New Materials for Strontium Removal from Nuclear Waste Streams

Total Page:16

File Type:pdf, Size:1020Kb

New Materials for Strontium Removal from Nuclear Waste Streams New Materials for Strontium Removal from Nuclear Waste Streams by Savvaki Neoklis Savva Supervisor: Dr Joseph A. Hriljac A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy The School of Chemistry College of Engineering and Physical Sciences University of Birmingham September 2015 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract The primary aim of this project is to investigate potential new materials for application in ion exchange processes to remove 90Sr from nuclear waste streams. This work can be broadly split in to two sections, work on attempts to synthesise new materials and work to investigate ion exchange properties of two recently prepared materials AV-7, a synthetic analogue of tin- kostylvite and AV-3, a synthetic analogue of petarasite. Synthesis on new materials was focused on metal silicate materials, in particular titanium, zirconium and tin silicates containing exchangeable group I and II cations. These synthesis attempts initially were focus on targeted mineral phases such as noonkanbahite, BaKNaTi2(Si4O12)O2, followed by a series of brief surveys examining the effects of various changes to precursor gels such as concentration of bases such as NaOH, metal to silicon ratios and the presence of mineralizing agents such as sodium fluoride. The synthesis of two synthetic mineral phases potentially interesting for ion exchange is also reported here, titanite and fresnoite. Ion exchange studies focused mainly on AV-7 and AV-3 but also included well known ion exchange materials for comparison such as clinoptilolite and Nb-doped crystalline silicotitanate and brief investigations in to the ion exchange of fresnoite and titanite. Ion exchange was followed using X-Ray fluorescence, ion chromatography and radioactive 85Sr exchanges measured using scintillation counters. Acknowledgements I would firstly like to thank my supervisor Dr Joe Hriljac for all his support throughout this PhD project and all its difficulties. Thanks also to those at the NNL who helped with this work in particular my NNL supervisor Dr. Zoe Maher for some valuable guidance but also to Dr. Scott Owns for useful discussions. Financial sponsorship from the School of Chemistry, University of Birmingham and the NNL is also gratefully acknowledged. A special thanks to past and present members of the Hriljac group, Tom Carey for help with my crystallography problems and George and Geoff for the time we spent in Boston. A special thanks to Evin who has been an incredible help throughout my time here. I would also like to thank all those from the 5th floor of chemistry who helped in innumerable ways over the course of my work, from useful discussions over cups of tea to blowing of steam bouldering. A great thanks also to Dr Jackie Deans whose technical support has been a great help to me and everyone on floor five. Finally I’d like to thank Katrina whose love, patience and support have helped with the hardest part of this work, the writing of it. Contents Chapter 1 – Introduction…………………………………………………………………....….1 1.1 Background ……………………………………………………………………………..1 1.2 Ion exchange ..................................................................................................................... 3 1.3 Inorganic ion exchangers .................................................................................................. 5 1.3-1 Natural inorganic ion exchangers .............................................................................. 5 1.3-2 Synthetic ion exchangers ........................................................................................... 9 1.4 Potential materials for ion exchange – scope of this work ............................................. 16 Chapter 2 - Experimental……………………………………………………………………..17 2.1 Synthesis techniques ........................................................................................................... 22 2.1-1 Solid state synthesis ..................................................................................................... 22 2.1-2 Sol-gel synthesis .......................................................................................................... 22 2.1-3 Hydrothermal synthesis ............................................................................................... 