ISSN 0387-4508

TRANSACTIONS OF JWRI

Vol. 45

2016

JOINING AND WELDING RESEARCH INSTITUTE

OSAKA UNIVERSITY

JAPAN Organization and Staff (December 2016)

Director Dr. TANAKA Manabu Associate Professor Dr. KIRIHARA Soshu

1. Division of Materials Joining Process 3) Smart Green Processing 1) Energy Control of Processing Associate Professor Dr. NISHIKAWA Hiroshi Professor Dr. TANAKA Manabu Specially Appointed Researcher Dr. MOKHTARI Omid Associate Professor Dr. SHIGETA Masaya Specially Appointed Researcher Dr. ROH Myong-Hoon Assistant Professor Dr. TASHIRO Shinichi Specially Appointed Researcher Dr. KIM Min-Su

2) Energy Transfer Dynamics 5. Hitachi Zosen Advanced Welding Technology Joint Research Chair Professor Dr. SETSUHARA Yuichi Guest Professor Dr. KITAGAWA Akikazu Specially Appointed Professor Dr. ONO Kouichi Guest Professor Dr. KATAYAMA Seiji Associate Professor Dr. UCHIDA Giichiro Professor (Supplementary assignment) Dr. TANAKA Manabu Assistant Professor Dr. TAKENAKA Kousuke Professor (Supplementary assignment) Dr. MINAMI Fumiyoshi Specially Appointed Associate Professor Dr. NAKATANI Mitsuyoshi 3) Manufacturing Process Guest Associate Professor Dr. HARADA Hiroki Guest Professor Dr. NAKANISHI Yasumasa Associate Professor (Supplementary assignment) Dr. KAWAHITO Yousuke Associate Professor Dr. TSUKAMOTO Masahiro Associate Professor (Supplementary assignment) Dr. SHIGETA Masaya Specially Appointed Researcher Dr. SATO Yuji Specially Appointed Assistant Professor Mr. ABE Yohei Specially Appointed Researcher Ms. HIGASHINO Ritsuko Guest Researcher Mr. KATSUKI Makoto Specially Appointed Researcher Mr. MASUNO Shinichiro Guest Researcher Mr. SASAKI Yosuke

4) Laser Welding and Materials Processing 6. Osaka Fuji "Advanced Functional Processing" Joint Research Chair Associate Professor Dr. KAWAHITO Yousuke Specially Appointed Professor Dr. ABE Nobuyuki Specially Appointed Researcher Dr. SHUKRI Ganes Specially Appointed Associate Professor Dr. YAMAZAKI Hiroyuki Specially Appointed Researcher Dr. WANG Hongze Associate Professor (Supplementary assignment) Dr. TSUKAMOTO Masahiro Specially Appointed Assistant Professor Mr. HAYASHI Yoshihiko 5) Advanced Engineering Science Guest Researcher Mr. YONEYAMA Mikio Guest Professor Dr. TAKAKI Setsuo Guest Researcher Mr. TATSUMI Yoshihiro

2. Division of Materials Joining Mechanism 7. "Advanced Joint Production System" Joint Research Chair 1) Welding Mechanism Specially Appointed Associate Professor Mr. AMASAKI Tetsuya Professor Dr. ITO Kazuhiro Guest Researcher Mr. YAMAGUCHI Hiroshi Associate Professor (Supplementary assignment) Dr. TAKAHASHI Makoto Assistant Professor Dr. KOHAMA Kazuyuki 8. Development Base on Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development 2) Joint Interface Structure and Formation Mechanism Leader, Professor Dr. SETSUHARA Yuichi Professor Dr. FUJII Hidetoshi Specially Appointed Professor Dr. OHARA Satoshi Specially Appointed Associate Professor Dr. SUN Yufeng Specially Appointed Associate Professor Dr. MORISADA Yoshiaki 9. Center to Create Research and Educational Hubs for Innovative Manufacturing Assistant Professor Dr. LIU Huihong in Asia Division of Global Joining for Extreme Environments Specially Appointed Researcher Dr. AOKI Yasuhiro Associate Professor (Supplementary assignment) Dr. KAWAHITO Yousuke Specially Appointed Researcher Dr. IMAM Murshid Specially Appointed Associate Professor Ms. KATSUMATA Mihoko Specially Appointed Researcher Dr. LEE Seung-Joon Specially Appointed Researcher Mr. HIMI Futoshi

3) Composite Materials Processing 10. Global Collaborative Research Center for Computational Welding Science (CCWS) Professor Dr. KONDOH Katsuyoshi Leader, Professor Dr. MIMAMI Fumiyoshi Associate Professor Dr. IMAI Hisashi Guest Professor Dr. MURAKAWA Hidekazu Specially Appointed Associate Professor Dr. LI Shufeng Guest Professor Dr. MA Ninshu Assistant Professor Dr. UMEDA Junko Guest Professor Dr. SHERIF Rashed Specially Appointed Researcher Dr. SHEN Jianghua Guest Professor Dr. HIRAOKA Kazuo Specially Appointed Researcher Dr. YE Xiaoxin Guest Professor Dr. OKUMOTO Yasuhisa Specially Appointed Researcher Dr. CHEN Biao Guest Professor Dr. MATSUYAMA Kinichi Associate Professor (Supplementary assignment) Dr. SERIZAWA Hisashi 3. Division of Materials Joining Assessment Guest Associate Professor Dr. SHIBAHARA Masakazu 1) Joining Mechanics and Analyses Associate Professor Dr. SERIZAWA Hisashi 11. International Research Center for Fatigue Design of Weld Structures Leader, Professor Dr. MIMAMI Fumiyoshi 2) Structural Integrity and Failure Assessments Guest Professor Dr. TOYOSADA Masahiro Professor Dr. MINAMI Fumiyoshi Guest Professor Dr. TERADA Kenjiro Assistant Professor Dr. TAKASHIMA Yasuhito Associate Professor (Supplementary assignment) Dr. TSUTSUMI Seiichiro Assistant Professor (Supplementary assignment) Dr. TAKASHIMA Yasuhito 3) Joining Design and Dependability Specially Appointed Researcher (Supplementary assignment) Dr. FINCATO Riccardo Professor (Supplementary assignment) Dr. MINAMI Fumiyoshi Associate Professor Dr. TSUTSUMI Seiichiro 12. Joint Interface Microstructure Characterization Room Specially Appointed Researcher Dr. FINCATO Riccardo Associate Professor Dr. TAKAHASHI Makoto

4) Reliability Evaluation & Simulation 13. NEDO Future Pioneering Projects Professor Dr. INOUE Hiroshige Specially Appointed Professor Dr. NAKATA Kazuhiro Associate Professor Dr. KADOI Kota Specially Appointed Assistant Professor Dr. NAGATSUKA Kimiaki Specially Appointed Researcher Dr. XIAO Bolyu 4. Smart Processing Research Center Director, Professor Dr. SETSUHARA Yuichi 14. R&D Project for Environmental Resources and ECO Joining 1) Smart Coating Processing Specially Appointed Professor Dr. TAKAHASHI Yasuo Professor Dr. NAITO Makio Specially Appointed Researcher Dr. HENG Zhonghao Associate Professor Dr. ABE Hiroya Assistant Professor Dr. KOZAWA Takahiro 15. Industry Cooperation Office Specially Appointed Researcher Dr. KONDO Akira Visiting Professor Mr. TADA Hideaki Visiting Professor Dr. SUGA Tetsuo 2) 3D Nano/Micro Structure Control ISSN 0387-4508

TRANSACTIONS OF JWRI

Vol. 45

2016

JOINING AND WELDING RESEARCH INSTITUTE

OSAKA UNIVERSITY

JAPAN

Transactions of JWRI, Vol. 45, 2016 CONTENTS

RESEARCH ACTIVITIES OF JWRI

Division of Materials Joining Process Dep. of Energy Control of Processing Qualitative and quantitative analyses of arc characteristics in SMAW Welding in the World, 60, 2 (2016), 355–361. Masaya Shigeta, Takahiro Ikeda, Manabu Tanaka, Tetsuo Suga, Bovornchok Poopat, Somporn Peansukmanee, Niwat Kunawong, Ackadech Lersvanichkool, Hiroaki Kawamoto, Supot Thongdee, Kazuyuki Suenaga, Makoto Ota ...... 1

Dep. of Energy Transfer Dynamics - Effects of nonthermal plasma jet irradiation on the selective production of H2O2 and NO2 in liquid water Journal of Applied Physics, 120, 20 (2016), 203302. Giichiro Uchida, Atsushi Nakajima, Taiki Ito, Kosuke Takenaka, Toshiyuki Kawasaki, Kazunori Koga, Masaharu Shiratani, Yuichi Setsuhara ...... 2

Dep. of Manufacturing Process Cell spreading on titanium periodic nanostructures with periods of 200, 300 and 600 nm produced by femtosecond laser irradiation Applied Physics A-Materials Science & Processing, 122-120, (2016), 1–4. M. Tsukamoto, T. Kawa, T. Shinonaga, P. Chen, A. Nagai, T. Hanawa ...... 3

Dep. of Laser Welding and Materials Processing Relationship between melt flows based on three-dimensional X-ray transmission in-situ observation and spatter reduction by angle of incidence and defocusing distance in high-power laser welding of stainless steel Quarterly Journal of the Japan Welding Society, 34, 4 (2016), 239–248. Yousuke Kawahito, Kouki Nakada, Yousuke Uemura, Masami Mizutani, Kouji Nishimoto, Hiroshi Kawakami, Seiji Katayama ...... 4

Division of Materials Joining Mechanism Dep. of Welding Mechanism Direct solid-state diffusion bonding of zirconium carbide using a spark plasma sintering system Materials and Design, 110, (2016), 888–894. Kazuyuki Kohama, Kazuhiro Ito ...... 5

Dep. of Joint Interface Structure and Formation Mechanism Stabilization of austenite in low carbon Cr-Mo steel by high speed deformation during friction stir welding Materials and Design, 90, (2016), 915–921. Takuya Miura, Rintaro Ueji, Hidetoshi Fujii, Hisanao Komine, Jun Yanagimoto ...... 6

Dep. of Composite Materials Processing Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions Scripta Materialia, 113, (2016), 158–162. Biao Chen, Katsuyoshi Kondoh, Hisa Imai, Junko Umeda, Makato Takahashi ...... 7

Division of Materials Joining Assessment Dep. of Joining Mechanics and Analyses Finite element analysis of deformation in early stage of multi-pass circumferential dissimilar welding of thick-walled pipes with narrow gap Welding in the World, 60, 5 (2016), 1037–1046. Hisashi Serizawa, Yusuke Okuda, Hidekazu Murakawa ...... 8

Dep. of Structural Integrity and Failure Assessments Evaluation of Charpy impact toughness using side-grooved specimen for hybrid laser-arc welds of ultra-high-strength steel Welding in the World, 60, 6 (2016), 1191–1199. Yasuhito Takashima, Mitsuru Ohata, Koutarou Inose, Hiroto Yamaoka, Yasumasa Nakanishi, Fumiyoshi Minami ...... 9

Dep. of Joining Design and Dependability Fatigue life assessment of a non-load carrying fillet joint considering the effects of a cyclic plasticity and weld bead shape Fracture and Structural Integrity, 38, (2016), 240–250. Seiichiro Tsutsumi, Kasumi Morita, Riccardo Fincato, Hideto Momii ...... 10

Dep. of Reliability Evaluation & Simulation Fundamental study on intragranular transformation mechanism in low alloy steel weld metal Proceedings of the Visual-JW2016, 1, (2016), 119–120. Suo Saruwatari, Kazuhiro Kojima, Hiroyuki Hirata, Hiroshige Inoue ...... 11

Smart Processing Research Center Dep. of Smart Coating Processing

Insertion of lattice strains into ordered LiNi0.5Mn1.5O4 spinel by mechanical stress: A comparison of perfect versus imperfect structures as a cathode for Li-ion of batteries Journal of Power Sources, 320, (2016), 120–126. Takahiro Kozawa, Takeshi Murakami, Makio Naito ...... 12

Dep. of 3D Nano/Micro Structure Control Additive manufacturing of ceramic components using laser scanning stereolithography Welding in the World, 60, 4 (2016), 697–702. Soshu Kirihara ...... 13

Dep. of Smart Green Processing Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging Scripta Materialia, 120, (2016), 80–84. Xiangdong Liu, Hiroshi Nishikawa ...... 14

Hitachi Zosen Advanced Welding Technology Joint Research Chair Application to duplex stainless steel of narrow gap oscillation laser welding Proceedings of 10th International Conference on Trends in Welding Research & 9th International Welding Symposium of Japan Welding Society (9WS), (2016), 136–139. Yohei Abe, Yosuke Yamazaki, Yukio Hioki, Mitsuyoshi Nakatani, Akikazu Kitagawa ...... 15

Development Base on Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo Radiation Oncology, 11, 1 (2016), 91. Masao Nakayama, Ryohei Sasaki, Chiaki Ogino, Tsutomu Tanaka, Kenta Morita, Mitsuo Umetsu, Satoshi Ohara, Zhenquan Tan, Yuya Nishimura, Hiroaki Akasaka, Kazuyoshi Sato, Ciya Numako, Seiichi Takami, Akihiko Kondo ...... 16 Center to Create Research and Educational Hubs for Innovative Manufacturing in Asia Division of Global Joining for Extreme Environments Activity report on “The Project to Create Research and Educational Hubs for Innovative Manufacturing in Asia” Mihoko Katsumata, Futoshi Himi, Yosuke Kawahito ...... 17

NEDO Future Pioneering Projects Friction lap joining of thermoplastic materials to carbon steel ISIJ International, 56, 7 (2016), 1226–1231. Kimiaki Nagatsuka, Daiki Kitagawa, Hiroto Yamaoka, Kazuhiro Nakata ...... 18

R&D Project for Environmental Resources and ECO Joining The influence of oxygen diffusion path at carbon cathode on electrochemical discharge performance in Mg-air batteries Proceedings of 23rd MATE 2017, (2017), 305–308. Zhonghao Heng, Shigeaki Uchida, Yasuo Takahashi ...... 19

JWRI Cooperative Research Program, Joint Use / Research Award Hydrothermal synthesis of yttria-stabilized zirconia nanocrystals with controlled yttria content Inorganic Chemistry, 54, 16 (2015), 7976–7984. Kazuyoshi Sato, Kazuya Horiguchi, Taku Nishikawa, Sadahiro Yagishita, Kazuo Kuruma, Takeshi Murakami, Hiroya Abe ...... 20

Experimental assessment of temperature distribution in heat affected zone (HAZ) in dissimilar joint between 8Cr-2W steel and SUS316L fabricated by 4 kW fiber laser welding Mechanical Engineering Letters, 2, (2016), 15–00481. Sho Kano, Akira Oba, Huilong Yang, Yoshitaka Matsukawa, Yuhki Satoh, Hisashi Serizawa, Hideo Sakasegawa, Hiroyasu Tanigawa, Hiroaki Abe ...... 21

Biological response to nanostructure of carbon nanotube/titanium composite surfaces Nano Biomedicine, 7, 1 (2015), 11–20. Erika Nishida, Hirofumi Miyaji, Junko Umeda, Katsuyoshi Kondoh, Hiroko Takita, Izumi Kanayama, Saori Tanaka, Akihito Kato, Bunshi Fugetsu, Tsukasa Akasaka, Masamitsu Kawanami ...... 22

COBTRIBUTIONS TO OTHER ORGANIZATIONS...... 23

Research Division of Materials Joining Process, Dep. of Energy Control of Processing

Welding in the World, 60, 2 (2016), 355–361. doi:10.1007/s40194-015-0288-2

Qualitative and quantitative analyses of arc characteristics in SMAW

Masaya Shigeta*, Takahiro Ikeda**, Manabu Tanaka***, Tetsuo Suga***, Bovornchok Poopat****, Somporn Peansukmanee****, Niwat Kunawong****, Ackadech Lersvanichkool*****, Hiroaki Kawamoto*****, Supot Thongdee*****, Kazuyuki Suenaga******, Makoto Ota******

Abstract This study was conducted to develop a quantitative evaluation system for arc characteristics such as arc stability and welding spatter generation related to shielded metal arc welding (SMAW) without human sensory evaluation. Factors that correspond to sensory evaluations by welders were investigated based on image processing. For the quantitative evaluation of arc stability, results show that the root mean square and the standard deviation of the arc center fluctuation, respectively, correspond to welders’ sensory evaluation at AC and DC discharges. For welding spatter generation, a method of counting white pixels in a binarized image evaluates the number and size of welding spatters which closely coincide with welders’ sensory evaluations.

Keywords MMA welding; Electric arcs; Stability; Spatter; Sensors; Monitoring systems; Imaging

Fig. 1. Lighting method for spatter measurement.

Fig. 2. Correlation diagram between quantitative and sensory evaluations for welding spatters: (a) number of welding spatters and (b) size of welding spatters.

* Associate Professor ** Graduate School Student *** Professor **** King Mongkut’s University of Technology Thonburi ***** Thai-Kobe Welding Co. Ltd. ****** Kobe Steel, Ltd.

1 Research Division of Materials Joining Process, Dep. of Energy Transfer Dynamics

Journal of Applied Physics, 120, 20 (2016), 203302. doi: 10.1063/1.4968568

Effects of nonthermal plasma jet irradiation on the selective - production of H2O2 and NO2 in liquid water

Giichiro Uchida*, Atsushi Nakajima**, Taiki Ito**, Kosuke Takenaka***, Toshiyuki Kawasaki****, Kazunori Koga*****, Masaharu Shiratani*****, Yuichi Setsuhara******  Abstract

We present the effects of the application of a nonthermal plasma jet to a liquid surface on H2O2 − and NO2 generation in the liquid. Two distinct plasma irradiation conditions, with plasma contact and with no observable plasma contact with the liquid surface, were precisely compared. When the plasma was made to touch to the liquid surface, the H2O2 concentration of the plasma-treated − water was much higher than the NO2 concentration. In contrast, when no observable contact of − the plasma with the liquid surface occurred, the ratio of the NO2 to H2O2 concentration became − over 1 and NO2 became more dominant than H2O2 in the plasma-treated water. Our experiments clearly show that reactive oxygen and nitrogen species can be selectively produced in liquid using − appropriate plasma-irradiation conditions of the liquid surface. The ratio of NO2 to H2O2 was controlled within a wide range of 0.02 to 1.2 simply by changing the plasma-irradiation distance from the liquid surface.

