaterriskfor health then coarse particles. Larger particles may also represent a risk to health (mainly dependingontheirchemicalandmorphologicalstructure)andrepresentadisturbanceforthe environment. Slovenia has a 40year history of monitoring of dust deposition by different institutions (for instance EIMV), particularly in the vicinity of the coal power plants. By annullingthelimitingvalues,monitoringdustdepositionislikelytobegraduallyabolished, although monitoring of particulate matter deposition is mentioned in European directive. EuropeanDirective2004/107/ECoftheEuropeanParliamentandoftheCouncilfrom15 th of December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air (2004) assume monitoring of these elements in fine particles

(PM 10 )aswellasinparticulatematterdeposition.OneoftheobjectiveofDirectiveisalsoto ensurethatadequateinformationonconcentrationsofarsenic,cadmium,mercury,nickeland polycyclic aromatic hydrocarbons in ambient air as well as on the deposition of arsenic, cadmium,mercury,nickelandpolycyclicaromatichydrocarbonsisobtainedandtoensure that it is made available to the public. For the analyses of particles deposition specific standard(AirQualityAmbientAirDeterminationoflead,nickel,arsenicandcadmiumin atmosphericdepositions;oSISTprEN15841:2008)wasenforced.Limitingortargetvalues formetalsindepositionisstill(nolonger)regulated. 134 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Coarseparticlesareusuallyperceivedasanuisance,buttheycanalsoaffecthealthandwell being.TheWHOdefinition:"Healthisastateofcompletephysical,mentalandsocialwell beingandnotmerelytheabsenceofdiseaseorinfirmity" should not be forgotten (WHO, 1948). After all, even if coarse particles only offend inhabitants when they visually detect pollutionintheirhomes,thattoocanaffectanindividual'swelfareandhealth.

5.2Collectionofsamples For collection of particulate matter deposition standard and modified methods were used. Some modifications were made in order to optimize method, and other to maximize the number of sampling sites and to minimize costs. Therefore six sampling sites were used duringpreliminarystudyandtensamplingsitesduringstudyin2007/08. Themethodforcollectionofparticulatematterdepositionisnotperfect,becauseitdoesnot entirelyincludethewindcontribution.Inadditionalreadytrappedparticlescouldbelostdue towindblowingacrossthemeasuringdevice.Toimprovethatdistilledwaterwasaddedto preventthewindfromblowingawaytheparticulatematterdepositionfromthecontainers.On the other hand, the addition of water in the summer time give raise of algae growth. To resolvethisproblemsmallpeacesofcopperwirewereaddedtothewater.Additionally,when windblowsthroughthesamplinggauge,majorityofparticlesarenotdepositedontheground orinthesamplinggauge.Theyareblownawaywiththewindandprecipitatewhenwindstop blowing or when hits the obstacle. That's why metal screen (oriented toward ore depot at EET)wasaddedasanobstacle.Byaddingametalscreen(20cmx30cmsamplingsites marked with letter B) the horizontal dispersion of particulate matter was intercepted. The mainpurposeofthemodificationwastoestablishandquantifytheparticulatematterbrought alsobythewindfromthedirectionofitssource. Onalmostallsamplingsiteswiththeexceptionofafewmeasurementsduringindividualtime periods higher values of particulate matter deposition were observed in sampling sites B (modified device with metal screen) compared to the sampling sites A (standardized measuring device). In nature (and living environment) there are always flat countryside as well as barriers, where dust particles spread with wind can deposited. Therefore additional windcontributionshouldalsobeconsideredwhilemonitoringdustdeposition. 135 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Additionally,anewinstrument(theplasticballcoatedwithpetrolatum)forquickestimation of direction and quantity of airborne particulate matter and therefore determination of the mainemissionsourcesofdustparticlesintheobservedareawasdeveloped.