22 2.1-4 Microwave synthesis ................................................................................................... 23 2.2 Characterisation techniques ................................................................................................ 24 2.2-1 Fundamentals of crystallography and diffraction ........................................................ 24 2.2-2 Neutron diffraction ...................................................................................................... 33 2.2-3 Rietveld refinement ..................................................................................................... 35 2.2-4 X-ray fluorescence spectrometry ................................................................................. 39 2.2-5 Scanning electron microscopy (SEM) ......................................................................... 44 2.2-6 Ion chromatography ..................................................................................................... 46 2.2-7 Radiotracer studies ...................................................................................................... 48 Chapter 3 - Titanosilicates and zirconosilicates………………………………………………45 3.1 Introduction ........................................................................................................................ 51 3.2 Experimental ....................................................................................................................... 53 3.2-1 Noonkanbahite & related phases synthesis gels .......................................................... 53 3.2-2 Titanite synthesis gels .................................................................................................. 55 3.2-3 Zirconosilicate synthesis gels ...................................................................................... 56 3.2-4 Ion exchanges .............................................................................................................. 58 3.3 Results and discussion ........................................................................................................ 58 3.2-1 Noonkanbahite and related phases .............................................................................. 58 3.2-2 Titanite ......................................................................................................................... 62 3.3-3 fresnoite ....................................................................................................................... 68 3.3-4 Zirconosilicate synthesis ............................................................................................. 72 3.3-4a Synthesis and characterisation of synthetic petarasite (AV-3) .............................. 75 3.4 Conclusions ........................................................................................................................ 94 Chapter 4 - Tin silicates ……………………………………………………………………...89 4.1 Introduction ........................................................................................................................ 95 4.2 Experimental ....................................................................................................................... 96 4.2-1 Hydrothermal SnO2-SiO2-NaOH synthesis survey ..................................................... 96 II 4.2-2 Microwave Tin survey ............................................................................................... 97 4.2-3 AV-7 - synthetic tin kostylvite .................................................................................... 98 4.2-4 Ion exchanges .............................................................................................................. 98 4.2-4a Bulk ion exchange .................................................................................................. 98 4.2-4b Low concentration ion exchange ........................................................................... 99 4.2-4c Fused bead XRF ..................................................................................................... 99 4.3 Results and discussion ...................................................................................................... 100 4.3-1 SnO2-SiO2-NaOH synthesis survey ........................................................................... 100 4.3-2 Microwave TinII survey ............................................................................................. 101 4.3-3 AV-7 - synthetic tin kostylvite ............................................................................... 109 4.3-4 Ion Exchanges .......................................................................................................