Keywords Nonthermal plasma jet; Plasma-liquid interaction; Reactive oxygen and nitrogen species           

Fig.1. Fig.2. − Photographs of the plasma jet near the liquid z dependence of ratio of NO2 to H2O2 surface at (a) z = 20 mm, (b) z = 40 mm, and (c) z concentration in 3 mL of deionized water = 80 mm. (a) and (b): plasma contact condition; plasma-jet irradiated for 300 s. (c): no observable plasma contact condition.

* Associate Professor ** Graduate School Student *** Assistant Professor **** Nippon Bunri University ***** Kyushu University ****** Professor

2 Research Division of Materials Joining Process, Dep. of Manufacturing Process

Applied Physics A-Materials Science & Processing, 122-120, (2016), 1–4. 10.1007/s00339-016-9626-5

Cell spreading on titanium periodic nanostructures with periods of 200, 300 and 600 nm produced by femtosecond laser irradiation

M. Tsukamoto*, T. Kawa**, T. Shinonaga***, P. Chen****, A. Nagai****, T. Hanawa****

Abstract Titanium (Ti) is an important biomaterial. We have used femtosecond laser irradiation to form periodic nanostructures on Ti plate for control of the cell spreading. In this study, periodic nanostructures with periodicities of 200, 300 and 600 nm were formed on a Ti plates using a femtosecond laser with wavelengths of 258, 388 and 775 nm, respectively. Cell spreading on the Ti plate for periodic nanostructures with periodicity of 200 nm lacked a definite direction, whereas cell spreadings on the Ti plate for periodic nanostructures with periodicities of 300 and 600 nm occurred along the grooves.

Keywords Periodic nanostructure; Cell spreading; Femtosecond laser; Titanium; Biomaterial

Fig. 3. SEM images of

plates with periodic nanostructures formed by Fig. 5. Fluorescence femtosecond laser microscope images of cells Fig. 1. Schematics of a the irradiation at wavelengths on plates with periodic experimental setup for of a 775 nm, b 388 nm and nanostructures formed by femtosecond laser c 258 nm, and d a bare femtosecond laser irradiation of the Ti plate surface. The irradiation at wavelengths and b scanning direction of double-headed arrows of a 775 nm, b 388 nm and the femtosecond laser indicate the laser electric c 258 nm, and d a bare focal spot. polarization vector. surface.

* Associate Professor ** Graduate School Student *** Faculty of Engineering, Okayama University **** Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University

3 Research Division of Materials Joining Process, Dep. of Laser Materials Processing

Quarterly Journal of the Japan Welding Society, ⁐᥋Ꮫ఍ㄽᩥ㞟 34, 4 (2016), 239-248.

Relationship between melt flows based on three-dimensional X-ray transmission in-situ observation and spatter reduction by angle of incidence and defocusing distance in high-power laser welding of stainless steel

ࢫࢸࣥࣞࢫ㗰ࡢ㧗ฟຊ࣮ࣞࢨ⁐᥋࡟࠾ࡅࡿ 3 ḟඖ X ⥺㏱どࡑࡢሙほᐹ࡟ࡼࡿ‮ὶࢀ࡜ධᑕゅ࠾ࡼ ࡧ↔Ⅼࡣࡎࡋ㊥㞳࡟ࡼࡿࢫࣃࢵࢱᢚไ࡜ࡢ㛵ಀ

Yousuke Kawahito*, Kouki Nakada**, Yousuke Uemura**, Masami Mizutani***, Kouji Nishimoto****, Hiroshi Kawakami*****, Seiji Katayama******

ᕝேὒ௓*୰⏣ග⣖**ୖᮧὒ㍜**Ỉ㇂ṇᾏ***すᮏᾈྖ****ᕝୖ༤ኈ***** ∦ᒣ⪷஧******  Abstract The objective of this research is to reveal relationship between melt flows and spatter reduction by angle of incidence and defocusing distance in partial-penetration welding of a SUS304 stainless steel plate with a 6-kW power laser beam. In welding speeds from 50 mm/s to 250 mm/s, underfilled weld beads with spatters were obtained more than 150 mm/s. Accoriding to three-dimensional X-ray transmission in-situ observation of melt flows at 150 mm/s in welding speed with tungsten carbide (WC) tracers, the melt flews achieved approximately 2.3 m/s in speed and made convex molten-pool surface behind a keyhole inlet grow higher, resulting in spattering over 0.1 mm in the diameter. A 2-mm inner defocusing distance or a 20-degrees angle of advance decreased the number of spatter over 0.1 mm in the diameter by half or one third in comparison with that at focal point and zero angles. The X-ray transmission images demonstrate that the appropriate defocusing distance and angle of incidence made the speed of the melt flow decrease and the melt flow behind a keyhole inlet circulate, which led to not only suppressing the convex surface but also improving the frequency that the convex surface went back to the molten pool.

Keywords Spatter; Melt flow; Laser welding; Three-dimensional X-ray transmission in-situ observation      

Fig. 1. Keyhole shape and two dimensional Fig. 2. Two dimensional melt flows at both melt flows around keyhole at focal point. defocusing distance of -2 mm and 20 degrees angle of advance.

* Associate Professor ***** Mie University ** Graduate School Student ****** Guest Professor *** Senior Technical Specialist (Technical Expert Division) **** Anan National College of Technology 4 Research Division of Materials Joining Mechanism, Dep. of Welding Mechanism

Materials and Design, 110, (2016), 888–894. doi: 10.1016/j.matdes.2016.08.060

Direct solid-state diffusion bonding of zirconium carbide using a spark plasma sintering system

Kazuyuki Kohama*, Kazuhiro Ito**

Abstract The authors conducted direct solid-state diffusion bonding of zirconium carbide (ZrC)-sintered materials with different average grain sizes of 3.5, 7.5 and 35 μm using a spark plasma sintering system. ZrC samples were bonded at 1300–2000 °C for 20 min with no defects or oxidation. Shear tests on the ZrC–ZrC joints at room temperature revealed that the bonding temperature to obtain joints with a strength at the bonding interface that is higher than the fracture strength of the base materials could be reduced by reducing the ZrC average grain size. Microstructure studies around the bonding interface showed that the bonding process was controlled by grain-boundary diffusion, and the dominant driving force was a lowering boundary energy at the intersection of the grain boundary and the bonding interface (i.e., triple junctions at the bonding interface). Grain boundary migration across the bonding interface at the triple junctions was suggested to increase joint strength. The higher density of the triple junctions derived from the reduced ZrC grain size is thought to enhance grain boundary migration and increase the driving force and diffusion paths for grain boundary diffusion, which results in the formation of joints with a higher bonding interface strength.

Keywords Refractory ceramic material; Transition-metal carbide; Shear strength; Fine microstructure; Electron backscattering diffraction analysis

Fig. 1. Summary of results of shear Fig. 2. Cross-sectional EBSD images tests for ZrC–ZrC joints. around bonding interface for ZrC–ZrC joints bonded at 1400°C with average grain size of (a) 3.5 μm and (b) 7.5 μm.

* Assistant Professor ** Professor

5 Research Division of Materials Joining Mechanism, Dep. of Joint Interface Structure and Formation Mechanism

Materials and Design, 90, (2016), 915–921. http://dx.doi.org/10.1016/j.matdes.2015.11.037

Stabilization of austenite in low carbon Cr-Mo steel by high speed deformation during friction stir welding

Takuya Miura*, Rintaro Ueji**, Hidetoshi Fujii***, Hisanao Komine****, Jun Yanagimoto****

Abstract Friction stir welding (FSW) was applied to a low carbon alloyed steel in order to stabilize the austenite phase which can effectively maintain a preferable toughness. A Cr–Mo steel sheet (0.20 wt.%C–1.07%Cr–0.16%Mo–0.24%Si–0.61%Mn–bal. Fe) with a ferrite pearlite structure was friction stir welded under the conditions in which the sample was reheated above the

A3 temperature at the maximum. The microstructure observations in the stir zone clarified martensite with several area fractions of retained austenite and elongated ferrite. The retained austenite provides a high ductility with a high strength in the stir zone. In order to clarify the formation mechanism of the austenite, compression tests were conducted at various strain rates up to 10/s using an ultrahigh-speed compression testing machine. When the sample was compressed at the high strain rate, the elongated ferrite grains and retained austenite were formed. This microstructure was similar to the microstructure in the FSW stir zone, suggesting that the efficient accumulation of plastic strain in the austenite during the FSW plays an important role in obtaining the retained austenite.

Keywords Friction stir welding; Steel; Strain rate; Phase transformation

Fig. 1. Orientation color maps in the stir zones of Fig. 2.Nominal stress–nominal plastic strain SCM420 welded at the tool rotation speed of 400 curves of the base metal and stir zones of rpm and the welding speeds of 100 mm/min and SCM420 welded at the tool rotation speed of 400 400 mm/min. The crystal orientations parallel to rpm and the welding speeds of the 100 mm/min the WD are separately indicated by the color of and 400 mm/min. The shape of the test piece is the normal stereo triangle within the BCC and shown on the right bottom side. FCC.

* Graduate school student ** Associate Professor *** Professor **** Institute of Industrial Science, The University of Tokyo

6 Research Division of Materials Joining Mechanism, Dep. of Composites Materials Processing

Scripta Materialia, 113, (2016), 158–162. doi:10.1016/j.scriptamat.2015.11.011

Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions

Biao Chen*, Katsuyoshi Kondoh**, Hisa Imai***, Junko Umeda***, Makoto Takahashi****

Abstract The limited ductility of high-strength aluminum (Al) matrix composites (AMCs) reinforced with carbon nanotubes (CNTs) is a critical issue, which hinders their engineering applications. Here, it was clarified that a significantly improved ductility of CNT/Al composites with a simultaneously increased tensile strength using elevated sintering temperatures. The traditional trade-off tendency between strength and ductility was evaded in CNT/Al composites owing to concurrent improvement of Al–Al grains and CNT–Al interface bonding. The interfacial characteristics were investigated through microstructural examination analysis and quantitative estimation using the strengthening models. The study obviously provided a strategy for fabricating CNT-reinforced metal matrix composites with high strength and good ductility. For example, the elongation of CNT/Al composite sintered at 900 K was enhanced 82% comparing with that sintered at 800 K, while an increment of 18% in YS was achieved, as well as 14% in UTS.

Keywords Metal matrix composite (MMC); Carbon nanotubes (CNTs); Strength; Ductility; Bonding

Fig. 1. TEM observation on CNTs/Al composites sintered at 800K (a-c) and 900K (d-f) at different magnifications. (a, b, d, e) are views on CNTs in Al matrix, and (c, f) are HR-TEM observation results of CNT-Al interface.

* Specially Appointed Researcher ** Professor *** Assistant Professor **** Associate Professor

7 Research Division of Materials Joining Assessment, Dep. of Joining Mechanics and Analyses

Welding in the World, 60, 5 (2016), 1037–1046. doi: 10.1007/s40194-016-0360-6

Finite element analysis of deformation in early stage of multi-pass circumferential dissimilar welding of thick-walled pipes with narrow gap

Hisashi Serizawa*, Yusuke Okuda**, Hidekazu Murakawa***

Abstract Three-dimensional thermal elastic-plastic finite element analyses were conducted in order to reveal the mechanism of gap shrinkage in early stage of multi-pass narrow gap welding of thick-walled dissimilar pipes and thick plates. The gap shrinkage up to the 8th pass indicates that the shrinkage of plates becomes to be much larger than that of pipes with increasing the weld passes. In addition, through the decomposition of gap shrinkage to transverse shrinkage and angular distortion, it is found that the gap shrinkage of pipes is mainly governed by the transverse shrinkage, while the shrinkage of plates is influenced by both the transverse shrinkage and angular distortion. Moreover, the serial computational results with various groove shapes suggest that the transverse shrinkage of pipes almost linearly increases with increasing the weld pass, and its increment can be predicted by a linear approximation function obtained by the transverse shrinkage of plates regardless of the groove shape.

Keywords Gap; Multirun welding; Distortion; Transverse shrinkage; Finite element analysis; Circumferential welds; Dissimilar materials; Tubes and pipes

Fig. 1. Finite element models of butt-welded and plates.

Fig. 2. Approximation of transverse shrinkage during multi-pass welding of butt-welded pipes based on butt-welded plates.

* Associate Professor ** Graduate School Student *** Professor

8 Research Division of Materials Joining Assessment, Dep. of Structural Integrity and Failure Assessments

Welding in the World, 60, 6 (2016), 1191–1199. doi:10.1007/s40194-016-0383-z

Evaluation of Charpy impact toughness using side-grooved specimen for hybrid laser-arc welds of ultra-high-strength steel

Yasuhito Takashima*, Mitsuru Ohata**, Koutarou Inose***, Hiroto Yamaoka***, Yasumasa Nakanishi***, Fumiyoshi Minami****

Abstract This paper discusses the significance of a narrow hard weld bead, produced by hybrid laser-arc welding, on the Charpy absorbed energy. A parametric finite element analysis with various strength mismatching and bead widths has been conducted on the strain field of side-grooved and normal Charpy specimens. The narrow weld bead promotes the accumulation of plastic strain energy on the base metal side. This feature is more significant in the normal specimen than in the side-grooved specimen. The results show that the method based on the Weibull stress criterion for converting the absorbed energy of the side-grooved specimen to that of the normal specimen can be applied to hybrid laser-arc welds of ultra-high-strength steel. The converted energy is consistent with the absorbed energy measured in the normal specimen. This study indicated that the absorbed energy of side-grooved specimen corresponding to the absorbed energy of the normal V-notch specimen increases with increasing hard zone width. On the other hand, the influence of strength mismatch ratio on the difference of the absorbed energy is rather weak.

Keywords Hybrid laser arc welding; Impact toughness; Brittle fracture; Mismatch; Structural steels

Fig. 1. Fig. 2. Influence of strength of base metal on the Comparison of Charpy absorbed energy relation between VE and VESG at which the measured and converted from the absorbed specimens sustain the same magnitude of energy of the side-grooved specimen of the Weibull stress for Sr=1.2. welds of HT980 steel at 䌦40 °C.

* Assistant Professor ** Osaka University *** IHI Corporation **** Professor

9 Research Division of Materials Joining Assessment, Dep. of Joining Design and Dependability

Fracture and Structural Integrity, 38, (2016), 240250. doi: 10.3221/IGF-ESIS.38.33

Fatigue life assessment of a non-load carrying fillet joint considering the effects of a cyclic plasticity and weld bead shape

Seiichiro Tsutsumi*, Kasumi Morita**, Riccardo Fincato***, Hideto Momii**

Abstract Fatigue life depends strongly on irreversible contributions that accumulate during cyclic loading and unloading of structures. However, the correct identification of the loading path in terms of uniaxial or multi-axial stress states, proportional or non-proportional loading is essential because these factors can significantly alter the material response. In this study, finite element analysis is conducted to assess the fatigue crack initiation life of a non-load carrying fillet joint by considering weld bead shape and a cyclic plasticity accumulation during fatigue loading, which is a main cause of crack initiation. Cyclic plasticity behavior including cyclic hardening and softening together was investigated with an unconventional plasticity model called the subloading surface model and extended to include both elastic boundary and cyclic damage concepts. The cyclic plasticity model can capture realistic plastic strain accumulation during high cycle fatigue under macroscopically elastic stressing conditions.

Keywords Composite materials; Unconventional plasticity; Fatigue; Loading path; Crack initiation

Fig.. Fig.. Stress-strain curves at element A (constant S-N curves at element A (constant amplitude amplitude loading/variable loading). loading/variable loading).

* Associate Professor ** Graduate School Student *** Specially Appointed Researcher

10 Research Division of Materials Joining Assessment, Dep. of Reliability Evaluation & Simulation

Proceedings of the Visual-JW2016, 1, (2016), 119–120.

Fundamental study on intragranular transformation mechanism in low alloy steel weld metal

Suo Saruwatari*, Kazuhiro Kojima*, Hiroyuki Hirata*, Hiroshige Inoue**

Abstract To improve the toughness of low alloy steel weld metal, the fine transformation structures such as acicular ferrite are effective. Acicular ferrite is generated with inclusions as its nucleation sites. So, we have tried to reveal the structure of the inclusions being the initiation sites and the formation mechanism of them. Amorphous Al-Mn-Si-Oxide was observed at the outside of crystalline (Mn, Ti)

Al2O4 that formed in the central part of inclusions. At the outermost layer of the inclusions, titanium compound layer covered inclusions and the layer of about 10 nm was identified as Ti (N, O). This Ti (N, O) was the initiation sites generating acicular ferrite. To examine at what stage of the weld cooling the inclusions of this structure were formed, the inclusions in the weld metal that was frozen by liquid tin quenching method during welding were analyzed. In the molten metal, Ti hardly covered on the surface layer of inclusions. However, in the weld metal cooled up to around 1273K, the Ti (N, O) layer was confirmed at the outermost layer of inclusions.

Keywords Arc welding; Low alloy steel; Intragranular transformation; Acicular ferrite; Inclusion

(d)α䠉Fe (c) Ti(,N,O) (b) Mn䠉Al䠉Si䠉Oxide (a) (㠀ᬗ㉁)

100nm (a)㹙1 1 1㹛(Mn,Ti)Al2O4 (b) Mn-Al-Si-Oxide (c) [0 1 1]Ti(O,N) (d) [1 1 1]Ș-Fe

Fig. 1. TEM analysis results of the inclusion in weld metal.

Fig. 2. Schematic illustration of the formation mechanism of the inclusions in weld metal.

* Nippon Steel & Sumitomo Metal Corporation ** Professor

11 Smart Processing Research Center, Dep. of Smart Coating Processing

Journal of Power Sources, 320, (2016), 120–126. doi:10.1016/j.jpowsour.2016.04.086

Insertion of lattice strains into ordered LiNi0.5Mn1.5O4 spinel by mechanical stress: A comparison of perfect versus imperfect structures as a cathode for Li-ion batteries

Takahiro Kozawa*, Takeshi Murakami**, Makio Naito***

Abstract

The Ni-doped lithium manganese oxide, LiNi0.5Mn1.5O4, has received much attention as a cathode material in high-energy lithium-ion batteries (LIBs). This active material has two different spinel structures depending on the ordering state of the Ni and Mn ions. The ordered LiNi0.5Mn1.5O4 spinel has an inferior cathode performance than the disordered phase because of its poor electronic conductivity. However, the ordered LiNi0.5Mn1.5O4 spinel possesses the potential advantage of avoiding dissolution of the Mn ion, which is an issue for the disordered spinel. The improvement of cathode performance is important for future applications. Here, we report a unique approach to improve the cathode performance of the ordered LiNi0.5Mn1.5O4 spinel. The mechanical treatment using an attrition-type mill successfully inserted lattice strains into the ordered LiNi0.5Mn1.5O4 spinel structure without a phase transformation to the disordered phase. The insertion of lattice strains by mechanical stresses provided an increased discharge capacity and a decreased charge transfer resistance. This limited crystal structure modification improved the cathode performance.