5.3Resultspreliminarystudy Depositionwasdeterminedgravimetrically.Inaddition,furtheranalysisofmetalscontentin thesamples,analysisbySEM/EDXSandanalysisofstablecarbonisotopeswereemployed, all with aim to detect and characterize particles in deposition samples and correlate these particles with activities at EET. Budgetary constraints necessitated limiting analysis for metals, measurement of carbon isotope ratios and electron microscopic determination of chemicalcompositionandmorphologytoonlytheannualcompositesamples. Dust deposition were collected using standardized method of sampling with Bergerhoff sedimentators. The mass of dust deposition collected in this way were compared with the limiting(2006)andrecommended(2008)levels.Duringpreliminarystudycarriedoutfrom October 2005 to October 2006, the total amount of particulate matter deposition at all sampling sites in the area of the municipality of Ankaran and surroundings exceeded the emission limit value of 350 mg/m 2 a day eleven times, corresponding to 15 % of all measurements.TheresultspresentedinSection4.1 (Results of preliminary study) indicate periodically extremely elevated values of particulate matter deposition around the Port of Koper.Accordingtotheresultsofthegravimetricanalysis,thehighestmeasuredamountsof particleswereobservedduringtimeperiodfrom15.9to15.10.2006atsamplingsite4.With standardizemethodofcollection(samplingsite A), 4283 mg/m 2 a day was measured; this value exceeded the limiting value (350 mg/m 2 a day) by a factor of 12. Furthermore, on samplingsiteB,5743mg/m 2adaywasmeasured,thelimitingvaluewasexceededbymore than16times,mostprobablyduetowindcontribution.Duringthistimeperiodalsoinall othersamplingsiteselevatedvalueswereobserved.Duringentiretimeperiodofthestudy also two other elevations of particulate matter deposition were observed (15.2.15.3. and 15.6.15.7.);however,measuredvalueswerelowerandlimitingvaluewasnotexceededinall samplingsites.Theresultsshowsignificantdifferencesbetweensamplingsitesandmonthly andseasonallevels.Increasedvaluesarenoticedinthehotdryperiods,mainlyinsummerand autumnmonthsduetothedrynessoftheterrainandstrengtheningofthewind,whichblew 136 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 fromtheseaacrossthestoragepilesoforetowardthesamplingsites(andresidentialareas). Duringwinter,anorthwind,whichblowsacrossthestoragepilestowardsthesea,prevailsin thestudyarea.However,correlationsbetweentheamountofdustdepositionandfrequencyof windfromthedirectionofEETcouldnotbeconfirmedduetoinsufficientdataofthewind speed (only information about the wind speed above and under 1 m/s) and too long measurement interval (1 month) (highest Spearman's rho correlation is 0,48). Increased emission concentrations could be expected during strong winds blowing through the EET. Therefore,usingselectedmethodofdataacquisition,itisnotpossibletodetecttheimpactof theextremelystrongwindthatblowsforonlyaveryshortperiodoftime.Forthetimeperiod 15.9.15.10.2006,therefore,thereisnocorrelationbetweentheincreasedparticulatematter deposition and the wind although the residents from Rožnik residential area detected increaseddepositionsofdustintheirlivingenvironmentafterthestrongMistral.Duringsame timeperiodalsoincreasedamountofdepositionweremeasured,howeverincreasedlevelsof wind were not detected. For example if the wind blows 5 hours with high wind speed it represent only 0.5 % of wind frequency on monthly average data, although many dust particlescanbetransportedfromthelandfillto surrounding environment during this short timeevent. The main source of dust deposition in living environment around EET most likely comes fromthecoalandironoredepotratherthanfrommanipulationoftheore.Onthebasisofthe data collected, correlation between amount of particulate matter deposition and ore manipulationatEETcannotbeconfirmed(highestSpearman'srhocorrelationis0.44). Sampling sites 1, 2, 3 were placed in a linear direction in line with predominant wind direction(NESW)toevaluatetheimpactofdistancefromtheEETdepotforcoalandiron oreontheamountofparticulatematterdeposition. Inthecaseofmodified samplingdevice (addedmetal screen), maximum dust depositions were measured at site 1 (closest to the EET depot). Using the Bergerhoff sedimentators, higheramountsofparticulatematterdepositionweremeasuredinsamplingsite2.Thiscould beattributedtothemorphologyofthesurroundingterrain.Themedianvaluesofparticulate matterdepositionatsamplingsites1,2and3show decrease in mass of particulate matter depositionwithdistancefromEEToredepotincaseofsamplingdeviceBandincreasein caseofstandardizesamplingdeviceA. 137 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Inordertoidentifythesourceoftheparticulatematter,itaswellasthesurroundingsoil,coal andironorewereanalyzed.Theelementalcompositionofthesamplesofsoil,coalorironore doesnotcontainaspecificratioofelements,whichwouldhelpsustocorrelatesuspended dustwiththesource.Hence,noconclusionscouldbedrawnfromtheelementalanalysis.Only highamountofironwerefoundinsoilsample,probably due to fact that surrounding soil “terrarosa”isrichiniron. Theresultsofchemicalanalysisofannualdepositedmattershowthatthelimitingvaluefor Zn,CdandPb(Decree,1994)werenotexceeded.Theonlyexceptionwastheconcentration ofzincatthesamplingsite5A.TheregulationsdonotspecifylimitsforamountsofAl,Cr, Cu,FeandNi.ResultsalsoshowincreasedvaluesofFe,Al,Cu,ZnandPbatthesampling site4. ItwasnotpossibletodistinguishthecoalandironoreoriginatingfromthePortofKoper from other organic sources of carbon (burning of fossil fuel, traffic, pollen, etc.) and iron compoundsinthesoilonthebasisoftheresultsfromthemetaldeterminations. Since in nature there are many natural radioactive isotopes, which could be present as impuritiesalsoincoalandironore(VanHook,1979;Dowdalletal.,2004;WardandSuárez Ruiz,2008)representativesampleofcoalandironorefromEETdepotinPortofKoperwas measuredfor gammaray emitters’ activity. Becausetheactivityofthe gammaray emitters from sample of coal and iron ore was not significantly increased compare to soil sample additionalanalysesofsamplesofparticulatematterdepositionwerenotperformed. Chemically coal particles contain predominantly carbon and some other elements. The situationissimilarwithotherparticlesintheenvironmentsuchaspollen,smallerpartsof plants and animals. In order to differentiate the particles of coal and iron ore from other organicdustparticlesinthesample,anewapproachwasemployed.Forthisdifferentiation, theelectronmicroscopewasusedtodeterminethechemicalcompositionoftheparticlesas well as to define their morphological structure. The presence of both coal and iron ore particles linked the dust deposition with the activity on the coal and iron ore depot. For purposeofpreliminarystudyonlysamplesfromtimeperiodfrom15 th ofFebruaryto15 th of March2006wereanalyzed.Duringthattimepresenceofcoal(blackparticles)wasdetected 138 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 withvisualinspectionofthefilteredsamplesandalsohigherparticulatematterdepositionwas detected in all sampling sites. Presence of coal was confirmed with morphological and chemical analysis using SEM/EDXS. Additionally particles of iron ore (probably Fe 2O3), bauxite(Al 2O3)andalsotitaniumdioxide(TiO 2)werefound,allofwhichcanbelinkedwith activityatPortofKoper. Severalconclusionscanbedrawnfrompreliminarystudy.(1)Monthlymonitoringintervals may be too long to correlate the influence of cargo manipulation on the quantity of the particulatematterdepositionintheenvironment.(2)Theoffloading,onloadingandstorage of the iron ore has a small influence on the dustiness of the environment. (3) The main influenceisthesuddenstrongwind,whichblowsfromtheseacrossesthestoragepilesand continuestowardstheresidentialarea(Poljšaket.al.,2006).(4)Thequantityofparticulate matter depositions depends mostly on weather conditions, especially the strength and directionofthewindandalsothequantityofrainfall,whichdeterminedthedrynessofthe terrainandalsodrynessofcoalandironore.(5)Buildingthe11mhighantidustemission wall and the spraying of the landfill with water probably lowers the emissions of dust particlesintheenvironment.Unfortunatelynodataonemissionfromtheperiodbeforethe antidustemissionwallwasbuildareavailable.(6)Basedontheanalysisofsamplesusing electronmicroscopydustdepositioncanbewithcertaintyattributedtoactivityinthePortof Koper.