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Third-Generation Synchrotron X-Ray Diffraction of 6- M Crystal of Raite, Na
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12263–12267, November 1997 Geology Third-generation synchrotron x-ray diffraction of 6-mm crystal of raite, 'Na3Mn3Ti0.25Si8O20(OH)2z10H2O, opens up new chemistry and physics of low-temperature minerals (crystal structureymicrocrystalyphyllosilicate) JOSEPH J. PLUTH*, JOSEPH V. SMITH*†,DMITRY Y. PUSHCHAROVSKY‡,EUGENII I. SEMENOV§,ANDREAS BRAM¶, CHRISTIAN RIEKEL¶,HANS-PETER WEBER¶, AND ROBERT W. BROACHi *Department of Geophysical Sciences, Center for Advanced Radiation Sources, GeologicalySoilyEnvironmental, and Materials Research Science and Engineering Center, 5734 South Ellis Avenue, University of Chicago, Chicago, IL 60637; ‡Department of Geology, Moscow State University, Moscow, 119899, Russia; §Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, 117071, Russia; ¶European Synchrotron Radiation Facility, BP 220, 38043, Grenoble, France; and UOP Research Center, Des Plaines, IL 60017 Contributed by Joseph V. Smith, September 3, 1997 ABSTRACT The crystal structure of raite was solved and the energy and metal industries, hydrology, and geobiology. refined from data collected at Beamline Insertion Device 13 at Raite lies in the chemical cooling sequence of exotic hyperal- the European Synchrotron Radiation Facility, using a 3 3 3 3 kaline rocks of the Kola Peninsula, Russia, and the 65 mm single crystal. The refined lattice constants of the Monteregian Hills, Canada (2). This hydrated sodium- monoclinic unit cell are a 5 15.1(1) Å; b 5 17.6(1) Å; c 5 manganese silicate extends the already wide range of manga- 5.290(4) Å; b 5 100.5(2)°; space group C2ym. The structure, nese crystal chemistry (3), which includes various complex including all reflections, refined to a final R 5 0.07.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 100, pages 1649–1654, 2015 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1 AND OLIVIER C. GAGNE2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada IN THIS ISSUE This New Mineral Names has entries for 10 new minerals, including debattistiite, evdokimovite, ferdowsiite, karpovite, kolskyite, markhininite, protochabournéite, raberite, shulamitite, and vendidaite. DEBATTISTIITE* for 795 unique I > 2σ(I) reflections] corner-sharing As(S,Te)3 A. Guastoni, L. Bindi, and F. Nestola (2012) Debattistiite, pyramids form three-membered distorted rings linked by Ag atoms in triangular or distorted tetrahedral coordination. Certain Ag9Hg0.5As6S12Te2, a new Te-bearing sulfosalt from Len- genbach quarry, Binn valley, Switzerland: description and features of that linkage are similar to those in the structures of crystal structure. Mineralogical Magazine, 76(3), 743–750. trechmannite and minerals of pearceite–polybasite group. Of the seven anion positions, one is almost fully occupied by Te (Te0.93S0.07). The Hg atom is in a nearly perfect linear coordination Debattistiite (IMA 2011-098), ideally Ag9Hg0.5As6S12Te2, is a new mineral discovered in the famous for Pb-Cu-Ag-As-Tl with two Te/S atoms. One of five Ag sites and Hg site, which are bearing sulfosalts Lengenbach quarry in the Binn Valley, Valais, very close (separation 1.137 Å), are partially occupied (50%). Switzerland. Debattistiite has been identified in two specimens Thus there is a statistical distribution (50:50) between Hg(Te,S)2 from zone 1 of the quarry in cavities in dolomitic marble with and AgS2(Te,S)2 polyhedra in the structure.
    [Show full text]
  • Subject Index, Volume 81, 1996