Keywords Lattice strain; Mechanical stress; LiNi0.5Mn1.5O4; Spinel; Cathode; Li-ion battery

Fig.1.

FE-SEM and HR-TEM images of (a-c) p-LNMO and (d-f) MT20-LNMO particles.

* Assistant Professor ** Technical Assistant, Technical Expert Division *** Professor

12 Smart Processing Research Center, Dep. of 3D Nano/Micro Structure Control

Welding in the World, 60, 4 (2016), 697–702.

Additive manufacturing of ceramic components using laser scanning stereolithography

Soshu Kirihara*

Abstract Three-dimensional stereolithographic additive manufacturing was customized successfully to create ceramics components with functional microstructures. Photosensitive acrylic resins with titania or alumina nanoparticles were spread on a glass substrate with a mechanical knife edge. Two-dimensional patterns formed by ultraviolet laser scans of 10 to 100 μm in diameter were laminated to create composite precursors. Dense components could be obtained through dewaxing and sintering of the composite. Photonic four-coordinate crystal lattices with periodic arrangements of the dielectric constant were created to control electromagnetic waves in the gigahertz and terahertz frequency ranges by Bragg diffraction. Systematic optimization of the stereolithographic lamination and heat treatment patterns will be investigated to improve the dielectric microstructures related to the microwave properties.

Keywords Additive manufacturing; Ceramics; Stereolithography

Fig. 1. Schematic illustration of 3D stereolithographic additive manufacturing using photosensitive resin pastes with ceramic nanoparticle dispersions. Composite precursors could be created by laminating 2D cross sections drawn by laser scanning.

Fig. 4. Fully ceramic components of the photonic crystals processed by the dewaxing and sintering treatments of the composite precursors: diamond-structured titania (a) and alumina (b) micropatterns with lattice constants of 720 and 350 μm, respectively.

* Associate Professor

13 Smart Processing Research Center, Dep. of Smart Green Processing

Scripta Materialia, 120, (2016), 8084. doi:10.1016/j.scriptamat.2016.04.018

Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging

Xiangdong Liu*, Hiroshi Nishikawa**

Abstract Since Pb-containing solders are currently being used for die-attach bonding in power device packaging, a number of investigations are targeted towards finding suitable Pb-free high temperature bonding. An oxidation-reduction bonding (ORB) was applied to achieve Cu-Cu bonding with microscale Cu particle paste. During sintering at 300 °C, Cu2O nanoparticles were homogeneously formed on the surface of the microscale Cu particles through a thermal oxidation, and were subsequently reduced to Cu nanotextured surface in formic acid atmosphere. This in-situ surface modification significantly enhances the sinterability of the microscale Cu particles, leading to a well-sintered microstructure and a three times higher bonding strength than that of the bonding joints prepared with non-oxidation bonding (NOB).

Keywords Pb-free high temperature bonding; Sintering; Surface modification; Copper; Oxidation-reduction bonding

Fig. 1. FE-SEM images, corresponding EDX spectra and XRD patterns of the Cu particles. (a) after heating at 300 °C for 60min in formic acid atmosphere, (c, d) after heating at 300 °C for 20 min in air, (e, f) after heating at 300 °C for 20 min in air followed by heating at 300 °C for 5 min in formic acid atmosphere, (b) XRD patterns of the particles in (a), (c) and (e).

* Graduate School Student ** Associate Professor

14 Hitachi Zosen Advanced Welding Technology Joint Research Chair

Proceedings of 10th International Conference on Trends in Welding Research & 9th International Welding Symposium of Japan Welding Society (9WS), (2016), 136139.

Application to duplex stainless steel of narrow gap oscillation laser welding

Yohei Abe*, Yosuke Yamazaki**, Yukio Hioki**, Mitsuyoshi Nakatani***, Akikazu Kitagawa****

Abstract The narrow gap welding process can reduce the groove section area drastically compared to other welding processes, achieving a weld joint with low heat input and resulting in minimal distortion. In our group, the narrow gap oscillation laser welding using high power laser as heat resource has been studied. This process uses a high-power laser as its heat source and oscillates it rapidly. Setting the control of the center of laser beam oscillation and the laser beam oscillation width to adjust the groove's position and width can be expected to prevent the lack of fusion on the groove side wall often occurring in narrow gap arc welding. This research establishes the narrow gap oscillation laser welding process for plate butt welding of duplex stainless steel, and establishes a laser multi-layer welding system in order to apply to actual production.

Keywords Laser welding; Oscillation laser; Multi-layer welding; Duplex stainless steel

B.P.

Single axis slider Articulated robot (y and z)

Laser head

Coaxial camera

Wire feeder

Single axisaxis carriageslider F.P.

Fig. 1. Fig. 2. Overview of Multi-layer welding system. Overview of Multi-layer welding system.

* Specially Appointed Assistant Professor ** Hitachi Zosen Corporation *** Specially Appointed Associate Professor **** Guest Professor

15 Special Budget Project of the Ministry of Education, Culture, Sports, Science and Technology, Development Base on Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development

Radiation Oncology, 11, 1 (2016), 91 doi: 10.1186/s13014-016-0666-y

Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo

Masao Nakayama*, Ryohei Sasaki*, Chiaki Ogino*, Tsutomu Tanaka*, Kenta Morita*, Mitsuo Umetsu**, Satoshi Ohara***, Zhenquan Tan****, Yuya Nishimura*,Hiroaki Akasaka*, Kazuyoshi Sato*****, Ciya Numako******, Seiichi Takami**, Akihiko Kondo*

Abstract Biological applications of nanoparticles are rapidly increasing, which introduces new possibilities to improve the efficacy of radiotherapy. Here, we synthesized titanium peroxide nanoparticles (TiOxNPs) and investigated their efficacy as novel agents that can potently enhance the effects of radiation in the treatment of pancreatic cancer. TiOxNPs and polyacrylic acid-modified TiOxNPs

(PAA-TiOxNPs) were synthesized from anatase-type titanium dioxide nanoparticles (TiO2NPs). The TiOxNPs and PAA-TiOxNPs showed a distinct ability to produce hydroxyl radicals in response to X-ray irradiation in a dose- and concentration-dependent manner, whereas the TiO2NPs did not. At the highest concentration of TiOxNPs, the amount of hydroxyl radicals increased by >8.5-fold following treatment with 30 Gy of radiation. The absorption of PAA-TiOxNPs enhanced DNA damage and resulted in higher cytotoxicity in response to X-ray irradiation in vitro. The combination of the PAA-TiOxNPs and X-ray irradiation induced significantly stronger tumor growth inhibition compared to treatment with either PAA-TiOxNPs or X-ray alone (p < 0.05) as shown in Fig.1. No apparent toxicity or weight loss was observed for 43 days after irradiation.

Keywords Nanopaticles; Titanium peroxide; Radiation; Reactive oxygen species; Pancreatic cancer 㻼㻭㻭㻙㼀㼕㻻㼤㻺㻼㼟 㻯㼛㼚㼠㼞㼛㼘 㻼㻭㻭㻙㼀㼕㻻㼤㻺㻼㼟 㼄㻙㼞㼍㼥 㻗㻌㼄㻙㼞㼍㼥

Fig. 1. Tumor growth-inhibitory effects of PAA-TiOxNPs combined with X-ray radiation. Tumor appearance in the xenografts for each treatment after 43 days.

* Kobe University ** Tohoku University *** Specially Appointed Professor **** Dalian University of Technology ***** Gunma University ****** Chiba University

16 The Project to Create Research and Educational Hubs for Innovative manufacturing in Asia

Activity report on “The Project to Create Research and Educational Hubs for Innovative Manufacturing in Asia”

Mihoko Katsumata*, Futoshi Himi **, Yosuke Kawahito *** ຾ཪ ⨾✑Ꮚࠊịぢ ኴࠊᕝே ὒ௓  Abstract In this project, three pillars were set; 1) Establish a global network of researchers in joining technologies across Greater Asia Region, 2) Develop new key technologies for joining adaptable to extreme environments, 3) Implement oversea internships which tie up students from area of science and the humanities, named as Coupling internships (CIS). Based on these pillars, activities implemented this year were reported as below. 1) Total of 8 international joint researches were implemented including 3 newly commenced and 5 continuous researches from previous years. 2 workshops with Nanyang Technological University, University respectively, and one annual symposium invited domestic and oversea speakers were organized. International joint research overviews are listed in Table 1. 2) Research on Underwater Laser Welding Technology were continued to develop laser welding torch while pursuing the optimal operation circumstances at underwater. 3) Coupling Internship was implemented in 5 different countries which were in Indonesia, Vietnam, Thailand, Myanmar, and in . Pictures from CIS can be found in Fig. 1 and Fig. 2. 4) Based on the networks made, JWRI received 18 students in total from partner universities in Taiwan, Thailand, India, Vietnam and Indonesia under JST Sakura Science Plan.

Partner University Research Topics

King Mongkut’s University of Technology, Thonburi (Thailand) Advanced high-strength titanium powder metallurgy materials for medical devices

National Metal and Materials Technology Center (Thailand) Research on laser welding for joining of open-cell aluminum with solid shell

Istanbul Technical University (Turkey) The predictions of residual distortions caused by welding/welding methodologies

and productions methods in shipbuilding

National Metal and Materials Technology Center (Thailand) Stereolithographic additive manufacturing of biomaterials implants

Indian Institute of Technology, Hyderabad (India) Relationship between mechanical properties and microstructure of welds in Twin-

wire GMAW welding of low carbon steel

Nanyang Technological University (Singapore) Residual stress modeling and fatigue life prediction in cladding specimen and

welded pipe

Indian Institute of Technology, Hyderabad (India) Research on the melting phenomenon in waveform-controlled SAW

Malaya University () Assessments of FSW dissimilar joints between steel and Mg with addition of

powder filler Table 1 List of International Joint Research in 2016.

Fig. 1. Pictures from CIS Singapore. Fig. 2. Pictures from CIS Vietnam.

* Specially Appointed Associate Professor ** Specially Appointed Researcher *** Associate Professor

17 NEDO Future Pioneering Projects

ISIJ International, 56, 7 (2016), 12261231. http://doi.org/10.2355/isijinternational.ISIJINT-2016-042

Friction lap joining of thermoplastic materials to carbon steel

Kimiaki Nagatsuka*, Daiki Kitagawa**, Hiroto Yamaoka***, Kazuhiro Nakata****

Abstract Dissimilar material joining of polyamide 6 and polyethylene plates to a plain carbon steel (SPCC) plate was performed using friction lap joining. The polyamide 6 and SPCC plates could be directly joined by friction lap joining, whereas the polyethylene and SPCC plates could not. Corona discharge treatment of the polyethylene surface enabled the joint formation with SPCC. The tensile shear fracture load of the SPCC/polyamide 6 and SPCC/corona-discharge-treated polyethylene joints increased with the joining speed up to 600 mm min-1, beyond which it decreased. These joints were fractured at the base material of the plastic plate at optimal joining speeds in the tensile shear test. Continuously joined interfaces of these materials were observed via cross-sectional microstructure analysis. Transmission electron microscopy and selected area diffraction patterns indicated that these materials were joined through the surface oxide layer of

SPCC composed of Fe3O4. The relation between the tensile shear fracture loads and the results of XPS analysis indicated that polar groups such as amide, hydroxyl, and carboxyl groups on the plastic surfaces were highly effective for joint formation of the SPCC/plastic joints.

Keywords Friction lap joining; Plain carbon steel; Polyamide 6; Polyethylene; Corona discharge treatment; Polar group; Dissimilar material joining

2 Load Tool-passed zone Fractured at 㽢: joint interface Rotating Tool 2 䕿: plastic base material SPCC 1.5 Plastic

10 mm

1 (b) Plastic base material fracture Tool-passed zone PA6, SPCC PE 0.5 SPCC

Tensile shear fractureload / kN Plastic 30 Fractured 75 75 0 10 mm PA6 0 min 1 min 5 min Corona discharge treated PE (c) Interface fracture (a) Tensile shear fracture load of the joint

Fig. 1. Fig. 2. (a) Tensile shear fracture load of FIJ joints of Schematic illustration of friction lap SPCC/PA6, as-received and corona-discharge joining for the plastic to the metal (all treated PE processed at the joining speed of 600 mm

dimensions in mm). min-1, and the joint appearances fractured at (b) the

plastic base plate and (c) the joint interface.

* Specially Appointed Assistant Professor ** Graduate School Student *** IHI Corporation **** Specially Appointed Professor

18 Dep. of R&D Project for Environmental Resources and ECO Joining

Proceedings of 23rd MATE 2017, (2017), 305308.

The influence of oxygen diffusion path at carbon cathode on electrochemical discharge performance in Mg-air batteries

Zhonghao Heng*, Shigeaki Uchida**, Yasuo Takahashi***  Abstract In order to design series stacked magnesium-air batteries for high power source, the diffusion path of oxygen for cathode reaction in layered battery is experimentally investigated. The electrochemical discharge performance of single unit Mg-air cell using carbon cathode is measured in terms of output power. The results show that both parallel and perpendicular air flow can work on the cathode reaction. Discharge performance is maintained approximately 65% when the air flow diffused through the carbon cathode is blocked. The peak power can reach to 85 mW under the conditions of parallel air flow is enough, initial water supply is 1.0 g and electrode area is 25 mm×50 mm. The peak output power reduces when the parallel air flow is impeded. Initial power reduction so called “battery flooding”, a phenomenon that occurs with excess water supply to batteries, is observed. Adequate conditions of water supply and air flow are essential for obtaining good discharge performance of Mg-air battery.

Keywords Magnesium air battery; Carbon cathode; Oxygen reduction reaction; Diffusion path; Discharge performance     

 2 - - Cathode: O + 2H2O + 4e → 4OH  2+ -  Anode: 2Mg → 2Mg + 4e 2  Overall: 2Mg + O + 2H2O → 2Mg(OH)2  Fig. 1. Structure and working principle of an Mg-air battery.

Fig. 2.

Discharge performance dependence on contact area when the initial water supply is 1.0 g.

* Specially Appointed Researcher ** Guest Professor *** Specially Appointed Professor

19 JWRI Cooperative Research Program, Joint Use / Research Award

Inorganic Chemistry, 54, 16 (2015), 7976-7984. doi: 10.1021/acs.inorgchem.5b01112

Hydrothermal synthesis of yttria-stabilized zirconia nanocrystals with controlled yttria content

Kazuyoshi Sato*, Kazuya Horiguchi*, Taku Nishikawa*, Sadahiro Yagishita**, Kazuo Kuruma***, Takeshi Murakami***, Hiroya Abe****

Abstract In this study, we demonstrate for the first time the hydrothermal synthesis of yttria-stabilized zirconia (YSZ) nanocrystals with controlled yttria content (x = 3–12 mol %; xYSZ) with negligible aggregation from aqueous solution. The nanocrystals were grown via the hydrothermal treatment of basic Zr(IV) and Y(III) carbonate complex aqueous solutions in the presence of a cationic ligand, + N(CH3)4 . The nanocrystals were characterized in detail by dynamic light scattering, ζ-potential measurement, X-ray diffraction, specific surface area measurement based on the Brunauer–Emmett–Teller theory, transmission electron microscopy, energy dispersive X-ray spectroscopy, and Raman spectroscopy. Shorter reaction times and higher Y2O3 content produce aqueous solutions with higher transparencies containing nanocrystals with sizes of 10 nm or less. Nanocrystals with the target composition were obtained by hydrothermal reaction for longer than 3 h, regardless of the Y2O3 content. The main phase is tetragonal for (3–6)YSZ and cubic with disordered oxygen vacancies for (8–12)YSZ. The characteristics of the nanocrystalline material synthesized are consistent with those of bulk YSZ crystals, indicating the growth of high-quality nanocrystals. (Reprinted with permission from K. Sato et al., Inorg. Chem., 2015, 54, 7976-7984, Copyright 2015 American Chemical Society)

Keywords Yttria- stabilized zirconia (YSZ); Nanocrystal; Hydrothermal; Cationic ligand; Carbonate complex

1nm

10 nm

YSZ nanocrystals synthesized via the hydrothermal treatment of basic Zr(IV) and Y(III) + carbonate complex aqueous solutions in the presence of a cationic ligand, N(CH3)4 .

* Gunma University ** Daiichi Kigenso Kagaku Kogyo Co. Ltd. *** Osaka University **** Associate Professor

20 JWRI Cooperative Research Program, Joint Use / Research Award

Mechanical Engineering Letters, 2, (2016), 15-00481. doi: 10.1299/mel.15-00481

Experimental assessment of temperature distribution in heat affected zone (HAZ) in dissimilar joint between 8Cr-2W steel and SUS316L fabricated by 4 kW fiber laser welding

Sho Kano*, Akira Oba*, Huilong Yang*, Yoshitaka Matsukawa*, Yuhki Satoh*, Hisashi Serizawa**, Hideo Sakasegawa***, Hiroyasu Tanigawa*** and Hiroaki Abe*

Abstract High-Cr steel (Fe-8Cr-2W-0.4Mn-0.2V-0.06Ta, so-called F82H steel) is one of the candidate structure materials for fusion blanket system, and its dissimilar welding technology to stainless steel (SUS316L) is an inevitable issue. Purpose of the present study is to identify the microstructure characteristics of dissimilar joint between F82H and SUS316L fabricated by fiber laser welding. The microstructure of as-welded specimens was composed of heat affected zone (coarse grain (CGHAZ) and fine grain (FGHAZ)) in F82H side, and weld metal (WM). Distributions of size, density and chemical composition of M23C6-type precipitates in HAZ were examined as a function of the distance from WM/HAZ interface. Besides, isochronal annealing experiments on F82H performed to obtain relationship between annealing temperature and Cr (or C) concentration in M23C6 precipitates. By comparison of their microstructure with that of HAZ, temperature distribution in HAZ upon welding was evaluated. It is suggested that the HAZ/F82H interface and the FGHAZ/CGHAZ boundary were heated up to 1150 K and 1400 K, respectively. Further applications of this method to clarify the temperature history and its distribution in HAZ, as well as increase in diagnostic accuracy, are greatly expected.