5.4Resultsstudy2007/08 As was done in the preliminary study, particulate matter deposition was determined by gravimetric analysis during the study 2007/08. The duration of the sample collection, however,wasshortenedfrommonthlytotwicepermonth.Lateronadditionalanalyseswere made. OnthebasisoftheannulledDecreeonlimitvalues,alertthresholdsandcriticalemission valuesforsubstancesintotheatmosphere(1994),arecommendedvalueof350mg/m 2dayfor particulate matter deposition was established. This value is still in use. During the entire monitoringperiodfromDecember2007toNovember2008outof240samplesonlyvaluesof 4 samples approached or exceeded the recommended value. These excessive values were observedinthesamplescollectedfrom15 th Mayto1 st Juneatthesamplingsite5A,from1 st 139 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 Augustto15 th Augustonthesamplingsite10A,andfrom15 th Novemberto1 st Decemberat sampling sites 5A and 6A. During these periods, the wind was blowing with increased intensity(longerperiodoftimeaswellashigherspeed)inthedirectionofSandSWfrom theEETdepottowardsthesamplingsite5and10(andresidentialareasRožnikandAnkaran). InordertocomparedustsedimentswiththerecommendedvaluesfromtheannulledDecree (1994),14daysresultswerecalculatedtomonthlyvalues.Itisimportanttoemphasizethat themassofmonthlyparticulatematterdepositionwasconsiderablyloweranddidnotexceed the recommended values in any case. Also yearly particulate matter deposition never exceededrecommendedyearlyvaluesof200mg/m 2day. Todeterminethepossibleimpactofthehorizontalcontributionofdustparticles,theresults fromsamplingsitesB(modifiedsamplingdevice)werealsoanalyzed.Thisanalysisrevealed higher content of particulate matter collected on sampling sites B compared to the corresponding sampling sites A. Increased amount of collected dust was due to horizontal contribution,whichconfirmsthehypothesisthatstandardmethodofsamplingunderestimates theimportanceofhorizontal(wind)dusttransport. Bycomparingtwodifferentwindmeasurementlocations,theimportanceoftopographyofthe terrain on the impact of wind distribution was revealed. The interpretation of results in correlation with wind requires additional effort (on the basis of the acquired data from all threemeasuringsites).Themeasuredvaluesofwinddistributiondifferandprobablydepend on the micro location and the morphology of the terrain at the sampling site. During the periodofobservation,themeasuringstationwithinEETrecordedmaximumwindspeedof 10.8 m/s (38.9 km/h). At this time, the measuring station Markovec recorded a higher maximumvalue(12.4m/sor44.64km/h),whileatthemeasuringstationinsidethePortof Koper(managedbyPINT)amaximumvalue7.3m/s(26.3km/h)wasobtained.Evenso,itis difficult to correlate particulate matter depositionwiththewind.Methodofcollectingdust depositionisrelativelyrough,themeasurementtimeintervalsrelativelylongandthewind velocityappearstodependonthemicrolocationandterraintopography. TheEastwindwaspredominatebothbyfrequencyandstrengthinthestudyareaduringtime period2007/08.Duringdifferentseasonsoftheyearotherwindcharacteristicswereobserved. FromApriltoJune,thewindfrequentlycamefromthenorthwest.Duringautumnperiod, from September to November, South East winds were frequent. As already mentioned in 140 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 interpretationofpreliminarystudy results,occasionallystrongMistral(WestNordWest) blowsveryshortperiodoftimeinthestudyarea. However, inhabitants of Rožnik usually detecthighpollutionoftheirlivingenvironmentwithblackparticlesafterperiodsofstrong windsfromtheseaside.Duringthestudytimeperiod(December2007November2008), therewerenorecordofextremeweatherevents,suchasthesuddenemergenceofastrong wind, which blowing from the landfill EET toward the selected sampling sites. Also the surroundingresidentsduringthattimehavenotpointedoutsuchevents.However,theresults ofpreliminarystudyshowthatsucheventscanoccur(MarchandOctober2006). Theconcentrationsofselectedmetalsintheaverageyearlysampleofdustweredetermined bychemicalanalysis.Theimpactoftheironoredepotontheamount ofironatdifferent sampling sites and the share of other sources (e.g.soil) on total metal concentration was estimatedfromtheseanalyses.Accordingtothepotentialimpactonhealthparticulatematter deposition were assessed on presence of individual elements (also Pb, Cd and Zn) and comparedwiththelimitedvalues.Basedontheresultsofmetalcontentintheannualsamples, itcanbenoticedthatinanyofthe10samplingsites(AandB)levelsofmetals(Pb,Cdand Zn)inthesamplesdidnotexceedtherecommendedvalue.Inadditiontothesemetals,Cr,As, Ni,Cu,FeandAlweredetermined.Thelevelsofiron(between250and2800g/m 2day)and aluminum(between140and750g/m 2day)wererelativelyhigh,whilethevaluesforother metalswererelativelylow(upto10forchromium,forleadupto7,cadmiuminmostcases belowthedetectionlimit(<0.1),upto0.2forarsenic,fornickelupto6,andforzincupto81 g/m 2day).Beforethe collectionofdustdepositionstarted, copper wire was added as an inhibitorofalgalgrowth.Therefore,increasedlevelsofcoppermayresultfromleachingof copperinthesamplefromacopperwire,addedinto the collecting tank for algae growth preventionandnotreflectthecopperlevelsfromthesuspendeddust. WhensamplingsitesAandBwerecomparedregardingmassofparticulatematterdeposition, resultsshowedthatthehorizontalcontributionofthewind(metalscreensamplingsiteB) significantlycontributedtoincreasedquantitiesofdustatthesamplingsite1,whichisthe nearesttothelandfill.In22outof24samples,themassofparticulatematterdepositionon samplingsitesBwerehigherthanthecorrespondingmassesfromsamplingsiteA.Asimilar observationwasmadeonothersamplingsites(onlynotsofrequently).Atsamplingsites1,2, 6,7,8and10,15outof24samplesshovedthemass of particulate matter deposition on samplingsitesBishigherthanmassonsamplingsiteA.However,oneofthereasonswhyin 141 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 somecasesamountofparticulatematterdepositionishigherinsamplingsitesAcomparedto samplingsitesBcouldberelativelylowamountofparticulatematterdepositionduringentire periodofmonitoring;anotherreasoncouldbegoodweathercondition(lowwindvelocityin observeddirections).AlsomodifiedsamplingdevicewereorientedindirectiontowardEET andPortofKoper.Ifpredominantwindblowsfromanyotherdirection,samplinggaugewas practicallyprotectedfromsuchinfluence(whilesamplingsiteAwasnot). As seen from the data collected, correlation among coal and iron ore manipulation and amount of particulate matter deposition in Port's surroundings could not be confirmed. However,accordingtotheresultsofpreliminarystudy,aconfirmationofsuchcorrelationwas not expected since the method of particulate matter deposition monitoring is not sensitive enoughandthesamplingintervalforfindingsuchcorrelationmayhavebeentoolong. The proportion of particulate matter deposition increased during dry summer months. The reason for this is most likely dryness of ground which contributed to the dustiness in surroundings. In addition, during the summer period, wind blows predominant from sea towardsland(acrossoredepot)whatreflectsinincreasedquantitiesofmeasuredparticulate matter deposition. The amount of ore uploading and unloading is rather constant during entireyearwithslightlyincreasedvaluesofcoalunloadingduringwinter. Among all metals analyzed, the highest values were observed for iron and aluminum. A possiblesourceorreasonforhighvaluescould be natural composition of the surrounding soil.However,thehighvaluesofironcouldbelinkedalsototheimpactofironoreintheore depot at EET in Port of Koper. Also high values of aluminum could be linked to Port activities(unloadingofbauxite(alumina). Thestablecarbonisotopes 13 C/ 12 Cratioofthesamplesofparticulatematterdepositionwere analyzed.Byusingtheratioofcarbonisotopes 13 C/ 12 Cmeasurementsdeterminationofthe presenceofcoalinsamplesofparticulatematterdepositionwasattempted.Coalfromone sourcehasmoreorlessconstantisotopicratioofcarbonisotopesandthereforethesameδ13 C values.Usingresultsofcarbonisotopes 13 C/ 12 Cratioinindividualmonthlysampleandratio ofcarbonisotopes 13 C/ 12 Cfromthecoalandcontrol,thecontentofthecarboninsamples whichmayoriginatefromcoalwasestimated.Fromtheseresultsitappearsthatthelargest amountofcarboninsampleswhichcouldbeassociatedwithcoalappearsintheperiodof 142 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

February and April 2008, especially in February almostin allsites.Butitisnecessaryto stressthatthechosenmethodrepresentsnewapproachforthesourceofcarbonassessment. The possibility of an error must be highlighted because the investigated sample by its composition and structure is not homogeneous but consists of different particles from environment.Amongotherssourcescarboncouldoriginatedfromparticlesofcoal,scrapof insects(partsoflegsorskeleton),pollen,plantparts(decomposedfragmentsofleavesinthe sample),algae,soot(heatingofbuildings,cars,transportetc.)andothers.Theisotopicvalue (δ 13 C)isspecificforeachofthesesourcesandincaseofnonhomogeneoussamplemeasured δ13 Cvaluescouldrepresenttheaveragevalueofthevarioussources,whichmayleadtoa falseconclusionabouttheorigin.Inaddition,anassessmentwithwhichtheestimationofthe proportion of carbon origin from coal was given in %ofcarboninthesample.Withthe methodologyemployed,theamountofcarboninsamplewerenotdetermined.Therefore,the correlationbetweenthe carboninthesample,which probably originated from the coal, at eachsamplingsitesandtheamountofparticulatematterdeposition(gravimetricanalysis)can not be established from data collected to date. For further investigation, therefore, quantificationofcarboninsamplesaswellasimprovingthemethodwouldbenecessitated. According to good experience and good results from preliminary study also during study 2007/08,electronmicroscopywasusednotonlytoestablishedthechemicalcompositionand morphology of individual particles but also to determine the amount of dust particles originatingfromcoalandironoredepotfromEETinPortofKoper.Frommorphological structureofparticlesandtheirchemicalcompositionparticlesofcoal,ironoreandbauxite weredistinguishedfromotherparticlesindustdeposition.Sinceonlysurfaceofsamplecan beanalyzedandduetoourpurposetocountparticles,dilutionofsamplesweretakenprior analyses. In annual samples (timeperiod from 1.12.2007 to 1.12.2008), the presence of particles of coal,alumina,compoundswithAl,SiandK(silicates,alumosilicates,etc.),titaniumdioxide and iron oxides (FeO, Fe 2O3, Fe 3O4) were detected. Particles were identified according to theirchemicalcompositionandmorphologicalstructure.Basedontheseresults,theimpactof activitieswithinthePortofKoper(coalandironoredepotandoremanipulation,alumina manipulationaswellastransshipmentofotherbulkcargoessuchasTitaniumsludge)canbe confirmed. 143 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 InordertoestimateimpactondustdepositionfromPortofKopertosurroundingscollected sampleswereanalyzedquantitativelyusingSEM/EDXS,andparticlesonindividualsampling siteswerecounted. According to results the highest number of particles in samples represents alumosilicates (compoundsofAl,Si,KandO),mainlyinthesizerangefrom1to10m.Themajorityof theseparticleshavenaturalorigin.Anextremelylargenumberofparticlesoftitaniumdioxide