    American Mineralogist, Volume 81, pages 1543-1551, 1996 SUBJECT INDEX, VOLUME 81, 1996 Ag3TeS 1013 geikielite 485 florencite-(La) 1263 4°Ar 940 hornblende 928 glass 229 AuO(OH) 1282 hyttsj6ite 743 granitic melt 202 AuO(OH,Cl)onH20 766 kalsilite 561, 1360 kaolin 26 Achtarandite 516 kaolinite 26 migmatite 141 Afghanite 1003 kinoshitalite 485 orendite 229 Albite 92, 452, 789, 1133, 1344, laumontite 658 peridotite 79 1413 leonhardite 658, 668 rhyolite 158 Alkali feldspar 92, 719, 800, 1425 liandratite 1237 rhyolitic glass 158, 1249 Almandine 418 magnesiochromite 1186 sandstone 213 Altisite 516 magnesite 181 serpentinite 79 Aluminate sodalite 1375 medenbachite 505 volcanic glass 1176 Aluminosilicate glasses 265 muscovite 141, 1460 volcanic rocks 982 Alumoklyuchevskite 249 namuwite 238 Analysis, surface (mineral) Amphibole 135, 495, 1126 nanpingite 105 calcite 1 Analcime 39 nepheline 561, 1360 pyrite 261 Analysis, chemical (mineral) olivine 194, 1519 Anatexis 141 albite 92 omphacite 181 Androsite-(La) 735 alkali feldspar 719 orthopyroxene 676, 842 Ankerite 1141 almandine 418 pentlandite 187 Annite 475 amphibole 135, 495 phlogopite 202, 485,913 Annite-sanidine-magnetite 415 androsite-(La) 735 pigeonite 1166 Anorthoclase 1332 apatite 515 plagioclase 141, 913, 982, 1460 Antimonselite 1013 augite 1166 potassium feldspar 141 Antitaenite 766 bechererite 244 pumpellyite 603 Apatite 864, 1476 betafite 1237 pyralspitic garnet 418 Aragonite 181, 611 biopyribole 404 pyrite 119, 187 Arsenogorceixite 249 biotite 135, 141, 495, 1396, pyrope 418, 706 Asteroid
    [Show full text]
  • Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia
    minerals Article Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia Lia Kogarko 1,* and Troels F. D. Nielsen 2 1 Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia 2 Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark; [email protected] * Correspondence: [email protected] Received: 23 September 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Lovozero complex, the world’s largest layered peralkaline intrusive complex hosts gigantic deposits of Zr-, Hf-, Nb-, LREE-, and HREE-rich Eudialyte Group of Mineral (EGM). The petrographic relations of EGM change with time and advancing crystallization up from Phase II (differentiated complex) to Phase III (eudialyte complex). EGM is anhedral interstitial in all of Phase II which indicates that EGM nucleated late relative to the main rock-forming and liquidus minerals of Phase II. Saturation in remaining bulk melt with components needed for nucleation of EGM was reached after the crystallization about 85 vol. % of the intrusion. Early euhedral and idiomorphic EGM of Phase III crystalized in a large convective volume of melt together with other liquidus minerals and was affected by layering processes and formation of EGM ore. Consequently, a prerequisite for the formation of the ore deposit is saturation of the alkaline bulk magma with EGM. It follows that the potential for EGM ores in Lovozero is restricted to the parts of the complex that hosts cumulus EGM. Phase II with only anhedral and interstitial EGM is not promising for this type of ore.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Crystal Growth, Structure and Physical Properties of Crystals
    Crystal growth, structure and physical properties of crystals Kurazhkovskaya V.S., Dorokhova G.I., Zyk- W – univalent and bivalent anions. Structures of vesuvi- ova T.B. Change of vezuvianit structural pe- anites are studied in dependence on a character of cation ordering in different sites within three space groups: culiarity at isomorphism. P4/nnc and its two sub-groups P4nc (C4ν) and P4/n (C4h). M.V. Lomonosov Moscow State University, Geological Depart- It is found earlier [1, 2], that two “garnet blocks” (GB), i.e. ment, Vorobjovy Gory, Moscow, 119899, Russia crys- volume bar, outsets from the grossular garnet structure, are [email protected] the basis of the vesuvianite structure. Junction of two GB key words: [vezuvianite, infrared spectroscopy, iso- leads to formation of diorthogroups [Si2O7]. Cation com- morphism] position of GB {Ca18Al8Si18} is practically constant. Cations of the “vesuvianite filling” (VF) occupy cavities Vesuvianite is an ortho-diorthosilicate of a general formed within the frame-work. Isomorphic substitutions schematic formula X~19Y13Z18O68W10, where X – Ca and are characteristic feature of VF (Table 1). Hypothetical other cations, which occupy sites of coordination number position R is suggested for vesuvianites with an excess 8, Y – cations occupying octahedrons and pentagonal cations (>19). polyhedrons: Al, Fe, Mg, Ti, etc., Z – Si in tetrahedrons, Table 1. Positions of cations CN Garnet block (GB) Vezuvianite filling (VF) 8 (Ca1)2 (Ca2)8 (Ca3)8 (Ca4)1 6 (Al1)8 (Al2)4 (R?)2 and > 5 (Al3)1 Table 2. Positions of “vezuvianite filling” N of sample (Ca4)1 (Al2)4 (Al3)1 (R?)2 and > 1 Ca1 Al2.93Fe1.07 Ca0.66Na0.34 Fe2.1Mn0.11 2 Ca1 Al3.72Fe0.24Ti0.04 Ca0.58Na0.23Mg0.14Zn0.05 Fe0.38Mg2.03 3 Ca1 Al2.16Fe0.93Ti0.92 Ca0.92Na0.39? Fe0.91Mg1.88Mn0.1 4 Ca1 Al1.16Fe2.05Mg0.84 Ca0.61Na0.18Mn0.1Zn0.02 Mg2.12 Table 3.