Keywords Fiber laser welding; Dissimilar joint; F82H; SUS316L; M23C6; Temperature gradient; HAZ

Fig. 1. Dependence of temperature under fiber laser welding on distance from WM/HAZ interface calculated by Cr/C concentration in M23C6 precipitate.

* Tohoku University ** Associate Professor *** Japan Atomic Energy Agency

21 JWRI Cooperative Research Program, Joint Use / Research Award

Nano Biomedicine, 7, 1 (2015), 1120. http://doi.org/10.11344/nano.7.11

Biological response to nanostructure of carbon nanotube/titanium composite surfaces

Erika Nishida*, Hirofumi Miyaji*, Junko Umeda***, Katsuyoshi Kondoh**, Hiroko Takita*, Izumi Kanayama*, Saori Tanaka*, Akihito Kato*, Bunshi Fugetsu****, Tsukasa Akasaka*, Masamitsu Kawanami*

Abstract Titanium (Ti) is currently used in dental implants and bone fixation devices due to its high biocompatibility. Biomodification of the Ti surface up-regulates its biocompatibility. Reportedly, carbon nanotubes (CNTs) were available for biomedical applications, such as neuronal growth, bone induction and drug delivery. In this study, we fabricated the CNT-coated Ti and assessed its biocompatibility and bone forming ability. Pure Ti plates were coated with multi-wall CNTs dispersions, and then annealed in a vacuum furnace to anchor the CNTs to the Ti plate. Comparison of cell morphology and viability of osteoblastic cell on the CNT-coated Ti was assessed using SEM and fluorescent microscopy. Subsequently, sample receiving bone morphogenetic protein-2 (BMP-2) was placed on the cranial bone of rat and histological analysis was carried out. Cell spreading and proliferation on the Ti plate were promoted by CNTs modification. In addition, remarkable cell viability was exhibited by application of low dose CNTs compared to high dose. In rat implantation test, CNTs and BMP-2 application stimulated new bone formation, however, the joint between bone and CNT-modified Ti was poor. Therefore, a more applicable method should be created for biomedical application.

Keywords Titanium; Carbon nanotubes (CNTs); Surface modification; Biocompatibility; Cell proliferation; Biomaterials

Fig. 1. Cell morphology and proliferation assay.

* Hokkaido University ** Professor *** Associate Professor **** The University of Tokyo

22 &2175,%87,2167227+(525*$1,=$7,216 -DQXDU\a'HFHPEHU    >3K\VLFV3URFHVVHV,QVWUXPHQWV 0HDVXUHPHQWV@ +%$%$7(5$78(<$0$DQG07$1$.$  6LQJOH 3DVV )XOO 3HQHWUDWLRQ -RLQLQJ IRU +HDY\ 3ODWH 07$1$.$ 6WHHO8VLQJ+LJK&XUUHQW*0$3URFHVV ,QWURGXFWLRQWR:HOGLQJ7HFKQRORJ\ WK$QQXDO$VVHPEO\RI,QW,QVW:HOGLQJ ,,:  7H[WERRN IRU +3, WHFKQRORJ\ VHPLQDU      ,,:'RF;,, SS LQ-DSDQHVH    07$1$.$ 07$1$.$ ,QWURGXFWLRQWR:HOGLQJ3URFHVV $UF:HOGLQJ3URFHVV, 7H[WERRN IRU VXPPHU VFKRRO RI ZHOGLQJ 7H[WERRN IRU VXPPHU VFKRRO RI ZHOGLQJ HQJLQHHULQJ  SS LQ-DSDQHVH  HQJLQHHULQJ  SS LQ-DSDQHVH    06+,*(7$DQG7:$7$1$%( 07$1$.$ (IIHFW RI 3UHFXUVRU )UDFWLRQ RQ 6LOLFLGH 1DQRSRZGHU 7KH)XWXUH'HULYHGIURPWKH9LVXDOL]DWLRQRI:HOGLQJ *URZWK XQGHU 7KHUPDO 3ODVPD &RQGLWLRQV D 3KHQRPHQD &RPSXWDWLRQDO6WXG\ :HOGLQJ7HFKQRO9RO1R  SS 3RZGHU7HFKQRO9RO  SS LQ-DSDQHVH    06+,*(7$7,.('$07$1$.$768*$%3223$7 70(7+21*DQG07$1$.$ 63($168.0$1((1.81$:21*$/(569$1,&+.22/ $UF 3K\VLFDO 3URSHUWLHV ZLWK 'URSOHW 7UDQVIHU +.$:$027267+21*'((.68(1$*$DQG027$ 3KHQRPHQRQRI*DV0HWDO$UF:HOGLQJ 4XDOLWDWLYH DQG 4XDQWLWDWLYH $QDO\VHV RI $UF &RPPLVVLRQV , ,9 ;,, DQG 6*  ,QWHUPHGLDWH &KDUDFWHULVWLFVLQ60$: 0HHWLQJ RI ,QW ,QVW :HOGLQJ ,,:    ,,: :HOGLQJLQWKH:RUOG9RO1R   'RF SS   7.2%$6+,<085$,0+$'$127(5$ ..21,6+,60,.,06+,*(7$$085$7$ 72.$027207$1$.$DQG768*$ 7085$7$$%0853+<DQG07$1$.$ 5HVHDUFKRQ/DVHUDUF+\EULG:HOGLQJRI/DS)LOOHW 6WXG\RQ$UF3ODVPD3URSHUWLHVGXULQJ7,*:HOGLQJ -RLQWVRI7KLQ6KHHW ZLWKD&RQVWULFWHG1R]]OH 4--SQ:HOG6RF9RO1R   &RPPLVVLRQV , ,9 ;,, DQG 6*  ,QWHUPHGLDWH SS LQ-DSDQHVH  0HHWLQJ RI ,QW ,QVW :HOGLQJ ,,:    ,,:  'RF 06(72$$2.,07$1$.$67$6+,52DQG7(5$  6WXG\ RQ 1HZ *0$ :HOGLQJ 3URFHVV ZLWK 'XSOH[ 06+,*(7$DQG07$1$.$ &XUUHQW)HHGLQJ 1XPHULFDO $QDO\VLV RI &RQYHFWLYH 7UDQVIHU RI 4--SQ:HOG6RF9RO1R   1DQRSRZGHU *HQHUDWHG DURXQG D 7XUEXOHQW/LNH SS LQ-DSDQHVH  7KHUPDO3ODVPD-HW  3URF)LUVW3DFLILF5LP7KHUPDO(QJLQHHULQJ&RQI 07$1$.$ 357(&   357(& SDJHV  ,QWURGXFWLRQWR:HOGLQJ7HFKQRORJ\  7H[WERRN IRU +3, WHFKQRORJ\ VHPLQDU     ..21,6+,06+,*(7$$085$7$7085$7$ SS LQ-DSDQHVH  $%0853+<DQG07$1$.$  1XPHULFDO $QDO\VLV RI $UF 3KHQRPHQD GXULQJ 7,* +768-,62.$1207$1$.$DQG002&+,=8., :HOGLQJ ZLWK D &RQVWULFWHG 1R]]OH E\ 8VLQJ D 1XPHULFDO 6LPXODWLRQ RI :HOG 'LVWRUWLRQ E\ 7ZR7HPSHUDWXUH0RGHO &RQVLGHULQJ&RQYHFWLYH+HDW7UDQVIHULQ:HOG3RROV WK$QQXDO$VVHPEO\RI,QW,QVW:HOGLQJ ,,:  WK$QQXDO$VVHPEO\RI,QW,QVW:HOGLQJ ,,:   ,,:'RF  ,,:'RF         

23 +.20(106+,*(7$DQG07$1$.$ 67$6+,52$%0853+<DQG07$1$.$ ,QFRPSUHVVLEOH 63+ 6LPXODWLRQ RI 0ROWHQ 0HWDO 1XPHULFDO $QDO\VLV RI :HOGLQJ )XPH )RUPDWLRQ 'URSOHW 7UDQVIHU DQG :HOG 3RRO &RQYHFWLRQ GXULQJ 0HFKDQLVP *0$:HOGLQJ ,,:,QWHUPHGLDWHPHHWLQJ*HQRYD  ,,:'RF WK$QQXDO$VVHPEO\RI,QW,QVW:HOGLQJ ,,:  , ,,: 'RF ,9 ,,: 'RF  ,,:'RF ;,,,,:'RF   70(7+21*7<$0$*8&+,06+,*(7$07$1$.$ 19$1+67$6+,52DQG07$1$.$ 5,.('$00$7686+,7$DQG7.$7$2.$ 2EVHUYDWLRQ RI 7KUHH'LPHQVLRQDO :HOG 3RRO (IIHFW RI 5DUH (DUWK 0HWDO RQ 3ODVPD 3URSHUWLHV LQ &RQYHFWLRQLQ3ODVPD.H\KROH$UF:HOGLQJ *0$:8VLQJ&26KLHOGLQJ*DV ,,:,QWHUPHGLDWHPHHWLQJ*HQRYD  ,,:'RF WK$QQXDO$VVHPEO\RI,QW,QVW:HOGLQJ ,,:  ;,,  ,,:'RF   67$6+,5206(72$$2.,DQG07$1$.$ 06+,*(7$60,1$0,DQG07$1$.$ 1XPHULFDO6LPXODWLRQRI1HZ*0$:HOGLQJ3URFHVV 0RGHOOLQJ IRU &ROOHFWLYH *URZWK RI )XPH 3ULPDU\ ZLWK'XSOH[&XUUHQW)HHGLQJ 3DUWLFOHVZLWK&KDUJH(IIHFWLQ$UF:HOGLQJ WK$QQXDO$VVHPEO\RI,QW,QVW:HOGLQJ ,,:  WK$QQXDO$VVHPEO\RI,QW,QVW:HOGLQJ ,,:   ,,:'RF  ,,:'RF   19$1+67$6+,52DQG07$1$.$ 60,1$0,06+,*(7$DQG07$1$.$ 2EVHUYDWLRQRI:HOG3RROLQ3ODVPD$UF:HOGLQJ 1XPHULFDO ,QYHVWLJDWLRQ RI &KDUJH (IIHFW RQ WK$QQXDO$VVHPEO\RI,QW,QVW:HOGLQJ ,,:  &ROOHFWLYH*URZWKRI,URQ1DQRSDUWLFOHV*HQHUDWHGLQ  ,,:'RF $UF:HOGLQJ  3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK .<$68,+.,126+,7$7<8-,$)8-,0$58 WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ 7%281270(7+21*67$6+,52DQG07$1$.$ :6   SS 3URSRVDORID0HWKRGRI2EVHUYLQJ&DWKRGH6SRWVLQ  $&7XQJVWHQ,QHUW*DV:HOGLQJ +.20(1.7$1$.$06+,*(7$07$1$.$DQG $GY([S0HFK9RO  SS $%0853+<  9LVXDOL]DWLRQ RI 3ODVPD 7HPSHUDWXUH DQG :HOG 3RRO 67$6+,52DQG07$1$.$ &RQYHFWLRQGXULQJ*DV0HWDO$UF:HOGLQJ 6WXG\ RQ *DV 0HWDO $UF :HOGLQJ 3URFHVVHV WKURXJK 3URFVW,QW&RQJUHVVRQ+LJK6SHHG,PDJLQJDQG 9LVXDOL]DWLRQ 3KRWRQLFV  SS ,PDJH /DE 9RO  1R    SS      LQ-DSDQHVH  .7$1$.$70(7+21*06+,*(7$07$1$.$DQG  $%0853+< 67$6+,52$%0853+<DQG07$1$.$ 0HDVXUHPHQW RI 0HWDO 9DSRU %HKDYLRU LQ +HOLXP 1XPHULFDO $QDO\VLV RI )XPH )RUPDWLRQ 3URFHVV LQ 3ODVPDGXULQJ*DV7XQJVWHQ$UF:HOGLQJ *0$:HOGLQJ 3URFVW,QW&RQJUHVVRQ+LJK6SHHG,PDJLQJDQG ,QW :(/',1* 6\PS ,:6 N   3KRWRQLFV  SS SS   06+,*(7$ 19$1+67$6+,52DQG07$1$.$ 7XUEXOHQFH0RGHOOLQJRI7KHUPDO3ODVPD)ORZV :HOG3RRO)RUPDWLRQ0HFKDQLVPLQ3ODVPD.H\KROH - 3K\V '$SSO 3K\V 9RO      $UF:HOGLQJ SDJHV  3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK  WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ 19$1+67$6+,52%9+$1+DQG07$1$.$ :6   SS 9LVXDOL]DWLRQ RI :HOG 3RRO &RQYHFWLYH )ORZ LQ  3ODVPD.H\KROH$UF:HOGLQJ  )URQW$SSO3ODVPD7HFKQRO9RO1R    SS       

24 7,:$2+7$.$+$6+,<0$('$6<$0$0272  *8&+,'$.7$.(1$.$DQG<6(768+$5$ 67$6+,5206+,*(7$DQG07$1$.$ ,QIOXHQFH RI 9ROWDJH 3XOVH :LGWK RQ WKH 'LVFKDUJH 5DGLDWLRQ DQG 7HPSHUDWXUH 'LVWULEXWLRQ RI $U $UF &KDUDFWHULVWLFV LQ DQ $WPRVSKHULF 'LHOHFWULF%DUULHU &RQWDPLQDWHGZLWK1LWURJHQLQ3XOVHG7,*:HOGLQJ 'LVFKDUJH3ODVPD-HW 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK -SQ - $SSO 3K\V 9RO  1R V   SS WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ $+$+ :6   SS   +6(2*8&+,'$1,7$*$.,..2*$DQG 67$6+,52$%0853+<DQG07$1$.$ 06+,5$7$1, 1XPHULFDO 6LPXODWLRQ RI )XPH )RUPDWLRQ 3URFHVV LQ 4XDQWXP &KDUDFWHUL]DWLRQ RI 6L 1DQR3DUWLFOHV *0$:HOGLQJ )DEULFDWHG E\ 0XOWL+ROORZ 'LVFKDUJH 3ODVPD 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK &KHPLFDO9DSRU'HSRVLWLRQ WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ 6FL$GY0DWHU9RO1R  SS :6   SS   7.$:$6$.,6.8680(*,$.8'276$.$126+,7$ <0$('$6<$0$02727,:$267$6+,52 7768580$58$6$72*8&+,'$..2*$DQG 06+,*(7$DQG07$1$.$ 06+,5$7$1, +HDW )OX[ DQG (OHFWURPDJQHWLF )RUFH $IIHFWHG E\ (IIHFWVRI,UUDGLDWLRQ'LVWDQFHRQ6XSSO\RI5HDFWLYH &XUUHQW )UHTXHQF\ LQ $UJRQ 3XOVHG $UF :HOGLQJ 2[\JHQ 6SHFLHV WR WKH %RWWRP RI D 3HWUL 'LVK )LOOHG 0L[HGZLWK2[\JHQ ZLWK/LTXLGE\DQ$WPRVSKHULF2+H3ODVPD-HW 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK - $SSO 3K\V 9RO  1R    SS WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\  :6   SS   7.$:$6$.,$6$726.8680(*,$.8'2 19$1+67$6+,5207$1$.$1+0$1+ 7 6$.$126+,7$ 7 768580$58 * 8&+,'$ . .2*$ %9+$1+DQG19+$ DQG06+,5$7$1, ,QYHVWLJDWLRQ RI &RQYHFWLYH )ORZ RQ WKH 6XUIDFH RI 7ZRGLPHQVLRQDO &RQFHQWUDWLRQ 'LVWULEXWLRQ RI :HOG3RROLQ3ODVPD.H\KROH$UF:HOGLQJ 5HDFWLYH 2[\JHQ 6SHFLHV 7UDQVSRUWHG WKURXJK D 1DWLRQDO &RQI RQ 0HFKDQLFDO  7UDQVSRUWDWLRQ 7LVVXH 3KDQWRP E\ $WPRVSKHULF3UHVVXUH 3ODVPD-HW (QJLQHHULQJ  SS ,UUDGLDWLRQ  $SSO 3K\V ([SUHVV 9RO  1R         67$6+,5206(72$$2.,DQG07$1$.$ SS 1XPHULFDO 6LPXODWLRQ RI 1HZ :HOGLQJ 3URFHVV ZLWK  'XSOH[&XUUHQW)HHGLQJ *8&+,'$$1$.$-,0$7,72.7$.(1$.$ 4--SQ:HOG6RF9RO1R  7.$:$6$.,..2*$06+,5$7$1,DQG SS LQ-DSDQHVH  <6(768+$5$  (IIHFWV RI 1RQWKHUPDO 3ODVPD -HW ,UUDGLDWLRQ RQ WKH ;'21*..2*$'<$0$6+,7$+6(21,7$*$., 6HOHFWLYH 3URGXFWLRQ RI +2DQG12 LQ /LTXLG 06+,5$7$1,<6(768+$5$06(.,1(DQG0+25, :DWHU (IIHFWV RI 'HSRVLWLRQ 5DWH DQG ,RQ %RPEDUGPHQW RQ - $SSO 3K\V 9RO  1R           3URSHUWLHV RI $&+ )LOPV 'HSRVLWHG E\ +DVVLVWHG SS 3ODVPD&9'0HWKRG  -SQ - $SSO 3K\V 9RO  1R 6   SS 7,72*8&+,'$$1$.$-,0$.7$.(1$.$DQG $$$$ <6(768+$5$  &RQWURO RI 5HDFWLYH 2[\JHQ DQG 1LWURJHQ 6SHFLHV <6(768+$5$ 3URGXFWLRQ LQ /LTXLG E\ 1RQWKHUPDO 3ODVPD -HW ZLWK /RZWHPSHUDWXUH $WPRVSKHULF3UHVVXUH 3ODVPD &RQWUROOHG6XUURXQGLQJ*DV 6RXUFHVIRU3ODVPD0HGLFLQH -SQ - $SSO 3K\V 9RO    SS $UFK%LRFKHP%LRSK\V9RO  SS $&$&   11$.$=$.,+0$7680272+768'$DQG.212  6XUIDFH6PRRWKLQJGXULQJ3ODVPD(WFKLQJRI6LLQ&O  $SSO 3K\V /HWW 9RO  1R    SS     