(TiO 2)weredetected,allofthemwerepresentmainlyinthesmallersizefractions(lessthan1

m up to 5 m). Reason for presence of TiO 2 and their source is rather unknown. As mentioned,oneofthepossiblesourcescouldbetransshipmentoftitaniumslaginsidethePort of Koper. According to the data from the Department of Environmental and Occupational Health of Port of Koper, titanium sludge is transshipment only few times in year, and manipulation takes place at pier II. TiO 2 particles were detected at all sampling sites regardlessofthedistancefromthePortofKoper.Sincetitaniumisthemostusedelement nowadaysspeciallyinnanotechnology(useinpigmentsanddyes,bythefoodindustry,in productionofprintercartridgesandmuchmore)therearegreatchancesthattitaniumparticles originatefromactivitiesotherthanthoseatthePortofKoper.Wheretolookforthesourceof theseparticles,therefore,remainsaunansweredquestionforresearchinthefuture.However, theseparticlesareofgreatinterestforresearchduetotheirsize.Mostweredetectedinsize classessmallerthan1mupto5m.Thissizeofairborneparticulatesisintermsofimpact onthehealthofthemostdangerousduetotheirabilitytopenetratedeepintotherespiratory system. Coalparticles,majorityofthemlargerthan5m,werealsodetected.Noneofcoalparticles weresmallerthen1m.Coalparticleswerealsofoundatthecontrolsamplingsites6and7. Possibleexplanationcouldbethefactthatthecoalistransportbyboatdailyfromportof KopertoTriestefortheneedsoflocalindustry. Onlyfewparticlesofironoxideweredetected,majorityofthemwererathersmall(from1 m to 5 m). Most of the iron particles were detectedatthesamplingsite1,whichisthe nearestsamplingsitetoEETdepot. Asitisthecaseinmassofparticulatematterdepositionalsointhecaseofparticlesnumber resultsshowedthatthehorizontalcontributionofthewind(metalscreensamplingsiteB) 144 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 contributedtoincreasednumberofdustparticlesinalmostallcases.In7outof10sampling sites higher number of particles were found in sampling sites B (vertical deposition + horizontalcontribution),onlyin3samplingsites(samplingsite1,6and8)highernumberwas observedatsamplingsiteA.Thehighesttotalnumberofparticleswasobservedatsampling site10B,locatingincenterofAnkaran. Thelargerfractionsofparticlesatindividualsamplingsitesarealumosilicates,mostprobably due to natural origin. However, some amount of bauxite (alumina) particles were found, whicharetransshippedinPortofKoper.Therefore,suchparticlesalsoindicateinfluenceof

Portsactivitiesondustinessofthesurroundings.TiO 2isalsoafrequentlyfoundcomponentof theparticulatematter.Fewercoalparticleswereobserved,buttheleastofallFeOparticles werepresent. Asitwasmentionedinresultssection,itshouldbenotedthatonlyparticlestrappedonthe filterswereanalyzedusingelectronmicroscopy.Theoretically,onlyparticleslargerthan3m should be present. Particles, trapped in the filtrate (particles smaller than 3 m), were determinedonlygravimetrically.Afterthatfiltratewasdiscarded.Therecouldbeatleasttwo reasons for the appearance of particles smaller than3minelectronmicroscopyanalysis. The larger particles captured on the filter caused saturation of the filters and therefore particlessmallerthan3m,whichotherwisewould havepassedthefilterpores,couldbe trappedonfilters.Individualparticlescanalsoformagglomerates,orthefineparticlesclump togetheronlargerones.Duringsamplepreparationsamples(partoffilters)wereexposedto ultrasonicbath.Thatcouldleadtothedismantlingofsuchbondedfineparticles.Andunder SEMsuchparticlesweredetectedasindividualones.Itisinterestingtonotethatonlysmall particlesofTiO 2andalumosilicateswerefound.Ontheotherhand,mostlylargeparticlesof coalweredetected.Therefore,specialprecautionisneededwheninterpretingtheresults,and themethodmustundergoadditionaldevelopmentandevaluationinfuture. For the quick estimation of direction and quantity of particulate matter and therefore determinationofthemainsourcesofemissionsofdustparticlesinthestudyarea,asimple alternative measurement device, based on deposition and/or adhesion was developed. The basicideaiscollectionofparticulatematterfromaironadhesivematerial(medicalVaseline). Thismeasurementdeviceallowedthecollectionofparticlesinboththehorizontalandvertical directions.Aplasticballof20cmdiameter,coveredwithmedicalVaselinewasusedforthis 145 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 alternativesamplingdevice.Byvisualinspectionofthealternativesamplingdevice,arapid assessmentofthemaindirectionofparticlesandthereforetheiroriginaswellastheintensity of occurrence of individual particles could be made. For more detailed evaluation and comparison, the trapped particles can be additionally assessed by digital photographic countingandSEM/EDXS.Amoresimplemethodforthatismanualparticlecountingusing magnifyingglass. Usingthesimplesamplingdevice,thecontributionoftheEETdepottotheincreasednumber ofdustparticlesinthesurroundingareawasconfirmed.Themaximumnumberofparticles weredetectedonthesideofthesamplingdeviceorientedinthedirectionoftheEETdepot. Aftercountingtheparticlesthisfindingswereconfirmed.Additionallyresultsfromelectron microscopyalsosuggestalinkbetweenthedustparticlescollectedandactivitiesatEETin thePortofKoper. Usingsimplesamplingdevicemainlylargerparticles(coarseparticles)werecaptureddueto their rapid deposition or elimination from the atmosphere after emission from the source. Therefore not surprisingly the number of particles was found to decrease with increasing distancefromEET.Onsamplingsites1,2and3,whichwereplacedinalineardirectionat differentdistancesfromthelandfillEETcorrelationbetweennumberofparticlesanddistance fromEETwereobserved.Thehighestnumberofparticleswasdetectedonsamplingsite1 (closesttothelandfill)andthelowestnumber(onaverageonlyonehalfofparticlescompare tosamplingsite1)onthesamplingsite3,whichisfurthestfromthelandfill. Withintentiontoevaluatethemanualcountingfortimeperiodfrom15 th ofOctoberto15 th of November 2008 samples were counted additionally using a computer program IT3. Comparingthenumber ofparticles countedmanually and the number of particles counted using computer software, essential differences between these methods was not observed. Resultsfrombothmethodsindicatesametrendofparticlenumberateachofthesampling sites. However, in spots where enormous number of particles on 1 cm 2 were observed, computercountinggavemoreaccurateresults.Thisisespeciallytruewhenalargenumberof particles appear in small area. Under these conditions, mistakes using manual counting becomemorepossible.