    [Show full text]
  • 2(Si4o12)O(O,F), a New K-Nb-Cyclosilicate from Chuktukon Carbonatite Massif, Chadobets Upland, Krasnoyarsk Territory, Russia
    minerals Article Rippite, K2(Nb,Ti)2(Si4O12)O(O,F), a New K-Nb-Cyclosilicate from Chuktukon Carbonatite Massif, Chadobets Upland, Krasnoyarsk Territory, Russia Victor V. Sharygin 1,2,3,* , Anna G. Doroshkevich 1,4 , Yurii V. Seryotkin 1,3 , Nikolai S. Karmanov 1, Elena V. Belogub 5,6, Tatyana N. Moroz 1, Elena N. Nigmatulina 1, Alexander P. Yelisseyev 1, Vitalii N. Vedenyapin 1 and Igor N. Kupriyanov 1,3 1 V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3 Acad. Koptyuga pr., 630090 Novosibirsk, Russia; [email protected] (A.G.D.); [email protected] (Y.V.S.); [email protected] (N.S.K.); [email protected] (T.N.M.); [email protected] (E.N.N.); [email protected] (A.P.Y.); [email protected] (V.N.V.); [email protected] (I.N.K.) 2 ExtraTerra Consortium, Institute of Physics and Technology, Ural Federal University, 19 Mira str., 620002 Ekaterinburg, Russia 3 Department of Geology and Geophysics, Novosibirsk State University, 1 Pirogov str., 630090 Novosibirsk, Russia 4 Geological Institute, Siberian Branch of the RAS, 6a Sakhyanova str., 670047 Ulan-Ude, Russia 5 South Urals Federal Research Center of Mineralogy and Geoecology, Uralian Branch of the RAS, 456317 Miass, Russia; [email protected] 6 Faculty of Geology, National Research South Ural State University, Miass Branch, 20 8-July str., Bldg. 10, 456304 Miass, Russia * Correspondence: [email protected]; Tel.: +7-383-330-80-84 Received: 9 November 2020; Accepted: 3 December 2020; Published: 8 December 2020 Abstract: Rippite K2(Nb,Ti)2(Si4O12)(O,F)2, a new K-Nb-cyclosilicate, has been discovered in calciocarbonatites from the Chuktukon massif (Chadobets upland, SW Siberian Platform, Krasnoyarsk Territory, Russia).
    [Show full text]
  • Paula Celeste Da Novel Microporous Silicates and Mesoporous MCM Silva Ferreira Materials Derivatised with Inorganic and Organometallic Complexes
    Universidade de Aveiro Departamento de Quimica 0 @ 2000 qso 5a"s Paula Celeste da Novel microporous silicates and mesoporous MCM Silva Ferreira materials derivatised with inorganic and organometallic complexes Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários a obtenção do grau de Doutor em Quirnica, realizada sob orientação científica do Doutor João Carlos Matias Celestino Gomes da Rocha, Professor CatedrBtico do Departamento de Quirnica da Universidade de Aveiro. o Júri Presidente: Doutor Casimiro Adrião Pio Professor Catedrático da Universidade de Aveiro Vogais: Doutor Carlos José Rodrigues Crispim Romão Professor Catedrático do Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa Doutor João Carlos Matias Celestino Gomes da Rocha Professor Catedrático da Universidade de Aveiro Doutora Maria Filipa Gomes Ribeiro Professora Associada do Departamento de Engenharia Química do Instituto Superior Técnico, da Universidade Técnica de Lisboa Doutora Ana Maria Vieira Silva Viana Cavaleiro Professora Associada da Universidade de Aveiro Doutora Isabel Maria de Sousa Gonçalves Professora Auxiliar da Universidade de Aveiro Doutor Michael William Anderson Full Professor, Department of Chemistry, Institute of Science and Technology, University of Manchester acknowledgements I would like to express my sincere gratitude to my supervisor Prof. Dr. João Rocha for giving me the opportunity to work with him and for sharing with me some of his knowledge. I also acknowledge his continuous help, specially, in the solid state NMR experiments and in the correction of this thesis. I would like to thank Prof. Dr. Isabel Gonçalves for her indispensable help, advice and guidance in the derivatisation of mesoporous MCM rnaterials with organometallic and inorganic complexes.