25 .7$.(1$.$.1$.$7$+27$1,626$., <6$720768.$027260$6812<<$0$6+,7$ *8&+,'$DQG<6(768+$5$ .<$0$6+,7$'7$1,*$:$DQG1$%( 3URFHVV &RQWUROODELOLW\ RI ,QGXFWLYHO\ &RXSOHG ,QYHVWLJDWLRQ RI WKH 0LFURVWUXFWXUH DQG 6XUIDFH  3ODVPD(QKDQFHG5HDFWLYH6SXWWHU'HSRVLWLRQIRUWKH 0RUSKRORJ\ RI D 7L$O9 3ODWH )DEULFDWHG E\ )DEULFDWLRQ RI $PRUSKRXV ,Q*D=Q2[ &KDQQHO 9DFXXP6HOHFWLYH/DVHU0HOWLQJ 7KLQ)LOP7UDQVLVWRUV $SSO3K\V$0DWHU6FL3URFHVV9RO   -SQ - $SSO 3K\V 9RO  1R V   SS SS $$$$   72+.8%20768.$0272DQG<6$72 . 7$.(1$.$ . 1$.$7$ * 8&+,'$ < 6(768+$5$ 1XPHULFDO 6LPXODWLRQ RI &RPEXVWLRQ (IIHFWV GXULQJ DQG$(%( /DVHU3URFHVVLQJRI&DUERQ)LEHU5HLQIRUFHG3ODVWLFV (IIHFWVRI:RUNLQJ3UHVVXUHRQWKH3K\VLFDO3URSHUWLHV $SSO3K\V$0DWHU6FL3URFHVV9RO   RI $,Q*D=Q2[)LOPV)RUPHG8VLQJ SS ,QGXFWLYHO\&RXSOHG 3ODVPD(QKDQFHG 5HDFWLYH  6SXWWHULQJ'HSRVLWLRQ < 6$72 0 768.$0272 < <$0$6+,7$ 6 0$6812 ,((( 7UDQV 3ODVPD 6FL 9RO  1R    DQG1$%( SS ([SHULPHQWDO 6WXG\ RQ 7L $OOR\ 3ODWH )DEULFDWLRQ E\  9DFXXP6HOHFWLYH/DVHU0HOWLQJ 72+.8%2$0768.$0272DQG<6$72 3URF 63,( /DVHU ' 0DQXIDFWXULQJ 1XPHULFDO 6LPXODWLRQ RI /DVHU %HDP &XWWLQJ RI ,,,&  & SDJHV  &DUERQ)LEHU5HLQIRUFHG3ODVWLFV  3K\VLFV3URFHGLD9RO  SS 0768<$0$<.2'$0$<0,<$0272,.,7$:$.,  0768.$0272DQG+1$.$12 <6$720768.$027276+,121$*$DQG7.$:$ (IIHFWV RI /DVHU 3HHQLQJ 3DUDPHWHUV RQ 3ODVWLF )HPWRVHFRQG /DVHU,QGXFHG 3HULRGLF 1DQRVWUXFWXUH 'HIRUPDWLRQLQ6WDLQOHVV6WHHO &UHDWLRQ RQ 3(7 6XUIDFH IRU &RQWUROOLQJ RI &HOO - /DVHU 0LFUR1DQRHQJLQHHULQJ 9RO  1R  6SUHDGLQJ  SS $SSO3K\V$0DWHU6FL3URFHVV9RO    SS 76+,121$*$6.,126+,7$<2.$0272  0768.$0272DQG$2.$'$ 0768.$02727.$:$76+,121$*$3&+(1 )RUPDWLRQ RI 3HULRGLF 1DQRVWUXFWXUHV 3URGXFHG ZLWK $1$*$,DQG7+$1$:$ )HPWRVHFRQG /DVHU IRU &UHDWLRQ RI 1HZ )XQFWLRQDO &HOO 6SUHDGLQJ RQ 7LWDQLXP 3HULRGLF 1DQRVWUXFWXUHV %LRPDWHULDOV ZLWK 3HULRGV RI   DQG  1P 3URGXFHG E\ 3URFHGLD&,539RO  SS )HPWRVHFRQG/DVHU,UUDGLDWLRQ  $SSO3K\V$0DWHU6FL3URFHVV9RO   72+.8%2<6$72(0$7681$*$DQG SS 0768.$0272  1XPHULFDO 6LPXODWLRQ DERXW (IIHFW RI /DVHU $EODWLRQ 0768.$0272 RQ6XUIDFHRI&DUERQ)LEHU5HLQIRUFHG3ODVWLFGXULQJ 'HYHORSPHQWRI3XOVH)LEHU/DVHUDQG&XWWLQJRI /DVHU3URFHVVLQJ &)53 5HY/DVHU(QJ9RO1R   LQ-DSDQHVH  --SQ/DVHU3URFHVVLQJ6RF9RO1R    LQ-DSDQHVH  6.$7$<$0$<.$:$+,72DQG00,=87$1,  /DVHU:HOGLQJDQG-RLQLQJ .7$.$+$6+,0768.$027260$6812DQG<6$72 3URFWK/DVHU0DWHULDOV3URFHVVLQJ&RQI   +HDW&RQGXFWLRQ$QDO\VLVRI/DVHU&)533URFHVVLQJ SS LQ-DSDQHVH  ZLWK,5DQG89/DVHU/LJKW  &RPSRV 3W$$SSO 6FL0DQXI 9RO   + 2&+,$, 5 .,085$ 6 212 4 3$1 0 0,=87$1, SS DQG6.$7$<$0$  /DVHU$UF +\EULG :HOGLQJ ZLWK 0XOWLSOH $UF IRU  7KLFN6WHHO3ODWHV  3URFWK/DVHU0DWHULDOV3URFHVVLQJ&RQI    SS LQ-DSDQHVH    

26 + 2&+,$, 5 .,085$ 6 212 4 3$1 0 0,=87$1, 00,=87$1,<.$:$+,72DQG6.$7$<$0$ DQG6.$7$<$0$ 3OXPH 6WUXFWXUH DORQJ /DVHU $[LV GXULQJ /DVHU   /DVHU$UF+\EULG:HOGLQJRI6WHHO3ODWH :HOGLQJ 3URFWK/DVHU0DWHULDOV3URFHVVLQJ&RQI   WK ,,: $QQXDO $VVHPEO\ DQG ,QW &RQI  SS LQ-DSDQHVH   ,,:'RF,9   43$100,=87$1,<.$:$+,72DQG6.$7$<$0$ 00,<$*,;=+$1*<.$:$+,72DQG6.$7$<$0$ +LJK3RZHU'LVN/DVHU0HWDO$FWLYH*DV$UF+\EULG 6XUIDFH 9RLG 6XSSUHVVLRQ IRU 3XUH &RSSHU E\ :HOGLQJRI7KLFN+LJK7HQVLOH6WUHQJWK6WHHO3ODWHV +LJK6SHHG/DVHU6FDQQHU:HOGLQJ - /DVHU $SSOLFDWLRQV 9RO  1R    - 0DWHU 3URFHVV 7HFKQRO 9RO         SS   <.$:$+,72 <.$:$+,72.1$.$'$<8(085$00,=87$1, /HDGLQJ(GJH7HFKQRORJ\LQ/DVHU:HOGLQJ3RWHQWLDO +.$:$.$0,.1,6+,0272DQG6.$7$<$0$ RI:HOGLQJZLWK8OWUD+LJK3RZHU/DVHU (IIHFWVRI,QFLGHQW/DVHU$QJOHRU'HIRFXVHG3RVLWLRQ --SQ:HOG6RF9RO1R  SS XSRQ 6SDWWHU 5HGXFWLRQ RQ %DVLV RI LQ-DSDQHVH  7KUHH'LPHQVLRQDO ;UD\ 7UDQVPLVVLRQ ,Q6LWX  2EVHUYDWLRQRI/DVHU:HOGLQJ3KHQRPHQD ,&+,085$<.$:$+,72+085$.$:$DQG 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK 6.$7$<$0$ WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ (OXFLGDWLRQRI.H\KROH)RUPDWLRQLQ/DVHU:HOGLQJRI :6   SS 7LWDQLXP ZLWK ;UD\ 2EVHUYDWLRQ DQG 1XPHULFDO  &DOFXODWLRQ8VLQJ3DUWLFOH0HWKRG 00,=87$1,<.$:$+,72DQG6.$7$<$0$ -/LJKW0HW:HOG9RO1R  &ODULILFDWLRQ RI 3OXPH DORQJ /DVHU $[LV DERYH SS LQ-DSDQHVH  6SHFLPHQ  3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK 43$100,=87$1,<.$:$+,72DQG6.$7$<$0$ WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ (IIHFW RI 6KLHOGLQJ *DV RQ /DVHU0$* $UF +\EULG :6   SS :HOGLQJ5HVXOWVRI7KLFN+LJK7HQVLOH6WUHQJWK6WHHO  3ODWHV +680,<.,7$1,.2,'680,025,+0,=87$1, :HOGLQJLQWKH:RUOG9RO1R  6,72<.$:$+,72DQG6.$7$<$0$ SS $ 3UHOLPLQDU\ 6WXG\ RI 7KLFN 6WHHO 3ODWH :HOGLQJ  ZLWKN:3RZHU)LEHU/DVHU ,&+,085$<.$:$+,72DQG+085$.$:$ 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK &ODULILFDWLRQRI.H\KROH)RUPDWLRQLQ/DVHU:HOGLQJ WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ RI 6WDLQOHVV 6WHHO ZLWK 3DUWLFOH 0HWKRG DQG ;UD\ :6   SS ,Q6LWX2EVHUYDWLRQ  --SQ/DVHU3URFHVVLQJ6RF9RO1R   .7$:((683,<$0$02727&+,.<2: SS LQ-DSDQHVH  */27+21*.80.768.$*26+,72+,6+,  6781*$60,7$39,6877,3,78.8/.,72 43$100,=87$1,<.$:$+,72DQG6.$7$<$0$ 07$.$+$6+,DQG71$%$7$0( 7KLFN +LJK 7HQVLOH 6WHHO 3ODWH )XOO\SHQHWUDWHG E\ ,PSURYHPHQW RI WKH (IIHFWLYH :RUN )XQFWLRQ DQG /DVHU&2*DV6KLHOGHG$5&+\EULG:HOGLQJ 7UDQVPLWWDQFH RI 7KLFN ,QGLXP 7LQ 2[LGHXOWUDWKLQ --SQ/DVHU3URFHVVLQJ6RF9RO1R   5XWKHQLXP 'RSHG ,QGLXP 2[LGH %LOD\HUV DV SS LQ-DSDQHVH  7UDQVSDUHQW&RQGXFWLYH2[LGH  7KLQ6ROLG)LOPV9RO  SS +2=$.,04/(+.:$.$0,-68=8.,<8(085$  <'2,00,=87$1,DQG<.$:$+,72 7.,=86$,.$:$71$%$7$0($)8-,:$5$.,72 5HDOWLPH 2EVHUYDWLRQ RI /DVHU &XWWLQJ )URQWV E\ 07$.$+$6+,DQG.768.$*26+, ;UD\7UDQVPLVVLRQ 0ROHFXOH 3HQHWUDWLRQ LQ 'RXEOH/D\HUHG $PRUSKRXV - 0DWHU 3URFHVV 7HFKQRO 9RO        6LGRSHG,QGLXP2[LGH7KLQ)LOP7UDQVLVWRUV SS -$SSO3K\V9RO    SS    

27 10,720$%'$+<26+,.$:$71$%$7$0( 3& &+(1 &:  &+(1* ,& .$2 :+ 78$1 07$.$+$6+,.,727.,=8$)8-,:$5$DQG 7:/,$1DQG01$,72 .768.$*26+, (IIHFW RI &R'RSLQJ 1L2 DQG 1E2RQ3KDVH 3KDVH7UDQVLWLRQVIURP6HPLFRQGXFWLYH$PRUSKRXVWR 6WDELOLW\DQG0HFKDQLFDO3URSHUWLHVRI<2VWDELOL]HG &RQGXFWLYH 3RO\FU\VWDOOLQH LQ ,QGLXP 6LOLFRQ 2[LGH =U2$O2&RPSRVLWHV 7KLQ)LOPV $GY3RZGHU7HFKQRO9RO  SS $SSO 3K\V /HWW 9RO    SS   .<$68'$67$1$.$DQG01$,72  6WRFKDVWLF $QDO\VLV RQ &HUDPLF *UDQXOH &ROODSVH LQ + 6(5,=$:$ < $6$.85$ - 6 3$5. + .,6+,0272 3RZGHU&RPSDFWGXULQJ&ROG,VRVWDWLF3UHVVLQJ DQG$.2+<$0$ $GY3RZGHU7HFKQRO9RO  SS 'HYHORSPHQW RI -RLQLQJ 0HWKRG IRU =LUFDOR\ DQG  6L&6L&&RPSRVLWH7XEHVE\8VLQJ)LEHU/DVHU ;;,$.21'2DQG01$,72 &HUDP7UDQV9RO  SS 3UHSDUDWLRQ DQG &KDUDFWHUL]DWLRQ RI 1L<6=  &RPSRVLWH(OHFWURGHIRU6ROLG2[LGH)XHO&HOOVE\ + 6(5,=$:$ < $6$.85$ + 0272., ' 7$1,*$:$ 'LIIHUHQW&R3UHFLSLWDWLRQ5RXWHV 0768.$0272-63$5.+.,6+,0272DQG -$OOR\&RPSG9RO  SS $.2+<$0$  'HYHORSPHQWRI-RLQLQJ0HWKRGEHWZHHQ=LUFDOR\DQG .6+,0$085$6.,5,+$5$-$.('272+-, 6L&6L&&RPSRVLWH7XEHVE\8VLQJ'LRGH/DVHU 01$,7206,1*+DQG$0,&+$(/,6 0DWHU6FL)RUXP9RO  SS $GGLWLYH0DQXIDFWXULQJDQG6WUDWHJLF7HFKQRORJLHVLQ  $GYDQFHG &HUDPLFV &HUDPLF 7UDQVDFWLRQV 9ROXPH +6(5,=$:$0768.$0272<$6$.85$-63$5.  &HUDPLF7UDQVDFWLRQV6HULHV  %RRN  $.2+<$0$+0272.,'7$1,*$:$DQG 3XEOLVKHG E\ :LOH\$PHULFDQ &HUDPLF 6RFLHW\ +.,6+,0272   'HYHORSPHQW RI &DXONHG -RLQW EHWZHHQ =LUFDOR\ DQG  6L&6L&&RPSRVLWH7XEHV%\8VLQJ'LRGH/DVHU ( 1$.$085$ $ .21'2 0 0$7682.$ 7 .2=$:$ &HUDPLF (QJLQHHULQJ DQG 6FLHQFH 3URF 9RO  01$,72+.2*$DQG+,%$ 1R  &'520 3UHSDUDWLRQRI/L&R2/L$O7L 32 &RPSRVLWH  &DWKRGH *UDQXOH IRU $OO6ROLG6WDWH /LWKLXP,RQ (:$.$,7.$1(085$+.21'2<+,5$.$:$ %DWWHULHVE\6LPSOH0HFKDQLFDO0HWKRG <,72+6(5,=$:$<.$:$+,727+,*$6+, $GY3RZGHU7HFKQRO9RO  SS $68=8.,6)8.8'$.)858<$.(6$.,-<$*,  7,72+61,,7680$6<26+,+$6+,68=8., ..$1$,<)8.8,7.2=$:$$.21'2DQG .:$7$1$%(7)858.$:$)*52(6&+(/ 01$,72 *0,&&,&+(60$1255,3)$98==$)61,77, /RZ 7HPSHUDWXUH 6\QWKHVLV RI <$*&H 3KRVSKRU 5+(,',1*(577(5$,++25,,.(068*,0272 E\0HFKDQLFDO0HWKRG 62+,5$DQG-.$1$67(5 $GY3RZGHU7HFKQRO9RO  SS (QJLQHHULQJ9DOLGDWLRQIRU/LWKLXP7DUJHW)DFLOLW\RI  WKH,)0,)XQGHU,)0,)(9('$3URMHFW ;;,$.21'27.2=$:$DQG01$,72 1XFO0DWHU(QHUJ\9RO  SS /6&)*'&&RPSRVLWH3DUWLFOHVIRU6ROLG2[LGH)XHO  &HOOV&DWKRGHV3UHSDUHGE\)DFLOH0HFKDQLFDO0HWKRG +6(5,=$:$0<26+,<$0$DQG)0,<$6$.$ $GY3RZGHU7HFKQRO9RO  SS 'HYHORSPHQW RI /LQH7\SH +HDW 6RXUFH IRU )LQJHU  7\SH3HQHWUDWLRQLQ0,*:HOGLQJ 7.2=$:$DQG01$,72 0DWKHPDWLFDO 0RGHOOLQJ RI :HOG 3KHQRPHQD  0HFKDQLFDOO\,QGXFHG)RUPDWLRQRI0HWDVWDEOHȋDQG 9RO  SS Ȁ$O2IURP%RHKPLWH  $GY3RZGHU7HFKQRO9RO  SS 7:/,$1$.21'20$.26+,0$+$%(  72+085$:+78$1DQG01$,72 $.21'2&<+687.2=$:$DQG01$,72 5DSLG 7KHUPDO &RQGXFWLYLW\ 0HDVXUHPHQW RI 3RURXV 62)&&DWKRGH3UHSDUHGIURP&RPSRVLWH3DUWLFOHVDQG 7KHUPDO,QVXODWLRQ0DWHULDOE\/DVHU)ODVK0HWKRG ,WV3URSHUWLHV $GY3RZGHU7HFKQRO9RO  SS -6RF3RZGHU7HFKQRO-SQ9RO1R    SS LQ-DSDQHVH  