146 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Since the basic use of simple sampling devices is determination of the most appropriate location for installation of costly and sophisticated sampling devices the determination of source of particles and screening the location is the most important outcome of such monitoring. Therefore, both manual and computer counting are sufficient methods for samplesanalyses. Usingvisualperceptionwecanestimatedirectionandlocationofmaximumdustemission. This,howeverdoesnotallowfurtherdetailedanalysis.Usingparticlecounting(manualor usingcomputersoftware),theresultscanbeevaluatedandcomparedwitheachotherduring anextendedperiodoftime.Sothedatacollectedcangivetheroughestimationoftheburden ontheenvironmentwithdustparticles(mostlywithcourseparticles)aswellasdetermination ofthemostappropriatelocationfortheinstallationofmorecomplexandexpensivemeasuring devicesformoredetailedmonitoringoftheenvironment.

5.5Hypothesis This research allows confirmation of the first hypothesis; Coal and iron ore depot at EET terminalinPortofKoperrepresentoneofthesources for particulate matter deposition in surrounding area. Several methods were employed to connect the particulate matter depositiontodustfromtheactivityatthecoalandironoredepot.Theresultsoftheanalysis using electron microscopy can confirm with certainty the presence of coal particles in the particulatematterdeposition.Regardingthelocationofsamplingsitescoalparticlescanonly beassociatedwithactivityoncoalandironoredepotatEETinPortofKoper.Thesame appliestoparticlesofironoxideandalumina. Secondhypothesis,Ankarananditssurroundingsisheavilyburdenedwithdustdeposition, can be confirmed partially. During the preliminary study enormous values of particulate matterdepositionweredetected.Thesesignificantlyexceededlimitingvaluesbyasmuchas factor of 12. However, such extreme values were detected in two time intervals. In the remainingperiodofobservations,suchhighvalueswerenotrecorded.Thateventswerealso detectablebyvisualperceptionofthepopulation(Figure1andfigure2).Similarly,theannual valueswereexceededatindividualsamplingsites(samplingsite3,4and5)duetothisshort extremeevent.However,duringstudyof2007/08,themassofparticulatematterdepositionat thesamplingsitesA,calculatedonamonthlytimeperiodduringentiremonitoringinterval 147 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 fromDecember2007toNovember2008,hasneverexceededtherecommendedvalueof350 mg/m 2 day. Therefore, based on two oneyear measurement campaigns, it can not be concluded that the surroundings of Port of Koper, especially Rožnik residential area, is heavilyburdenwithdustdeposition.However,asisnotedbyresidentsaswellastheresults of preliminary studies, heavy dust deposition does indeed occur in case of the extreme weatherconditions. Also third hypothesis, Dust preventive measures undertaken by the Port of Koper lead to reduction of particulate matter deposition in surrounding areas, can be confirmed only partially. Unfortunately there are no available data on the emission of particulate matter deposition in the surroundings of Port of Koper before the introduction of preventive measures. Port of Koper in 2005 started the construction of 11 m high metal fence surroundingthewholebodyofcoalandironoredepot.Duringthepreliminarystudyfence was only partially built, while during study 2007/08 fence was completed and entirely surroundedoredepotatEET.SprinklingsystemintheEETterminalwasimprovingduring years.Forwettingthebodyoforedepotnowadaysconsumeannuallyaround30.000m3of water.Thesprayingiscarriedoutonmachinesduringorehandlinginaoredepot,onliftsand alsoonthespecialbeltconveyorstransportsystems.Severaltimesadayaccessroadsaround thelandfillarewashedusingsocalledspecialpurposevehicles.Unloading/reloadingatthe landfill is conducted in a closed conveyor line. For the future, complete covering of the landfillisbeingprepared(Source:DepartmentofEnvironmentalandOccupationalHealthof PortofKoper).Unfortunately,nodataaboutdustemissionsinlivingenvironmentaroundport of Koper are available. Consequently, the extent these measures have an impact on the reduction of dustiness in the surroundings area can only be assumed. But if results from preliminary study (when all mentioned preventive measures were still in preparation) are comparedwithresultsofstudy 2007/08,when allof mentioned preventive measures were already implemented, results indicate that all of the measures were good and gave some results.However,duringstudy2007/08,therewerenostrongerwinds,whichblewthrough theoredepottowardsthepopulatedareas,andthatcouldalsobeoneofthereasonforlow valuesofparticulatematterdepositionduringentiretimeofthestudy.

148 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

5.6Toconclude Theresultsofthisinvestigationcanbeusedforassessment of dust deposition in the area surroundingthePortofKoper.Additionally,onthebasisoftheresultsobtainedduringthis investigation,theeffectivenessofpreventivemeasuresundertakenbythePortofKoperfor preventionofdustinginsurroundings canbe assessed (results of preliminary study versus resultsofthestudy2007/08). Itcanbeconcludedthattherearevariouspointanddispersedsourcesofemissionsofvarious airpollutantsintheareaofthemunicipalityofKoper.Inthisareatherearelocatedalarge storage depot of petroleum products (emissions of benzene, toluene), chemical industry (emissions of formaldehyde, acetaldehyde), waste incinerator and the ironworks in Trieste (dioxins,furans,dustparticles).Additionallyheavytrafficpollution,groundlevelozonein summermonths,transportofpollutedairwiththewesternwindsfromthePoriverbasin,etc. arepresent.Forthesereasons,itisnecessarytotakemeasurestoreducetheenvironmental burden of these various pollutants from diverse sources. By no means should additional emissionsintotheenvironment,whichwouldburdentheair,beallowed.

149 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

6CONCLUSION During the preliminary study, which was carried out during 2005/06, extreme values of particulate matter deposition in Port's surroundings were detected. Values exceeded the monthlylimitingvaluebyafactorof12.Alsoyearlylimitingvaluewereexceeded. Intimeperiodfrom1.12.2007to1.12.2008,elevatedlevelsofsuspendedparticleswerenot detectedatthesamplingsites.Thereasonforthelowvaluesofdustpollutionmightbein weatherconditions(lowwindintheobserveddirections).Besidetheweatherconditions,the additionalprecautionarymeasurestakenbythePortofKopertoreducethedustinessfromthe operations at the coal and iron ore depot at EET may be a significant factor. These precautionary measures are an effective approach toreducingorlimitingemissionsofdust particlestotheneighborhood. Usinganewapproach,correlationbetweentheactivitiesatEEToredepotinPortofKoper and particulate matter deposition in surroundings residential areas was confirmed. Using

SEM/EDXS,particlesofcoal,ironoxides,aluminaandTiO 2weredetected,themajorityof themcanbelinkedwithportactivities. It would be reasonable to recomend continuation of the study because only on longterm observations it is possible to made a thorough assessment of the impact of EET on dust emissionsonthesurroundingarea.Inordertoexcludetheimpactofannualfluctuationsand weatherconditions,furthermonitoringofdustdepositionintheregionarerecommended. Additionally, it would be reasonable to make risk assessment, focused specially on the respiratorydiseaseincidence.Accordingtotheresultsofepidemiologicalstudy(Erženetal., 2003)additionalepidemiologicresearchonrespiratoryproblemsintheinfluentialareawould bereasonabletocarryout. Fromresults,thenewsamplingdeviceissuitableforquickestimationofdirectionofmajor airborne particles sources. Since the cost of sampling device is relatively low many such devicescouldbeusedforquickscreeninginordertofindthemostrepresentativelocationsfor laterplacementofmoresophisticated,accurateandexpensivedevicesforairmonitoring. 150 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Cleanairisoneofthenecessitiesforhealthylifenowandinthefuture.Achievingthisgoal requirestheactiveparticipationoflegislators,expertsfromvariousfieldsandallthosewho burdentheairwiththeiractivities.