    [Show full text]
  • Volume 23 / No. 8 / 1993
    Volume 23 No. 8. October 1993 The Journal of Gemmology THE GEMMOLOGICAL ASSOCIATION AND GEM TESTING LABORATORY OF GREAT BRITAIN OFFICERS AND COUNCIL Past Presidents: Sir Henry Miers, MA, D.Sc., FRS Sir William Bragg, OM, KBE, FRS Dr. G.F. Herbert Smith, CBE, MA, D.Sc. Sir Lawrence Bragg, CH, OBE, MC, B.Sc, FRS Sir Frank Claringbull, Ph.D., F.Inst.P., FGS Vice-Presidents : R. K. Mitchell, FGA A.E. Farn, FGA D.G. Kent, FGA E. M. Bruton, FGA, DGA Council of Management CR. Cavey, FGA TJ. Davidson, FGA N.W. Deeks, FGA, DGA I. Thomson, FGA V.P. Watson, FGA, DGA R.R. Harding, B.Sc., D.Phil., FGA, C. Geol. Members' Council A. J. Allnutt, M.Sc, G.H. Jones, B.Sc, Ph.D., P. G. Read, C.Eng., Ph.D., FGA FGA MIEE, MIERE, FGA, DGA P. J. E. Daly, B.Sc, FGA J. Kessler I. Roberts, FGA P. Dwyer-Hickey, FGA, G. Monnickendam R. Shepherd DGA L. Music R. Velden R. Fuller, FGA, DGA J.B. Nelson, Ph.D., FGS, D. Warren B. Jackson, FGA F. Inst. P., C.Phys., FGA CH. Winter, FGA, DGA Branch Chairmen: Midlands Branch: D.M. Larcher, FBHI, FGA, DGA North-West Branch: I. Knight, FGA, DGA Examiners: A. J. Allnutt, M.Sc, Ph.D., FGA G. H. Jones, B.Sc, Ph.D., FGA L. Bartlett, B.Sc, M.Phil., FGA, DGA D. G. Kent, FGA E. M. Bruton, FGA, DGA R. D. Ross, B.Sc, FGA C R. Cavey, FGA P. Sadler, B.Sc, FGS, FGA, DGA S.
    [Show full text]
  • Synthesis and Adsorption Behavior of Microporous Iron-Doped Sodium Zirconosilicate with the Structure of Elpidite
    Article Synthesis and Adsorption Behavior of Microporous Iron-Doped Sodium Zirconosilicate with the Structure of Elpidite Emad Elshehy Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 11728, Egypt; [email protected]; Tel.: +20-10-0819-7997 Abstract: Decontamination of water from radionuclides contaminants is a key priority in environ- mental cleanup and requires intensive effort to be cleared. In this paper, a microporous iron-doped zeolite-like sodium zirconosilicate (F@SZS) was designed through hydrothermal synthesis with various Si/Zr ratios of 5, 10, and 20, respectively. The synthesized materials of F@SZS materials were well characterized by various techniques such as XRD, SEM, TEM, and N2 adsorption–desorption measurements. Furthermore, the F@SZS-5 and F@SZS-10 samples had a crystalline structure re- lated to the Zr–O–Si bond, unlike the F@SZS-20 which had an overall amorphous structure. The fabricated F@SZS-5 nanocomposite showed a superb capability to remove cesium ions from ultra- dilute concentrations, and the maximum adsorption capacity was 21.5 mg g–1 at natural pH values through an ion exchange mechanism. The results of cesium ions adsorption were found to follow the pseudo-first-order kinetics and the Langmuir isotherm model. The microporous iron-doped sodium zirconosilicate is described as an adsorbent candidate for the removal of ultra-traces concentrations of Cs(I) ions. Keywords: zirconosilicates; zeolite structure; microporous materials; nanocomposite; cesium removal Citation: Elshehy, E. Synthesis and Adsorption Behavior of Microporous 1. Introduction Iron-Doped Sodium Zirconosilicate with the Structure of Elpidite. Surfaces Zeolites are finding increasing interest in technological applications due primarily 2021, 4, 41–53.
    [Show full text]
  • Frost, Ray L., L
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queensland University of Technology ePrints Archive This is the author’s version of a work that was submitted/accepted for pub- lication in the following source: Frost, Ray L., López, Andrés, Scholz, Ricardo, Theiss, Frederick L.,& Romano, Antônio Wilson (2015) SEM, EDX, infrared and Raman spectroscopic characterization of the sili- cate mineral yuksporite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, pp. 607-611. This file was downloaded from: https://eprints.qut.edu.au/83714/ c Copyright 2015 Elsevier NOTICE: this is the author’s version of a work that was accepted for publication in Spec- trochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 137, 25 February 2015, DOI: 10.1016/j.saa.2014.09.001 Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: https://doi.org/10.1016/j.saa.2014.09.001 SEM, EDX, Infrared and Raman spectroscopic characterization of the silicate mineral yuksporite Ray L. Frost a, Andrés Lópeza, Ricardo Scholz, b Frederick L. Theissa, Antônio Wilson Romanoc a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia.
    [Show full text]