28 7.2=$:$7085$.$0,DQG01$,72 .<$0$1$.$+1,6+,.$:$+7$*8&+,0+$5$'$ ,QVHUWLRQ RI /DWWLFH 6WUDLQV LQWR 2UGHUHG DQG.2&+, /L1L0Q2 6SLQHO E\ 0HFKDQLFDO 6WUHVV $ (IIHFW RI 0DJQHWLF )OX[ 'HQVLW\ RQ 6Q &RPSDULVRQRI3HUIHFW9HUVXV,PSHUIHFW6WUXFWXUHVDV &U\VWDOORJUDSKLF2ULHQWDWLRQLQD6ROGHU-RLQW6\VWHP D&DWKRGHIRU/LLRQ%DWWHULHV -0DWHU6FL0DWHU(OHFWURQ9RO1R -3RZHU6RXUFHV9RO  SS  SS   ..$1$,<)8.8,7.2=$:$$.21'2DQG ;/,86+(DQG+1,6+,.$:$ 01$,72 /RZ 7HPSHUDWXUH %RQGLQJ 8VLQJ 0LFURVFDOH &X (IIHFW RI %D) 3RZGHU $GGLWLRQ RQ WKH 6\QWKHVLV RI 3DUWLFOHV&RDWHGZLWK7KLQ6Q/D\HUVDW&ƒ㻌 <$*3KRVSKRUE\0HFKDQLFDO0HWKRG 3URF  ,QWHUQDWLRQDO &RQI RQ (OHFWURQLFV $GY3RZGHU7HFKQRO  LQ3UHVV 3DFNDJLQJ  SS   7.2=$:$.<$1$*,6$:$7085$.$0,DQG ).$:$6+,52<(1'27721('$&+,DQG 01$,72 +1,6+,.$:$ *URZWK %HKDYLRU RI /L0Q2 3DUWLFOHV )RUPHG E\ ,QYHVWLJDWLRQ RI &RQQHFWLQJ 7HFKQLTXHV IRU +LJK 6ROLG6WDWH5HDFWLRQVLQ$LUDQG:DWHU9DSRU 7HPSHUDWXUH$SSOLFDWLRQRQ3RZHU0RGXOHV -6ROLG6WDWH&KHP9RO  SS 3URF  ,QWHUQDWLRQDO &RQI RQ (OHFWURQLFV  3DFNDJLQJ  SS 7.2=$:$+7$58,DQG01$,72  0HFKDQLFDO 6\QWKHVLV DQG )RUPDWLRQ 0HFKDQLVP RI 0+52++1,6+,.$:$67687680,11,6+,:$., /L1L0Q2*UDQXOHV&RQVLVWLQJRI1DQRSDUWLFOHV .,72.,6+,.$:$$.$768<$1.$0$'$DQG - 6RF 3RZGHU 7HFKQRO -SQ 9RO  1R  06$,72  SS LQ-DSDQHVH  %RQGLQJ 3URFHVV ZLWKRXW 3UHVVXUH 8VLQJ D  &KHVWQXWEXUUOLNH3DUWLFOH3DVWHIRU3RZHU(OHFWURQLFV 7.2=$:$+7$58,DQG01$,72 3URF  ,QWHUQDWLRQDO &RQI RQ (OHFWURQLFV 0HFKDQLFDO 6\QWKHVLV RI /L1L0Q2 &DWKRGH 3DFNDJLQJ  SS 3RZGHUVE\8VLQJ&RPSRVLWH3UHFXUVRU3DUWLFOHV  - 6RF 3RZGHU 7HFKQRO -SQ 9RO  1R  202.+7$5,DQG+1,6+,.$:$  SS LQ-DSDQHVH  7KH6KHDU6WUHQJWKRI7UDQVLHQW/LTXLG3KDVH%RQGHG  6Q%L6ROGHU-RLQWZLWK$GGHG&X3DUWLFOHV ;/,86+(DQG+1,6+,.$:$ $GY 3RZGHU 7HFKQRO 9RO    SS 7KHUPDOO\ 6WDEOH &X6Q&X &RPSRVLWH -RLQW IRU  +LJK7HPSHUDWXUH3RZHU'HYLFH  6FU0DWHU9RO  SS 202.+7$5,DQG+1,6+,.$:$  7UDQVLHQW/LTXLG3KDVH%RQGLQJRI6Q%L6ROGHUZLWK 202.+$7$5,DQG+1,6+,.$:$ $GGHG&X3DUWLFOHV &RUUHODWLRQ EHWZHHQ 0LFURVWUXFWXUH DQG 0HFKDQLFDO -0DWHU6FL0DWHU(OHFWURQ9RO1R 3URSHUWLHVRI6Q%L;6ROGHUV  SS 0DWHU6FL(QJ$9RO  SS   +1,6+,.$:$.0$7681$*$06.,006$,72DQG .0$7681$*$06.,0+1,6+,.$:$06$,72DQG -0,=812 -0,=812 (IIHFW RI ,VRWKHUPDO $JLQJ DW  &ƒ RQ 6KHDU &X&X %RQGLQJ 8VLQJ D $X 1DQRSRURXV 6KHHW E\ 6WUHQJWKRI-RLQWV8VLQJ$X1DQRSRURXV1RQGLQJIRU (OHFWURFKHPLFDO&RUURVLRQ 'LH$WWDFK QG 6\PS RQ 0LFURMRLQLQJ DQG $VVHPEO\ 3URF ,0$36 ,QW &RQI DQG ([KLELWLRQ RQ +LJK 7HFKQRORJ\ LQ (OHFWURQLFV   SS    7HPSHUDWXUH (OHFWURQLFV +L7(&     LQ-DSDQHVH  SS   06.,0DQG+1,6+,.$:$ ;/,8DQG+1,6+,.$:$ 0LFURVWUXFWXUDO &KDQJH RI $J 1DQRSRURXV %RQGLQJ ,PSURYHG-RLQW6WUHQJWKZLWK6LQWHULQJ%RQGLQJ8VLQJ -RLQW'XULQJ7KHUPDO6WRUDJH7HVW 0LFURVFDOH &X 3DUWLFOHV E\ DQ 2[LGDWLRQUHGXFWLRQ QG 6\PS RQ 0LFURMRLQLQJ DQG $VVHPEO\ 3URFHVV 7HFKQRORJ\ LQ (OHFWURQLFV   SS   3URF  ,((( WK (OHFWURQLF &RPSRQHQWV DQG LQ-DSDQHVH  7HFKQRORJ\&RQI  SS

29 0+52++1,6+,.$:$67687680,11,6+,:$., <*$2.1$.$7$.1$*$768.$70$768<$0$ .,72.,6+,.$:$$.$768<$1.$0$'$DQG <6+,%$7$DQG0$0$12 06$,72 0LFURVWUXFWXUHVDQG0HFKDQLFDO3URSHUWLHVRI)ULFWLRQ 3UHVVXUHOHVV %RQGLQJ E\ 0LFUR6L]HG 6LOYHU 3DUWLFOH 6WLU :HOGHG %UDVVVWHHO 'LVVLPLODU /DS -RLQWV DW 3DVWHIRU+LJK7HPSHUDWXUH(OHFWURQLF3DFNDJLQJ 9DULRXV:HOGLQJ6SHHGV 0DWHU7UDQV9RO1R  SS 0DWHU'HV9RO  SS   06.,0.0$7681$*$<+.2&:/((DQG <*$2.1$.$7$.1$*$768.$<6+,%$7$DQG +1,6+,.$:$ 0$0$12 5HOLDELOLW\RI$J1DQRSRURXV%RQGLQJ-RLQWIRU+LJK 2SWLPL]LQJ 7RRO 'LDPHWHU IRU )ULFWLRQ 6WLU :HOGHG 7HPSHUDWXUH'LH$WWDFKXQGHU7HPSHUDWXUH&\FOLQJ %UDVVVWHHO/DS-RLQW 0DWHU7UDQV9RO1R  SS - 0DWHU 3URFHVV 7HFKQRO 9RO         SS + 1,6+,.$:$ $ 1 $/+$=$$ 6 +($$$/0$-,'  DQG0662/,0$1 (+.,0.1$.$7$DQG.+621* ,QWHUIDFLDO5HDFWLRQEHWZHHQ6Q$J&X0J6ROGHUDQG ,QYHVWLJDWLRQ RI 0LFURVWUXFWXUH DQG 0HFKDQLFDO (1,*6XEVWUDWH 3URSHUWLHV RI )ULFWLRQ 6WLU /DS-RLQWHG $+7 .H\(QJ0DWHU9RO  SS $OOR\V  0DWHU7UDQV9RO1R  SS ;/,8DQG+1,6+,.$:$  /RZSUHVVXUH &X&X %RQGLQJ 8VLQJ ,Q6LWX 0(1202726.$.,8&+,0$5$.,DQG.1$.$7$ 6XUIDFH0RGLILHG 0LFURVFDOH &X 3DUWLFOHV IRU 3RZHU 'LVVLPLODU -RLQLQJ EHWZHHQ $O DQG 0J $OOR\V ZLWK 'HYLFH3DFNDJLQJ )6: 6FU0DWHU9RO  SS 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK  WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ 202.+7$5,6=+28<&&+$1DQG+1,6+,.$:$ :6   SS (IIHFW RI =Q $GGLWLRQ RQ ,QWHUIDFLDO 5HDFWLRQV  %HWZHHQ6Q%L6ROGHUDQG&X6XEVWUDWH 0+$'$12<08.$,7.2%$6+,.8(12..$112 0DWHU7UDQV9RO1R  SS .1$.$7$DQG768*$  (IIHFW RI /DVHU %UD]LQJ &RQGLWLRQ DQG )LOOHU 0HWDO +1,6+,.$:$;/,8;:$1*$)8-,7$1.$0$'$ &RPSRVLWLRQRQ'LVVLPLODU/DS)LOOHW-RLQW)RUPDWLRQ DQG06$,72 RI$XVWHQLWLF6WDLQOHVV6WHHODQG3XUH7LWDQLXP %RQGLQJ 3URFHVV 8VLQJ 0LFURVFDOH $J 3DUWLFOH 3DVWH 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK IRU'LH$WWDFK WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ 3URF WK (OHFWURQLFV 6\VWHP,QWHJUDWLRQ :6   SS 7HFKQRORJ\&RQI  SSVSSVSS   .+$7$.(<$0$0(120272DQG.1$.$7$ 62+$5$DQG-&9$/0$/(77( 'LVVLPLODU :HOGLQJ EHWZHHQ 7L DQG $O ZLWK $UF 0LQDNDWD .XPDJXVX / pPHUJHQFH ' XQH 3HQVpH :HOGLQJ eFRORJLTXH(QWUH2ULHQW(W2FFLGHQW 1HZ(FRORJLFDO 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK ,GHD E\ -RLQLQJ (DVW DQG :HVW  *ROGHQ 1LKRQ WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ &ROOHFWLRQ %RRN  :6   SS 3XEOLVKHG E\ $QLPDYLYD 0XOWLOLQJXHH      LQ)UHQFK  .1$*$768.$'.,7$*$:$+<$0$2.$DQG  .1$.$7$ <$%(<<$0$=$.,<+,2.,DQG01$.$7$1, )ULFWLRQ /DS -RLQLQJ RI 7KHUPRSODVWLF 0DWHULDOV WR $SSOLFDWLRQWR'XSOH[6WDLQOHVV6WHHORI1DUURZ*DS &DUERQ6WHHO 2VFLOODWLRQ/DVHU:HOGLQJ ,6,-,QW9RO1R  SS 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK  WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ .1$*$768.$%;,$2/:8.1$7$7$66$(., :6   SS <.,7$0272DQG<,:$0272  'LVVLPLODU 0DWHULDOV -RLQLQJ RI 0HWDO  &DUERQ )LEHU  5HLQIRUFHG3ODVWLFE\5HVLVWDQFH6SRW:HOGLQJ  4--SQ:HOG6RF9RO1R    SS LQ-DSDQHVH 

30 .0,6$:$<7$.$2.$00$('$DQG<7$.$+$6+, .,7272.8'$+,=80,07$.$+$6+,..2+$0$ $GKHVLRQ ,QWHUIDFH )RUPDWLRQ DQG %RQGDELOLW\ RI +<$0$0272DQG+)8-,, 8OWUDVRQLF$O5LEERQ%RQGLQJ ,QFUHDVH LQ )DWLJXH 6WUHQJWK DQG &KDUS\ $EVRUEHG 0LFURMRLQLQJ DQG $VVHPEO\ 7HFKQRORJ\ LQ (QHUJLHV RI 7,*ZHOGHG 66 6WHHO 3ODWHV E\ (OHFWURQLFV9RO  SS LQ-DSDQHVH  )ULFWLRQ6WLU3URFHVVLQJ*UDLQ5HILQHPHQW  3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK .,7$.85$7768768,++,5$.,68&+,'$DQG WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ <7$.$+$6+, :6   SS $6WXG\RI+LJK3RZHU0DJQHVLXP$LU%DWWHU\  0LFURMRLQLQJ DQG $VVHPEO\ 7HFKQRORJ\ LQ +<$0$0272.,7207$.$+$6+,..2+$0$DQG (OHFWURQLFV 9RO    SS  LQ +)8-,, -DSDQHVH  ,QFUHDVH LQ )DWLJXH 6WUHQJWK RI %XWW:HOGHG  +LJK7HQVLOH6WHHO-RLQWVE\)ULFWLRQ6WLU3URFHVVLQJ <1$6+,.,+=+$200$('$DQG<7$.$+$6+, 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK 7KHRUHWLFDO $QDO\VLV RI 0LFUR 6KULQNDJH %HKDYLRU WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ GXULQJ6ROLG6WDWH%RQGLQJRI6XSHU3ODVWLF0DWHULDOV :6   SS 0LFURMRLQLQJ DQG $VVHPEO\ 7HFKQRORJ\ LQ  (OHFWURQLFV 9RO    SS  LQ 07$.$+$6+, -DSDQHVH  $QRGLF%RQGLQJRI0HWDOWR*ODVVDQG,WV$SSOLFDWLRQ  WR*ODVVJODVV%RQGLQJ .768&+,'$$%0+$/,/<7$.$+$6+,DQG &HUDP-SQ9RO1R  SS 00$('$ LQ-DSDQHVH  +HDW 7UHDWPHQW ZLWK &XUUHQW )ORZ IRU 5HPRYLQJ  +\GURJHQIURPSW\SH*D1DQGWKH(OHFWULF3URSHUWLHV ..2+$0$DQG.,72 ,PSURYHPHQW 'LUHFW 6ROLG6WDWH 'LIIXVLRQ %RQGLQJ RI =LUFRQLXP 0LFURMRLQLQJ DQG $VVHPEO\ 7HFKQRORJ\ LQ &DUELGH8VLQJD6SDUN3ODVPD6LQWHULQJ6\VWHP (OHFWURQLFV 9RO    SS  LQ 0DWHU'HV9RO  SS -DSDQHVH    -36+$50$6.*2$.66.80$5..2+$0$ <7$.$2.$.0,6$:$00$('$DQG<7$.$+$6+, $6+$50$DQG.,72 ,Q6LWX 2EVHUYDWLRQ RI ,QWHUIDFH $GKHVLRQ %HKDYLRU 7KHUPDO0DQDJHPHQWLQ0DQXIDFWXUHRI7KLQ:DOOHG GXULQJ8OWUDVRQLF$O5LEERQ%RQGLQJ &RPSRQHQWV 3URGXFHG E\ $UF%DVHG $GGLWLYH 0LFURMRLQLQJ DQG $VVHPEO\ 7HFKQRORJ\ LQ 0DQXIDFWXULQJ (OHFWURQLFV 9RO    SS  LQ 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK -DSDQHVH  WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\  :6   SS 7768768,.,7$.85$++,5$.,68&+,'$DQG  <7$.$+$6+, ..2+$0$.,7267(5$'$DQG6.,5,+$5$ $6WXG\RI&XUUHQW'HQVLW\RI0DJQHVLXP$LU%DWWHU\ 6L&6L& -RLQLQJ 8WLOL]LQJ 3DVWHOLNH 6L 3RZGHU LQ D 0LFURMRLQLQJ DQG $VVHPEO\ 7HFKQRORJ\ LQ *UDSKLWH3LSH+HDWHG(OHFWULFDOO\ (OHFWURQLFV 9RO    SS  LQ 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK -DSDQHVH  WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\  :6   SS   >0DWHULDOV0HWDOOXUJ\ :HOGDELOLW\@ 3;8(=<0$<.20,=2DQG+)8-,,  $FKLHYLQJ 8OWUDILQH*UDLQHG )HUULWH 6WUXFWXUH LQ '%(1$7,.,72..2+$0$+<$0$0272DQG )ULFWLRQ6WLU3URFHVVHG:HOG0HWDO (=248, 0DWHU/HWW9RO  SS ,Q6LWX2EVHUYDWLRQRI6HPLVROLG)H&6L*UD\  &DVW,URQ $0(/%$7$+*<70,85$58(-,DQG+)8-,, 6ROLG6WDWH3KHQRPHQD9RO  SS ,QYHVWLJDWLRQ LQWR )HDVLELOLW\ RI )6: 3URFHVV IRU  :HOGLQJ03D4XHQFKHGDQG7HPSHUHG6WHHO  0DWHU6FL(QJ$9RO  SS    