151 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

7LITERATURE ARSO. 2005. Air pollution measurement in Ankaran city from 28 th of June to 11 th of September2005studyreport.(MeritveonesnaženostizrakavAnkaranuod28.junijado11. septembra2005).Ljubljana2005 BaronP.A.andHeitbrinkW.A.2005.AnApproachtoPerformingAerosolMeasurements. In:AerosolMeasurement:Principles,Techniques,andApplications,secondedition.BaronP. A.(ed.)andWillekeK.(ed.).WileyInterscience,NewJersey:1111p. Baron P. A. and Willeke K. 2005. Aerosol Fundamentals. In: Aerosol Measurement: Principles,Techniques,andApplications,secondedition.BaronP.A.(ed.)andWillekeK. (ed.).WileyInterscience,NewJersey:1111p. Bilban M. 1999. Medicina dela (Occupational Medicine). Ljubljana: Zavod za varstvo pri delu.191p. BizjakM.2009.Fizikalniinkemijskividikionesnaženosti ozračja. Ljubljana: Zdravstvena fakulteta.104p. Bolte T., Šegula A., Jesenovec B., Planinšek A., Bizjak M., Brinc R., Krsnik P. 2007. KakovostzrakavSlovenijivletu2006(QualityofairinSloveniainyear2006).Ljubljana, ARSO:5095 ClancyL.,GoodmanP.,SinclairH.,DockeryW.D.2002.Effectofairpollutioncontrolon death rates in Dublin, Ireland: an intervention study. The Lancet. October 2002: 9341; 360:12101214 Cotran R.S., Kumar V., Collins T. 1999. Robbins pathologic basis of disease. 6th ed. Philadelphia,Saunders:1425p. CouncilDirective1999/30/ECof22April1999relatingtolimitvaluesforsulphurdioxide, nitrogenandoxidesofnitrogen,particulatematterandleadinambientair;OfficialJournalL 163;29/06/1999p.00410060 CouncilDirective2004/107/ECof15December2004relatingtoarsenic,cadmium,mercury, nickelandpolycyclicaromatichydrocarbonsinambientair;OfficialJournalL23,26/1/2005 p.00030016 Council Directive 96/62/EC of 27 September 1996 on ambient air quality assessment and management;OfficialJournalL296,21/11/1996p.00550063 Craig H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometricanalysisforcarbondioxide.GeochimicaetCosmoschimicaActa12,133. Dalal N.S., Newman J. Pack D., Leonard S. and Vallyathan V. 1995. Hydroxyl radical generationbycoalminedust:possibleimplicationtocoalworkers'pneumoconiosis(CWP). FreeRadicalBiology&Medicine(FreeRadicBiolMed)1995Jan;Vol.18(1),pp.1120 152 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

Decreeonlimitvalues,alertthresholdsandcriticalimissionvaluesforsubstancesintothe atmosphere (Uredba o mejnih,opozorilnihin kritičnih imisijskih vrednostih snovi v zraku). Ur.L.RSšt.73/1994 Decreeonsulphurdioxide,nitrogenoxides,particulatematterandleadinambientair(Uredba o žveplovem dioksidu, dušikovih oksidih, delcih in svincu v zunanjem zraku). Ur. L. RS 52/2002 DecreerepealingtheDecreeonlimitvalues,alertthresholdsandcriticalimissionvaluesfor substances into the atmosphere (Uredba o prenehanju veljavnosti uredbe o mejnih, opozorilnihinkritičnihimisijskihvrednostihsnovivzraku).Ur.L.RS66/2007 DominiciF.,PengR.D.,BellM.L.,PhamL.,McDermottA.,ZegerS.L.,SametJ.M.2006. Fine Particulate Air Pollution and Hospital Admission for Cardiovascular and Respiratory Diseases.JAMA,March8,2006—Vol295,No.101127 DowdallM.,VicatK.,FrearsonI.,GerlandS.,LindB.,andShawG.2004.Assessmentofthe radiologicalimpactsofhistoricalcoalminingoperationsontheenvironmentofNyA°lesund, Svalbard.JournalofEnvironmentalRadioactivity71(2004)101–114 EnvironmentProtectionAct(Zakonovarstvuokolja).Ur.L.RS52/2002 EPA. 2008. Terms of Environment: Glossary, Abbreviations and Acronyms. US EPA. http://www.epa.gov/OCEPAterms/pterms.html.(15.07.2009) Eržen I. Cegnar T., Podkrajšek D., Furlan N., Juričič M., Konec Juričič N., Lovrečič M., Uršič.A.,ZadnikV.,ZaletelKrageljL.2003.Proučevanjevplivaokoljanapojavdoločenih bolezniinpovečanostopnjoumrljivostiprebivalcevnaobmočjudelaMestneobčineKoper. Zaključno poročilo (Determination of environmental impact on emerging of deseases and increasedmortalityinmunicipalityofKoper–studyreport).ZZVCelje,45p. European Parliament and Council Directive 2008/50/EC of 21 May 2008 on ambient air qualityandcleanerairforEurope;OfficialJournalL152,11/6/2008P.144 EvansP.2000.Theroleoffreeradicalsinthetoxicologyofairborneparticulatepollutants. In:Toxicologyofthehumanenvironment.RhodesC.J.(ed.).TaylorandFrancis,London: 21213 Finlayson Pitts B.J. and PittsJ.N. Chemistry of the upper and lower atmosphere. Theory, experimentsandapplications.AcademicPress.SanDiego,SanFrancisco,NewYork,Boston, London,Sydney,Tokyo,2000:1543,349440. FiremanE.M.,LermanY.,GanorE.,GreifJ.,FiremanShoreshS.,LioyP.J.,BanauchG.I., WeidenM.,KellyK.J.andPrezantD.J.2004.InducedSputumAssessmentinNewYorkCity FirefightersExposedtoWorldTradeCenterDust.EnvironmentalHealthPerspectives.Vol. 112INo.151 GaudermanW.J.,AvolE.,GillilandF.,VoraH.,ThomasD.,BerhaneK.,McConnellR., KuenzliN.,LurmannF.,RappaportE.,MargolisH.,BatesD.,PetersJ.2004.TheEffectof

153 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 AirPollutiononLungDevelopmentfrom10to18YearsofAge.TheNewEnglandJournal ofMedicine.September2004:11;351:10571067 Gauderman W. J., Mcconnell R., Gilliland F., London S., Thomas D., Avol E., Vora H., BerhaneK.,RappaportE.B.,LurmannF.,MargolisH.G.,andPetersJ.2000.Association betweenAirPollutionandLungFunctionGrowthinSouthernCaliforniaChildren.American JournalofRespiratoryandCriticalCareMedicine,October2000:4;162:13831390 Gauss M., Nyiri A. and Klein H. 2008. (EMEP/MSCW). Transboundary air pollution by main pollutants (S, N, O3) and PM, Slovenia. Meteorologisk Institutt, Norwegian MeteorologicalInstitute,2008:26p. GodishT.2004.Airquality,4thEdition.BocaRaton:Lewis HallD.J.,UptonS.L.andMarslandG.W.1993.Improvementsindustgaugedesign.In: MeasurementofAirbornepollutants.CoulingS.(ed.).ButterworthHeinemannLtd,Oxford. 301p HoekG.,BrunekreefB.,GoldbohmS.,FischerP.,vandenBrandtP.A.2002.Association betweenmortalityandindicatorsoftrafficrelatedairpollutionintheNetherlands:acohort study.TheLancet.October2002:9341;360:12031209 http://en.wikipedia.org http://monographs.iarc.fr/ENG/Classification/crthalllist.php.(20.9.2007) http://www.lukakp.si http://www.skocjanskizatok.org http://www.webmd HuangX.,LaurentP.A.,ZalmaR.andPezeratH.1993.InactivationofalphalAntitrypsinby AqueousCoalSolutions:PossibleRelationtotheEmphysemaofCoalWorkers.Chem.Res. Toxicol.1993,6,452458 IARC.2007.AgentsreviewedbytheIARCmonograph.InternationalAgencyforResearch onCancer(IARC). ISO 11923. 1997. Water quality. Determination of suspended solids by filtration through glassfibrefilters. ISO/IEC Guide. 1995. Guide to the expression of uncertainty in measurement (GUM). InternationalOrganizationforStandardization,Switzerland,1995:98p J.C.Russ,"Fundamentalsofenergydispersivexrayanalysis",ButterworthsMonographsin Materials,1984

154 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

J.I.Goldstein,D.E.Newbury,P.Echlin,D.C.Joy,C.E.Lyman,E.Lifshin,L.Sawyer,J.R. Michael, "Scanning electron Microscopy and xray microanalysis", Kluwer Academic/PlenumPublishers,2003(thirdeddition) K.F.J.Heinrich,DaleE.Newbury,"Electronprobequantitation",PlenumPress,1991 KampaM.,CastanasE.2008.Humanhealtheffectsofairpollution.EnvironmentalPollution 151(2008):362367 KleinH.,BenedictowA.andFagerliH.(EMEP/MSCW). Transboundary air pollution by main pollutants (S, N, O3) and PM, Slovenia. Meteorologisk Institutt, Norwegian MeteorologicalInstitute,2007:26p. Kodavanti U.P., Schladweiler M.C., Gilmour P.S., Wallenborn J.G., Mandavilli B.S., LedbetterA.D.,ChristianiD.C.,RungeM.S.,KarolyE.D., CostaD.L.,PeddadaS.,JaskotR., RichardsJ.H.,ThomasR.,MadamanchiN.R.,andNyskaA.2008.TheRoleofParticulate MatterAsociatedZincinCardiacInjuryinRats.EnvironmentalHealthPerspectives,2008; 116;1:2013 KontičB.,TrebšeP.,MavriJ.,MozetičB.,KontičD.,UršejŠ.andSpreitzerM.2001.Report onenvironmentalimpactforscrubbertoreducetheemissionofwastegasfromtheproduction ofPhthalicanhydrideinKemiplasd.o.o.Koper(Poročiloovplivihnaokoljezanapravoza zmanjšanjeemisijodpadnihplinovizproizvodnjeanhidridaftalnekislinevKemiplasud.o.o. Koper).PolitehnikaNovaGoricaandJožefStefanInstitutLjubljana,2001.62p Korun M., Glavič Cindro D. 2003. Visokoločljivostna spektrometrija gama v laboratoriju. Ljubljana:InstitutJožefStefan,delovnonavodiloLMRDN10 LeónG.,PérezL.E.,LinaresJ.C.,HartmannA.andQuintanaM.2007.Genotoxiceffectsin wild rodents (Rattus rattus and Mus musculus) in an open coal mining area. Mutation Research630(2007)42–49 Likar K., Bauer M. 2006. Izbrana poglavja iz higiene (Selected chapters of Hygiene). Ljubljana.Visokašolazazdravstvo:7150 LikarM.1998.Vodnikpoonesnaževalcihokolja(Guidethroughenvironmentalpollutants). Ljubljana:ZbornicasanitarnihtehnikovininženirjevSlovenije Lioy P.J., Weisel C.P., Millette J.R., Eisenreich S., Vallero D, Offenberg J, Buckley B., TurpinB.,ZhongM.,CohenM.D.,PropheteC.,Yang I.,StilesR.,CheeG.,JohnsonW., PorcjaR,AlimokhtariS.,HaleR.C.,WeschlerC.andChiChenL.2002.Characterizationof the Dust/Smoke Aerosol that Settled East of the World Trade Center (WTC) in Lower Manhattan after the Collapse of the WTC 11 September 2001. Environmental Health PerspectivesVolume110,Number7,July2002 MillerK.A.,SiscovickD.S.,SheppardL.,ShepherdK.,SullivanJ.H.,AndersonG.L.,and KaufmanJ.D.2007.LongTermExposuretoAirPollutionandIncidenceofCardiovascular EventsinWomen.TheNewEnglandJournalofMedicine.February2007:5;356:447458

155 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010 MurphyC.H.1984.HandbookofParticleSamplingandAnalysisMethods.Florida:Verlag ChemieInternational NyiriA.,GaussM.,andKleinH.2009.(EMEP/MSCW). Transboundary air pollution by main pollutants (S, N, O3) and PM, Slovenia. Meteorologisk Institutt, Norwegian MeteorologicalInstitute,2009:32p. oSISTprEN15841.AirQualityAmbientAirDeterminationoflead,nickel,arsenicand cadmiuminatmosphericdepositions.2008 oSISTprEN15841.AirQualityAmbientAirDeterminationoflead,nickel,arsenicand cadmiuminatmosphericdepositions.2008 Park J.M., Rock J.C., Wang L., Seo Y.C., Bhatnagar A., and Kim S. 2009. Performance evaluation of six different aerosol samplers in a particulate matter generation chamber. AtmosphericEnvironment43(2009)280–289 Poljšak B., Jereb G., and Cepak F. 2006. Measurement of particulate matter deposition in Ankarananditssurroundingsinperiodfrom15.10.2005to15.10.2006–studyreport.Visoka šolazazdravstvo,2006 PopeIIIC.A.,BurnettR.T.,ThunM.J.,CalleE.E.,KrewskiD.,ItoK.,ThurstonG.D., 2002.LungCancer,CardiopulmonaryMortality,andLongtermExposuretoFineParticulate AirPollution.JAMA,Mar2002:287:11321141 PortofKoper.2009.EnvironmentalReportfor2008(Okoljskoporočilozaleto2008).Luka Koper,April2009 PotkonjakV.1979.Prevalenceandetiologyofchroniccoughwithoutsputumproductionin coalminers.RevueDeL'institutD'hygièneDesMines.Vol.34(4),pp.191202 ReillyC.A.,AustS.D.2000.Biologicaloxidationscatalyzedbyironreleasedfromferritin. In:Toxicologyofthehumanenvironment.C.J.Rhodes(ed.).TaylorandFrancis.London, 2000:15590 SameJ.M.,DominiciF.,CurrieroF.C.,CoursacI.,andZegerS.L.1987.FineParticulate Air Pollution and Mortality in 20 U.S. Cities, 1987–1994. The New England Journal of Medicine.December2000:24;343:17421749 Savez društava za čistoću vazduha Jugoslavije (SDČVJ). 1987. Odreñivanje taložne tvari (sediment)–Measurementofdepositedmatter.SmjernicaSDČVJ201–prijedlog. SmithK.R.,VeranthJ.M.,LightyJ.S.andAustA.E.1998.MobilizationofIronfromCoal FlyAshWasDependentupontheParticleSizeandtheSourceofCoal.Chem.Res.Toxicol., 1998,11(12),pp1494–1500 Stropnik B. 1994. Analiza aerosolov in njihov vpliv v okolici termoelektrarne Šoštanj. Doktorskadisertacija.Ljubljana:Fakultetazanaravoslovjeintehnologijo