31 70,85$58(-,+)8-,,+.20,1(DQG 0,0$0<681+)8-,,10$67687680,DQG -<$1$*,0272 +085$.$:$ 6WDELOL]DWLRQRI$XVWHQLWHLQ/RZ&DUERQ&U0R6WHHO 3DUDPHWHUV &RQWUROOLQJ 6WUXFWXUH3URSHUWLHV E\ +LJK 6SHHG 'HIRUPDWLRQ GXULQJ )ULFWLRQ 6WLU 5HODWLRQVKLSV LQ )ULFWLRQ 6WLU :HOGLQJ RI 7KLFN  :HOGLQJ $OXPLQLXP$OOR\ 0DWHU'HV9RO  SS WK ,QW 6\PS RQ )ULFWLRQ 6WLU :HOGLQJ 9RO    SS33 06$.$085$.2+,6+,.27$<7$.(<$68  60,=81$5,DQG+)8-,, 600286$9,=$'(03285$19$5,)0*+$,1, 'LVVLPLODU 6SRW :HOGLQJ RI $OXPLQXP $OOR\ DQG +)8-,,DQG'&+81* *DOYDQL]HG 6WHHO E\ 0HWDO )ORZ  $SSOLFDWLRQ RI /DVHUDVVLVWHG )ULFWLRQ 6WLU 3URFHVVLQJ RI ,1/& )ULFWLRQ $QFKRU :HOGLQJ WR $OXPLQXP $OOR\ DQG 1LFNHO%DVHG6XSHUDOOR\6WLU=RQH&KDUDFWHULVWLFV =Q&RDWHG6WHHO 6FL7HFKQRO:HOG-RLQLQJ9RO1R   4--SQ:HOG6RF9RO1R   SS SS LQ-DSDQHVH    06$.$085$.2+,6+,.27$<7$.(<$68DQG 6<22158(-,DQG+)8-,, +)8-,, 0LFURVWUXFWXUHDQG7H[WXUH'LVWULEXWLRQRI7L$O9 )ULFWLRQ $QFKRU :HOGLQJ EHWZHHQ $O $OOR\ DQG $OOR\ -RLQWV )ULFWLRQ 6WLU :HOGHG EHORZ E7UDQVXV =Q&RDWHG6WHHO8VLQJ,QVHUW6WHHO 7HPSHUDWXUH 4--SQ:HOG6RF9RO1R   - 0DWHU 3URFHVV 7HFKQRO 9RO           SS LQ-DSDQHVH  SS   1;858(-,DQG+)8-,, 0,0$058(-,DQG+)8-,, '\QDPLFDQG6WDWLF&KDQJHRI*UDLQ6L]HDQG7H[WXUH (IIHFWRI2QOLQH5DSLG&RROLQJRQ0LFURVWUXFWXUHDQG RI&RSSHUGXULQJ)ULFWLRQ6WLU:HOGLQJ 0HFKDQLFDO 3URSHUWLHV RI )ULFWLRQ 6WLU :HOGHG - 0DWHU 3URFHVV 7HFKQRO 9RO         0HGLXP&DUERQ6WHHO SS - 0DWHU 3URFHVV 7HFKQRO 9RO          SS +)8-,0272+8('$58(-,DQG+)8-,,  ,PSURYHPHQWRI)DWLJXH3URSHUWLHVRI5HVLVWDQFH6SRW 70,85$58(-,+)8-,,7085$.$0,DQG :HOGHG -RLQWV LQ +LJK 6WUHQJWK 6WHHO 6KHHWV E\ 6KRW 7.2%$6+, %ODVW3URFHVVLQJ 6WDELOLW\ RI WKH 5HWDLQHG $XVWHQLWH LQ /RZDOOR\HG ,6,-,QW9RO1R  SS 7UDQVIRUPDWLRQ,QGXFHG3ODVWLFLW\$LGHG6WHHOVGXULQJ  )ULFWLRQ6WLU:HOGLQJ +)8-,, 6FL7HFKQRO:HOG-RLQLQJ9RO1R   *XLGHOLQH IRU 'HYHORSPHQW RI ,QQRYDWLYH SS 3URFHVVLQJ)6:  --SQ:HOG6RF9RO1R  SS +)8-,0272+8('$7,0$085$58(-,DQG+)8-,, LQ-DSDQHVH  6WXG\ RQ 6WDWLF DQG )DWLJXH 6WUHQJWK RI 6WUXFWXUDO  $GKHVLYH %RQGHG -RLQWV RI 6WHHO 6KHHWV IRU 785$,0.$0$,DQG+)8-,, $XWRPRWLYH$SSOLFDWLRQ (VWLPDWLRQ RI ,QWULQVLF &RQWDFW $QJOH RI 9DULRXV 4--SQ:HOG6RF9RO1R   /LTXLGVRQ37)(E\8WLOL]LQJ8OWUDVRQLF9LEUDWLRQ SS LQ-DSDQHVH    - 0DWHU (QJ 3HUIRUP 9RO  1R       SS 5.852,:$<$2.,+)8-,,*085$<$0$DQG  0<$68<$0$ 612+0$1'2+7$1,*$:$+)8-,,DQG$.,085$ /LQHDU )ULFWLRQ :HOGLQJ RI 0HGLXP &DUERQ 6WHHO  )ULFWLRQ 6WLU :HOGLQJ RI )+ 6WHHO IRU )XVLRQ WK ,QW 6\PS RQ )ULFWLRQ 6WLU :HOGLQJ 9RO  $SSOLFDWLRQV  SS33 -1XFO0DWHU9RO  SS          

32 +)8-,0272+8('$58(-,DQG+)8-,, +)8-,, ,PSURYHPHQW RI )DWLJXH 6WUHQJWK RI 5HVLVWDQFH 6SRW :HOGLQJ RI 6WHHO ZLWKRXW 0HOWLQJ  )RU 6LJQLILFDQW :HOGHG -RLQWV LQ +LJK 6WUHQJWK 6WHHO 6KHHWV E\ 6KRW 5HGXFWLRQRI&2(PLVVLRQV± %ODVW3URFHVVLQJ 7HNLMXNX /HFWXUHV 9RO    SS      3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK LQ-DSDQHVH  WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\  :6   SS +)8-,0272.+$0$'$72.$'$DQG+)8-,,  (IIHFWV RI +$= 6RIWHQLQJ RQ WKH 6WUHQJWK DQG 17$.(2.$+)8-,,<025,6$'$DQG<681 (ORQJDWLRQ RI 5HVLVWDQFH 6SRW:HOGHG -RLQWV LQ )XQGDPHQWDO 5ROH RI )6: 7RRO IRU 6WLU =RQH +LJK6WUHQJWK6WHHO6KHHWLQDQ,Q3ODQH7HQVLOH7HVW )RUPDWLRQ 4--SQ:HOG6RF9RO1R   3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK SS LQ-DSDQHVH  WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\  :6   SS < .,0272 7 1$*$2.$ + :$7$1$%( < 025,6$'$  DQG+)8-,, 0,0$0<681+)8-,,10$67687680,DQG 1DQRVWUXFWXUL]DWLRQ RI 0DJQHVLXP $OOR\ YLD )ULFWLRQ +085$.$:$ 6WLU/DS3URFHVVLQJ 5ROHRI7RRO3URILOHLQ*UDLQ6WUXFWXUH)RUPDWLRQDQG 0DWHU6FL)RUXP9RO  SS 7H[WXUH'HYHORSPHQWGXULQJ)ULFWLRQ6WLU:HOGLQJRI  7KLFN:HOGV 7 1$*$2.$ < .,0272 0 )8.8680, < 025,6$'$ 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK +)8-,,DQG+'+%+$'(6+,$ WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ 0LFURVWUXFWXUDO (YROXWLRQ RI %RG\&HQWUHG &XELF :6   SS )H$O $OOR\ E\ )ULFWLRQ 6WLU 3URFHVVLQJ ZLWK 6L&  3DUWLFOHV$GGLWLRQ 5.852,:$<$2.,+)8-,,*085$<$0$DQG 0DWHU6FL)RUXP9RO  SS 0<$68<$0$  $SSOLFDWLRQ RI /LQHDU )ULFWLRQ :HOGLQJ WR WKH 7KLQ <025,6$'$=/(,+)8-,,00$7686+,7$DQG &DUERQ6WHHO3ODWH 5,.('$ 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK (IIHFWRI'HIRUPDWLRQ5HVLVWDQFHRI6WHHORQ0DWHULDO WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ )ORZLQ)ULFWLRQ6WLU:HOGLQJ,QVLWX2EVHUYDWLRQE\ :6   SS ;UD\5DGLRJUDSK\  7HWVXWR+DJDQH9RO1R  SS ;/,8DQG+)8-,, LQ-DSDQHVH  &ODULILFDWLRQ RI 0LFURVWUXFWXUH (YROXWLRQ RI  $OXPLQXPGXULQJ)ULFWLRQ6WLU:HOGLQJ8VLQJ/LTXLG 71$*$2.$<.,0272+:$7$1$%(0)8.8680, &25DSLG&RROLQJ <025,6$'$DQG+)8-,, 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK ,PSURYHPHQWRI%RQGLQJ6WUHQJWKEHWZHHQ:&&R WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ &HPHQWHG &DUELGH DQG 7RRO 6WHHO E\ )ULFWLRQ 6WLU :6   SS 3URFHVVLQJ  WK ,QW 6\PS RQ )ULFWLRQ 6WLU :HOGLQJ 9RO  <6811768-,DQG+)8-,,  SS%% 0LFURVWUXFWXUH DQG 0HFKDQLFDO 3URSHUWLHV RI  'LVVLPLODU )ULFWLRQ 6WLU :HOGLQJ EHWZHHQ 8OWUDILQH 0=+28<025,6$'$DQG+)8-,, *UDLQHGDQG7$OXPLQXP$OOR\V $=; 6HULHV )ODPHUHVLVWDQW 0J $OOR\ -RLQWV )RUPHG 0HWDOV9RO   SDJHV  8VLQJ $V\PPHWU\ 'RXEOH6LGHG )6: ZLWK 'LIIHUHQW  /RZHU7RRO5RWDWLRQ5DWH 600286$9,=$'(03285$19$5,)0*+$,1, WK ,QW 6\PS RQ )ULFWLRQ 6WLU :HOGLQJ 9RO  +)8-,,DQG<681  SS%% '\QDPLF 5HFU\VWDOOL]DWLRQ 3KHQRPHQD GXULQJ  /DVHU$VVLVWHG )ULFWLRQ 6WLU 3URFHVVLQJ RI D 17$.(2.$<025,6$'$<681DQG+)8-,, 3UHFLSLWDWLRQ+DUGHQHG1LFNHO%DVH6XSHUDOOR\ &ODULILFDWLRQ RI )RUPDWLRQ 0HFKDQLVP RI 6WLU =RQH -$OOR\&RPSG9RO  SS 8VLQJDQ$GMXVWDEOH7RRO  WK ,QW 6\PS RQ )ULFWLRQ 6WLU :HOGLQJ 9RO    SS%%  

33 <025,6$'$=/(,DQG+)8-,, .&+201,,120,01$.$,+/,83)6$1726 &ODULILFDWLRQ RI 0DWHULDO )ORZ DQG 'HIHFW )RUPDWLRQ <,72+0,.('$0*(35((/DQG71$586+,0$ GXULQJ)ULFWLRQ6WLU:HOGLQJ ,PSURYHPHQW LQ 0HFKDQLFDO 6WUHQJWK RI /RZ&RVW  WK ,QW 6\PS RQ )ULFWLRQ 6WLU :HOGLQJ 9RO  E7\SH 7L0Q $OOR\V )DEULFDWHG E\ 0HWDO ,QMHFWLRQ  SS33 0ROGLQJWKURXJK&ROG5ROOLQJ  -$OOR\&RPSG9RO  SS <681<025,6$'$+)8-,,DQG1768-,  /RZ 5RWDWLRQ 6SHHG )ULFWLRQ 6WLU 6SRW :HOGLQJ RI 36$172601,,120,.&+201$.$,DQG+/,8 $O$OOR\V 'HYHORSPHQW RI 1HZ 7L0Q0R $OOR\V IRU 8VH LQ WK ,QW 6\PS RQ )ULFWLRQ 6WLU :HOGLQJ 9RO  %LRPHGLFDO$SSOLFDWLRQV  SS33 3URF WK :RUOG &RQI RQ 7LWDQLXP        SS <.,027271$*$2.$.0,=88&+,0)8.8680,   <025,6$'$DQG+)8-,, .&+201,,120,01$.$,+/,83)6$1726 7KHUPDO &RQGXFWLYLW\ RI $O6L& 3DUWLFXODWH <,72+DQG0,.('$ &RPSRVLWHV3URGXFHGE\)ULFWLRQ3RZGHU6LQWHULQJ 7HQVLOH DQG &RPSUHVVLYH 3URSHUWLHV RI /RZ&RVW --SQ6RF3RZGHU3RZGHU0HWDO9RO1R +LJK6WUHQJWK E7\SH 7L0Q $OOR\V )DEULFDWHG E\  SS 0HWDO,QMHFWLRQ0ROGLQJ  3URF WK :RUOG &RQI RQ 7LWDQLXP        0=+28<025,6$'$+)8-,,DQG7,6+,.$:$ SS )ODPHUHVLVWDQW0J$OOR\-RLQW)RUPHGE\$V\PPHWU\  'RXEOH6LGHG)6: 01,,120,01$.$,+/,8DQG.&+2 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK 'HYHORSPHQW RI %LRPHGLFDO 7LWDQLXP $OOR\V ZLWK D WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ )RFXVRQ&RQWUROOLQJ

34 3)6$172601,,120,+/,8.&+201$.$, %&+(1..21'2++,0$,-80('$DQG <,72+71$586+,0$DQG0,.('$ 07$.$+$6+, )DEULFDWLRQRI/RZ&RVW%HWD7\SH7L0Q$OOR\VIRU 6LPXOWDQHRXVO\ (QKDQFLQJ 6WUHQJWK DQG 'XFWLOLW\ RI %LRPHGLFDO $SSOLFDWLRQV E\ 0HWDO ,QMHFWLRQ 0ROGLQJ &DUERQ1DQRWXEHDOXPLQXP&RPSRVLWHVE\,PSURYLQJ 3URFHVVDQG7KHLU0HFKDQLFDO3URSHUWLHV %RQGLQJ&RQGLWLRQV - 0HFK %HKDY %LRPHG 0DWHU 9RO     6FU0DWHU9RO  SS SS   1$-$0$/$:7$1<)$5$=,/$..21'2+ 0,6,.01,,120,.&+201$.$,+/,8 +,0$,65$0(6+DQG$+$=/((1 +<,/0$=(5=+25,7$66$72DQG71$586+,0$ )DEULFDWLRQ DQG &RPSUHVVLYH 3URSHUWLHV RI /RZ WR 0LFURVWUXFWXUDO (YROXWLRQ DQG 0HFKDQLFDO 3URSHUWLHV 0HGLXP 3RURVLW\ &ORVHG&HOO 3RURXV $OXPLQXP RI %LRPHGLFDO &R&U0R $OOR\ 6XEMHFWHG WR 8VLQJ300$6SDFH+ROGHU7HFKQLTXH +LJK3UHVVXUH7RUVLRQ 0DWHULDOV9RO1R   - 0HFK %HKDY %LRPHG 0DWHU 9RO      SS -6+(19*b571(529È/-.(&6.(6..21'2+  $-b*(5DQG4:(, 3)6$172601,,120,+/,8.&+201$.$, 5HVLGXDO 6WUHVV DQG ,WV (IIHFW RQ WKH 0HFKDQLFDO $75(1**2126&+$03$*1(++(50$:$1DQG 3URSHUWLHV RI <GRSHG 0J $OOR\ )DEULFDWHG YLD 71$586+,0$ %DFN3UHVVXUH $VVLVWHG (TXDO &KDQQHO $QJXODU ,PSURYHPHQW RI 0LFURVWUXFWXUH 0HFKDQLFDO DQG 3UHVVLQJ (&$3%3  &RUURVLRQ 3URSHUWLHV RI %LRPHGLFDO 7L0Q $OOR\V E\ 0DWHU6FL(QJ$9RO  SS 0R$GGLWLRQ  0DWHU'HV9RO  SS %&+(1..21'2++,0$,DQG-80('$  (IIHFW RI ,QLWLDO 6WDWH RQ 'LVSHUVLRQ (YROXWLRQ RI 0,6,.01,,120,+/,8.&+201$.$, &DUERQ 1DQRWXEHV LQ $OXPLQLXP 0DWUL[ &RPSRVLWHV =+25,7$71$586+,0$DQG.8('$ GXULQJD+LJK(QHUJ\%DOO0LOOLQJ3URFHVV 2SWLPL]DWLRQ RI 0LFURVWUXFWXUH DQG 0HFKDQLFDO 3RZGHU0HWDOO9RO1R  SS 3URSHUWLHV RI &R&U0R $OOR\V E\ +LJK3UHVVXUH  7RUVLRQDQG6XEVHTXHQW6KRUW$QQHDOLQJ ..21'2+72*85,-80('$DQG+,0$, 0DWHU7UDQV9RO  SS $QLVRWURS\ RI 7H[WXUH&RQWUROOHG 3RZGHU 0HWDOOXUJ\  0DJQHVLXP$OOR\VYLD5ROOFRPSDFWLRQ3URFHVV < 6 /(( 0 1,,120, 0 1$.$, . 1$5,7$DQG - 0XOWLGLVFLS (QJ 6FL 6WXG -0(66  9RO   ++/,8 1R  SS (IIHFW RI 6ROXWH 2[\JHQ RQ &RPSUHVVLYH )DWLJXH  6WUHQJWK RI 6SLQDO )L[DWLRQ 5RGV 0DGH RI 77+5(58-,5$3$321*..21'2+DQG-80('$ 7L1E7D=U$OOR\V 7ULERORJLFDO %HKDYLRU RI 3RZGHU 0HWDOOXUJ\ 7L 0DWHU7UDQV9RO  SS &RPSRVLWHV 5HLQIRUFHG ZLWK 0XOWL:DOO &DUERQ  1DQRWXEHV 3)6$172601,,120,+/,801$.$,.&+2 - 0XOWLGLVFLS (QJ 6FL 6WXG -0(66  9RO   71$586+,0$.8('$12+7680+,5$12DQG 1R  SS <,72+  ,QWHUIDFH2UDO+HDOWK6FLHQFH %RRN  %&+(1DQG..21'2+ 3XEOLVKHGE\6SULQJHU   6LQWHULQJ %HKDYLRUV RI &DUERQ 1DQRWXEHV$OXPLQXP  &RPSRVLWH3RZGHUV 6 /,..21'2+ + ,0$, % &+(1 / -,$ - 80('$ 0HWDOV9RO   SDJHV  DQG<)8  6WUHQJWKHQLQJ %HKDYLRU RI LQ 6LWX6\QWKHVL]HG -6+(1+,0$,%&+(1;<(-80('$DQG 7L&7L% 7L &RPSRVLWHV E\ 3RZGHU 0HWDOOXUJ\ DQG ..21'2+ +RW([WUXVLRQ 'HIRUPDWLRQ 0HFKDQLVPV RI 3XUH 0J 0DWHULDOV 0DWHU'HV9RO  SS )DEULFDWHGE\8VLQJ3UH5ROOHG3RZGHUV  0DWHU6FL(QJ$9RO  SS        