156 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

TopičN.2009.AnanalysisoffugitivedustemissionfromcoalstockpileinthePortofKoper. Masterthesis.JožefStefaninternationalpostgraduateschool,Ljubljana,June2009 TranL.andKuempelE.2007.Biologicallybasedlungdosimetryandexposuredoseresponse modelsforpoorlysolubleinhaledparticles.In:ParticleToxicology.DonaldsonK.(ed.)and BormP.(ed.).CRCPress,Taylor&FrancisGroup,2007:425p TreatyonEuropeanUnion;OfficialJournalC191,29/7/1992 V.D.Scott,G. Love,S.J.B.Reed, "Quantitative electronprobe microanalysis" second edition,EllisHorwood,1995 ValleroD.2008.FundamentalsofAirPollution.FourthEdition.Elsevier,AcademicPress. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco,Singapore,Sydney,Tokyo,2008:6465,355313,396359 Van Hook R.I. 1979. Potential Health and Environmental Effects of Trace Elements and RadionuclidesfromIncreasedCoalUtilization.EnvironmentalHealthPerspectives,Vol.33, pp.227247 VDI2119Blatt2.1996.BestimmungdesStaubniederschlagsmitAuffanggefassenausGlass (BergerhoffVerfahren)oderKunststoff.Dusseldorf:VereinDeutscherIngenieure. WardC.R.,SuárezRuizI.2008.Chapter1Introduction to Applied Coal Petrology. In: AppliedCoalPetrology;TheRoleofPetrologyinCoal Utiliztion. SuárezRuiz I (ed.) and CrellingJ.C.(ed.).ElsevierLtd.:118. WHO.1948.WHOdefinitionofHealth.InPreambletotheConstitutionoftheWorldHealth Organization as adopted by the International Health Conference, New York, 1922 June, 1946;signedon22July1946bytherepresentatives of 61 States (Official Records of the WorldHealthOrganization,no.2,p.100)andenteredintoforceon7April1948 WHO.2003.HealthAspectsofAirPollutionwithParticulate Matter, Ozone and Nitrogen Dioxide. Report on a WHO Working Group. Bonn, Germany, 13–15 January 2003 (http://www.euro.who.int/document/e79097.pdf) ZawiszaE.,MalinowskiT.,JanczewskiG.andMakowskaW.1982.Occupationalallergyin miners.MedycynaPracy(MedPr)1982;Vol.33(13),pp.1057 ŽitnikM.,JakominM.,PeliconP.,RupnikZ.,SimiJ.,BudnarM.,GrljN.andMarziB.Port ofKoperelementalconcentrationsinaerosolsbyPIXE.2005.XRaySpectrometry,Volume 34Issue4,Pages330334. ŽlebirS.,KnezJ.,BolteT.,TuršičJ.,GomiščekB.,RodeB.,ŠegulaA.,VehovarJ.,Lešnik M.,KolešaT.,TratnikS.,PavliP.,DebeljakJ.,andRusJ.2007.Poročilopilotnegaprojekta: OpredelitevvirovdelcevPM 10 vSloveniji(Pilotprojectreport:sourcesofPM 10 particlesin Slovenia).Ljubljana.ARSO,2007:47

157 JerebG.Collection,analysisandcharacterizationofparticulatematterdepositioninandaroundKoper. Masterthesis.UniversityofNovaGorica.Graduateschool,2010

ACKNOWLEDGMENT

Someonesaidmentorissomeone,wholeadsyou,helpsyoutoreachthegoalanddirectsyouonyour journeytothefinishline.Aspecialthanksthereforegoestomentorprofessordr.SidneyA.Katzfor all his kind advices, discussions, corrections and for his patience. Same gratitude goes to my co mentoranddearcolleagueassistantprofessordr.BorutPoljšak,forallthehelp,longdaysandnights workingandforallinterestingdebateswehadaboutthisstudyandresearchingprocessingeneral. Thankstoassistantprofessordr.MirkoBizjakforhiscontributiontothiswork,fordiscussionsand speciallyforthetriptoEuropeanAerosolConference. Iwouldliketothankprofessordr.PoloncaTrebšeandprofessordr.HarrySalemfortheirvaluable commentsandsuggestions,fortheirreviewoftheworkandallusefulinstructions.Masterthesiswork isnowmuchbetterwiththeircontributions. FinancialsupporttothestudyfromPortofKoperisgratefullyacknowledged.Specialthanksgoto MarziBoris,Msc.andFrankaCepak,Msc.fortheircooperation. Forveryinterestingdiscussionsandallthehelpwithstablecarbonisotopesanalyzesspecialthanks goestoassistantprofessordr.NivesOgrincfromtheDepartmentofEnvironmentalSciencesatJozef StefanInstitute. For help with electron microscopy thanks to professor dr. Goran Dražić from Department for NanostructuredMaterialsatJožefStefanInstitute. ForinterestingdiscussionsandallthehelpthankstotheAerosold.o.o.companyandtotheirmanager dr.GrišaMočnik. ThankstoFacultyofHealthStudiesoftheUniversityofLjubljanaforallthelogisticalsupport,special thanks goes to the leadership of the faculty, dean professor dr. France Sevšek and vice dean for researchassistantprofessordr.DarjaRugelj.Ofcourse,thankstoallmycoworkersatdepartmentfor Sanitaryengineeringfortheirsupport,debateandexchangeofviews. For laboratory analysis thank to colleagues from Regional Public Health Institute of Koper and RegionalPublicHealthInstituteofCelje. Fordata,helpfultips,information'sanddiscussionsthanksgotoAntonPlaninšekandTanjaBolte, Msc.from EnvironmentalAgency of the Republic of Slovenia and to assistant professor dr. Irena GrgičfromtheNationalInstituteofChemistry. Thankstostudents(nowgraduated)inbsc.studyprogramofSanitaryEngineeringBlažGoličnikand BojanaTrivunčevićfortheirassistanceandcooperationincarryingoutourresearch. ThankstotheheadoftheEnvironmentalProtectionDepartmentoftheMilanVidmarElectricPower Institute(EIMV)RudiVončina,Msc.andtoallothercolleaguesfortheirhelpanddiscussions,in particularthankstoDamjanKovačič,JericaPengovandJaniJamšek. Thankstomyparentstoencouragemeinmyyoungeryearsforstudyandknowledgeacquiring. At last, but absolutely not least, specialthanks to Tanja for her support and understanding during entiretimeofmystudyandtoJakaforhisinspirationandmotivation.

158

ANNEX1 TableA:Discardsamples DISCARDSAMPLES 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B 10A 10B December2007 1.12.15.12.2007 * * 15.12.20071.1.2008 * * * * January2008 1.1.15.1.2008 15.1.1.2.2008 February2008 1.2.15.2.2008 ** 15.2.1.3.2008 * March2008 1.3.15.3.2008 * * ** 15.3.1.4.2008 * April2008 1.4.15.4.2008 *** 15.4.1.5.2008 May2008 1.5.15.5.2008 15.5.1.6.2008 * *** Jun2008 1.6.15.6.2008 15.6.1.7.2008 *** *** July2008 1.7.15.7.2008 * * 15.7.1.8.2008 August2008 1.8.15.8.2008 * *** *** ** ** ** 15.8.1.9.2008 * September2008 1.9.15.9.2008 * * 15.9.1.10.2008 * * October2008 1.10.15.10.2008 15.10.1.11.2008 *** *** November2008 1.11.15.11.2008 *** 15.11.1.12.2008 * ** ** *samplewasnotanalyzed(samplewasdestroyed) **highvaluesduetopresenceofNaClorCucompounds ***highvaluesduetopresenceoforganicpollutionofsample(decaypartsofplantsorinsects,algae)