35 +,0$,.<&+(1..21'2+-80('$DQG 6681$'$$7$.$*,0+$7$.(<$0$-80('$ +<76$, /6+8)(1*DQG..21'2+ (IIHFW RI 5HDFWLRQ EHWZHHQ $OOR\LQJ (OHPHQW DQG &RUURVLRQ 5HVLVWDQW (YDOXDWLRQ RI 2[\JHQ 9*&)VRQ0HFKDQLFDODQG(OHFWULFDO3URSHUWLHVRI30 6ROLG6ROXWLRQ6WUHQJWKHQHG3XUH7LWDQLXP &RSSHU$OOR\&RPSRVLWHV'LVSHUVHGZLWK9*&)V &KLDQJ0DL-6FL9RO  SS --SQ6RF3RZGHU3RZGHU0HWDO9RO1R   SS LQ-DSDQHVH  70,0272-80('$DQG..21'2+  6WUHQJWKHQLQJ%HKDYLRXUDQG0HFKDQLVPVRI([WUXGHG *4+$1-+6+(1;<(%&+(1+,0$, 3RZGHU0HWDOOXUJ\3XUH7L0DWHULDOV5HLQIRUFHGZLWK ..21'2+DQG:%'8 8ELTXLWRXV/LJKW(OHPHQWV 7KH ,QIOXHQFH RI &17V RQ WKH 0LFURVWUXFWXUH DQG 3RZGHU0HWDOO9RO1R  SS 'XFWLOLW\RI&170J&RPSRVLWHV  0DWHU/HWW9RO  SS 335,3$1$321*6/,-80('$DQG..21'2+  (IIHFW RI 7H[WXUHV RQ 7HQVLOH 3URSHUWLHV RI ([WUXGHG /-,$;:$1*%&+(1+,0$,6/,=/8DQG 7L9*&)&RPSRVLWHE\3RZGHU0HWDOOXUJ\5RXWH ..21'2+ 006(-RXUQDO9RO1R   0LFURVWUXFWXUDO (YROXWLRQ DQG &RPSHWLWLYH 5HDFWLRQ  %HKDYLRU RI 7L%& 6\VWHP XQGHU 6ROLG6WDWH 335,3$1$321*-80('$+,0$,07$.$+$6+,DQG 6LQWHULQJ ..21'2+ -$OOR\&RPSG9RO  SS 7HQVLOH6WUHQJWKRI7L0J$OOR\V'LVVLPLODU%RQGLQJ  0DWHULDO)DEULFDWHGE\6SDUN3ODVPD6LQWHULQJ +,0$,.<&+(1..21'2+-80('$DQG ,QW - (QJ ,QQRY 5HV 9RO  1R       +<76$, SS (IIHFW RI 5HDFWLRQ EHWZHHQ $OOR\LQJ (OHPHQW DQG  9*&)VRQ0HFKDQLFDODQG(OHFWULFDO3URSHUWLHVRI30 335,3$1$321*6.$5,<$7/8$1*9$5$1817 &RSSHU$OOR\&RPSRVLWHV'LVSHUVHGZLWK9*&)V -80('$67687680,07$.$+$6+,DQG..21'2+ 0DWHU7UDQV9RO1R  SS &RUURVLRQ %HKDYLRU DQG 6WUHQJWK RI 'LVVLPLODU  %RQGLQJ0DWHULDOEHWZHHQ7LDQG0J$OOR\VE\6SDUN ;;<(+,0$,-+6+(1%&+(1*4+$1 3ODVPD6LQWHULQJ -80('$07$.$+$6+,DQG..21'2+ 0DWHULDOV9RO   SDJHV  6WUHQJWKHQLQJWRXJKHQLQJ 0HFKDQLVP 6WXG\ RI  3RZGHU0HWDOOXUJ\7L6L$OOR\E\,QWHUUXSWHG,Q6LWX -80('$11$.$1,6+,..21'2+DQG+,0$, 7HQVLOH7HVWV 6XUIDFH 3RWHQWLDO $QDO\VLV RQ ,QLWLDO *DOYDQLF -$OOR\&RPSG9RO  SS &RUURVLRQRI7L0J$O'LVVLPLODU0DWHULDO  0DWHU&KHP3K\V9RO  SS 6/,+,0$,-80('$<)8DQG..21'2+  ,QYHVWLJDWLRQ RI +LJKVWUHQJWK /HDGIUHH 0DFKLQDEOH 335,3$1$321*-80('$+,0$,07$.$+$6+,DQG &X=Q 'XSOH[ *UDSKLWH %UDVVHV E\ 3RZGHU ..21'2+ 0HWDOOXUJ\ %RQGLQJ0HFKDQLVPRI7L$='LVVLPLODU0DWHULDOV 0DWHU6FL7HFKQRO9RO1R   )DEULFDWHGE\6SDUN3ODVPD6LQWHULQJ SS -0XOWLGLVFLS(QJ6FL6WXG -0(66 9RO1R    SS -6+(1+,0$,%&+(1;<(-80('$DQG  ..21'2+ -80('$+)8-,,DQG..21'2+ +LJKO\ 7KHUPDOO\ 6WDEOH 0LFURVWUXFWXUH LQ 0J )DEULFDWLRQ RI )LQH $PRUSKRXV 6LOLFD 3DUWLFOHV E\ )DEULFDWHG9LD3RZGHU5ROOLQJ 6XLQJ%ULWWOH&DUELGHV)RUPDWLRQLQ5LFH+XVNV -209RO1R  SS -6PDUW3URFHVV9RO1R  SS  LQ-DSDQHVH  +,0$,..21'2+DQG-80('$  0LFURVWUXFWXUDO DQG 0HFKDQLFDO 3URSHUWLHV RI &DUERQ -80('$70,0272+,0$,DQG..21'2+ 1DQRWXEHV5HLQIRUFHG&RSSHU0DWUL[&RPSRVLWHV )UDJPHQWDWLRQ 3URFHVV RI 7LWDQLXP 0DFKLQHG &KLSV --SQ6RF3RZGHU3RZGHU0HWDO9RO1R YLD+HDW7UHDWPHQWLQ+\GURJHQ$WPRVSKHUH  SS LQ-DSDQHVH  --SQ6RF3RZGHU3RZGHU0HWDO9RO1R   SS LQ-DSDQHVH   

36 6.$12$2%$+<$1*<0$768.$:$<6$72+ 6.,5,+$5$ +6(5,=$:$+6$.$6(*$:$+7$1,*$:$DQG $GGLWLYH 0DQXIDFWXULQJ RI &HUDPLF &RPSRQHQWV +$%( 8VLQJ/DVHU6FDQQLQJ6WHUHROLWKRJUDSK\ ([SHULPHQWDO$VVHVVPHQWRI7HPSHUDWXUH'LVWULEXWLRQ :HOGLQJLQWKH:RUOG9RO1R   LQ +HDW $IIHFWHG =RQH +$=  LQ 'LVVLPLODU -RLQW SS EHWZHHQ&U:6WHHODQG686/)DEULFDWHGE\  N:)LEHU/DVHU:HOGLQJ 6.,5,+$5$DQG.7$.$, 0HFK (QJ /HWW 9RO    SS +LJK 6SHHG )RUPDWLRQ RI )LQH &HUDPLF /D\HUV E\      1DQRSDUWLFOHV)LOOHU5RG7KHUPDO6SUD\LQJ  &HUDP7UDQV9RO  SS 6.$12$2%$+/<$1*<0$768.$:$  <6$72++6(5,=$:$+6$.$6(*$:$+7$1,*$:$ 6.,5,+$5$ DQG+$%( 1DQRSDUWLFOHV3DVWH,QMHFWLRQLQWR*DV)ODPH7KHUPDO 0LFURVWUXFWXUH DQG 0HFKDQLFDO 3URSHUW\ LQ +HDW 6SUD\IRU6SHHG\&HUDPLFV&RDWLQJ $IIHFWHG=RQH +$= LQ)+-RLQWHGZLWK686/ &HUDP7UDQV9RO  SS E\)LEHU/DVHU:HOGLQJ  1XFO0DWHU(QHUJ\9RO  SS 6.,5,+$5$  6WHUHROLWKRJUDSKLF $GGLWLYH 0DQXIDFWXULQJ RI 6ROLG +,128( (OHFWURO\WH 'HQGULWHV ZLWK 2UGHUHG 3RURXV 6WUXFWXUHV :HOGLQJ0HWDOOXUJ\, IRU)XHO&HOO0LQLDWXUL]DWLRQV 7H[WERRN IRU VXPPHU VFKRRO RI ZHOGLQJ &HUDP7UDQV9RO  SS HQJLQHHULQJ  SS LQ-DSDQHVH    6.,5,+$5$ 6.,5,+$5$ $GGLWLYH 0DQXIDFWXULQJ RI 0LFUR )XQFWLRQDO 6WHUHROLWKRJUDSKLF $GGLWLYH 0DQXIDFWXULQJ RI 0LFUR 6WUXFWXUHV WKURXJK 'LDPHWHU 9DULDEOH /DVHU 3KRWRQLF&U\VWDOVIRU7HUDKHUW]:DYH&RQWURO 6WHUHROLWKRJUDSK\ DQG 3UHFXUVRU 6LQWHULQJ +HDW 3URF 0DWHULDOV 6FLHQFH DQG 7HFKQRORJ\  7UHDWPHQWV 06 7    &HUDP7UDQV9RO  SS   6.,5,+$5$ 6.,5,+$5$ 5KHRORJLFDO &KDUDFWHUL]DWLRQ RI )LQH 3DUWLFOHV 6WHUHROLWKRJUDSKLF $GGLWLYH 0DQXIDFWXULQJ RI 'LVSHUVHG0DWHULDOVIRU7KHUPDO6SUD\ &HUDPLFV'HQGULWHVWR0RGXODWH(QHUJ\DQG0DWHULDO 7KHUPDO6SUD\9RO1R  SS LQ )ORZV -DSDQHVH  &HUDP7UDQV9RO  SS   .121$.$DQG6.,5,+$5$ 6.,5,+$5$ 6WHUHROLWKRJUDSKLF$GGLWLYH0DQXIDFWXULQJRI&HUDPLF (QJLQHHUHG &HUDPLFV &XUUHQW 6WDWXV DQG )XWXUH &RPSRQHQWV 3URVSHFWV %RRN  QG 6\PS RQ 0LFURMRLQLQJ DQG $VVHPEO\ 3XEOLVKHGE\:,/(<   7HFKQRORJ\ LQ (OHFWURQLFV 9RO    SS   LQ-DSDQHVH  ,=',1,&0(5$%$1$/.<$0$0272=7$1  62+$5$/70$1&,&DQG2%0,/26(9,& 6.,5,+$5$DQG.121$.$ 3(* DQG 393 $VVLVWHG 6ROYRWKHUPDO 6\QWKHVLV RI 7KHUPDO 1DQRSDUWLFOH 6SUD\LQJ WR &UHDWH &HUDPLF 1D<)

37 01$.$<$0$56$6$.,&2*,1277$1$.$ +6(5,=$:$7+$<$0,DQG)0,<$6$.$ .025,7$080(76862+$5$=7$1 3UHGLFWLRQRI,QKHUHQW6WUDLQLQ)ULFWLRQ6WLU:HOGLQJ <1,6+,085$+$.$6$.$.6$72&180$.2 E\8VLQJ$1HZ&RXSOHG$QDO\VLVRI036DQG)(0 67$.$0,DQG$.21'2 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK 7LWDQLXP3HUR[LGH1DQRSDUWLFOHV(QKDQFHG&\WRWR[LF WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ (IIHFWVRI;UD\,UUDGLDWLRQDJDLQVW3DQFUHDWLF&DQFHU :6   SS 0RGHO WKURXJK 5HDFWLYH 2[\JHQ 6SHFLHV *HQHUDWLRQ  LQ9LWURDQGLQ9LYR +6(5,=$:$0085$.$0,<025,6$'$+)8-,, 5DGLDW2QFRO9RO   612*$0,71$*$6$.$DQG+7$1,*$:$  ,QIOXHQFH RI )ULFWLRQ 6WLU :HOGLQJ &RQGLWLRQV RQ ..2,.(.<$0$027262+$5$068*,<$0$ -RLQDELOLW\ RI 2[LGH 'LVSHUVLRQ 6WUHQJWKHQHG 6WHHO  <1$.$12DQG.)8-,, )+)HUULWLF0DUWHQVLWLF6WHHO-RLQW 3KRWRHOHFWURFKHPLFDO 3URSHUW\ 'LIIHUHQFHV EHWZHHQ 1XFO0DWHU(QHUJ\9RO  SS 1L2 'RWV DQG /D\HU RQ Q7\SH *D1 IRU :DWHU  6SOLWWLQJ 7.$:$%$7$77$*$:$76$.,0272<.$<$025,   -(OHFWURFKHP6RF9RO    02+$7$<<$0$6+,7$(7$085$+<26+,1$5, SS++ 6$,+$5$)0,1$0,+0,085$DQG<+$*,+$5$  3URSRVDOIRUD1HZ&72'&DOFXODWLRQ)RUPXOD 0+$'$12<085$,7.2%$6+,.8(12..$112 (QJ)UDFW0HFK9RO  SS .1$.$7$DQG768*$  (IIHFW RI /DVHU %UD]LQJ &RQGLWLRQ DQG )LOOHU 0HWDO <6(.2<,0$,00,768<$12*8&+,DQG &RPSRVLWLRQRQ'LVVLPLODU/DS)LOOHW-RLQW)RUPDWLRQ )0,1$0, RI$XVWHQLWLF6WDLQOHVV6WHHODQG3XUH7LWDQLXP %ULWWOH)UDFWXUH$VVHVVPHQWRI(PEHGGHG)ODZLQ+HDW WK$QQXDO$VVHPEO\RI,QW,QVW:HOGLQJ ,,:  $IIHFWHG=RQH%DVHGRQ:HLEXOO6WUHVV&ULWHULRQ  ,,:'RF;䊡 :HOGLQJLQWKH:RUOG9RO1R    SS   >0HFKDQLFV6WUHQJWK 6WUXFWXUDO'HVLJQ@ )0,1$0,02+$7$<7$.$6+,0$+6+,0$18.,  <6+,0$'$768=8.,6,*,7,6+,,0.,1()8&+, +<)871$*$6$.$70852*$:+*8$1 7<$0$*8&+,71$.$*20,DQG<+$*,+$5$ 612*$0,+6(5,=$:$6)*(1*.<$%88&+,DQG :(6  IRU %ULWWOH )UDFWXUH $VVHVVPHQW RI 6WHHO $.,085$ &RPSRQHQWVXQGHU6HLVPLF&RQGLWLRQV3DUW,)UDFWXUH 3ODVWLF'HIRUPDWLRQ%HKDYLRUDQG%RQGLQJ6WUHQJWKRI $VVHVVPHQW3URFHGXUH $Q(%:-RLQWEHWZHHQ&U2'6DQG-/)(VWLPDWHG 6WUXFWXUDO ,QWHJULW\ 3URFHGLD VW (XURSHDQ &RQI %\6\PPHWULF)RXU3RLQW%HQG7HVWV&RPELQHG:LWK RQ)UDFWXUH 9RO  SS )(0$QDO\VLV  )XVLRQ(QJ'HVLJQ9RO  SS <6+,0$'$+6+,0$18.,6,*,DQG)0,1$0,  :(6  IRU %ULWWOH )UDFWXUH $VVHVVPHQW RI 6WHHO $0$(.$:$$.$:$+$5$+6(5,=$:$DQG &RPSRQHQWVXQGHU6HLVPLF&RQGLWLRQV3DUW,,&KDQJH +085$.$:$ LQ 0HFKDQLFDO 3URSHUWLHV RI 6WUXFWXUDO 6WHHOV E\ 3UHGLFWLRQ RI :HOG 5HVLGXDO 6WUHVV LQ D 3UHVVXUL]HG 3UHVWUDLQDQG'\QDPLF/RDGLQJ :DWHU5HDFWRU3UHVVXUL]HU6XUJH1R]]OH 6WUXFWXUDO ,QWHJULW\ 3URFHGLD VW (XURSHDQ &RQI -3UHVV9HVVHO7HFKQRO7UDQV$60(9RO RQ)UDFWXUH 9RO  SS 1R  SS   6,*,<6+,0$'$0.,1()8&+,DQG)0,1$0, +6(5,=$:$<2.8'$DQG+085$.$:$ :(6  IRU %ULWWOH )UDFWXUH $VVHVVPHQW RI 6WHHO )LQLWH(OHPHQW$QDO\VLVRI'HIRUPDWLRQLQ(DUO\6WDJH &RPSRQHQWV XQGHU 6HLVPLF &RQGLWLRQV3DUW ,,, RI 0XOWLSDVV &LUFXPIHUHQWLDO 'LVVLPLODU :HOGLQJ RI &KDQJH LQ &72' )UDFWXUH 7RXJKQHVV RI 6WUXFWXUDO 7KLFNZDOOHG3LSHVZLWK1DUURZ*DS 6WHHOVE\3UHVWUDLQDQG'\QDPLF/RDGLQJ :HOGLQJLQWKH:RUOG9RO1R   6WUXFWXUDO ,QWHJULW\ 3URFHGLD VW (XURSHDQ &RQI SS RQ)UDFWXUH 9RO  SS        

38 7<$0$*8&+,0.,1()8&+,6,*,<6+,0$'$ 50$76802727,6+,.$:$67687680,+.$:$12 <7$.$6+,0$DQG)0,1$0, DQG.<$0$'$ :(6  IRU %ULWWOH )UDFWXUH $VVHVVPHQW RI 6WHHO $QDO\WLFDO9HULILFDWLRQRI5HVLGXDO6WUHVV'LVWULEXWLRQ &RPSRQHQWV XQGHU 6HLVPLF &RQGLWLRQV3DUW ,9 LQ6WHHO3ODWHDIWHU+DPPHU3HHQLQJ &KDQJH LQ 0HFKDQLFDO 3URSHUWLHV DQG )UDFWXUH - 6WUXFW (QJ 9RO $   SS      7RXJKQHVVRI6WHHO:HOG+$=E\3UHVWUDLQ LQ-DSDQHVH  6WUXFWXUDO ,QWHJULW\ 3URFHGLD VW (XURSHDQ &RQI  RQ)UDFWXUH 9RO  SS 50$7680272-52&.(1%$&++.$:$12  7,6+,.$:$DQG67687680, 02+$7$<7$.$6+,0$DQG)0,1$0, )DWLJXH6WUHQJWK,PSURYHPHQWE\3HHQLQJIURP%DFN :(6  IRU %ULWWOH )UDFWXUH $VVHVVPHQW RI 6WHHO 6XUIDFHRIWKH:HOG7RH &RPSRQHQWV XQGHU 6HLVPLF &RQGLWLRQV3DUW 9 0DLQWHQDQFH 0RQLWRULQJ 6DIHW\ 5LVN DQG (TXLYDOHQW &72' 5DWLR IRU &RUUHFWLRQ RI &RQVWUDLQW 5HVLOLHQFHRI%ULGJHVDQG%ULGJH1HWZRUNV   /RVVLQ%HDPWR&ROXPQ&RQQHFWLRQV SS 6WUXFWXUDO ,QWHJULW\ 3URFHGLD VW (XURSHDQ &RQI  RQ)UDFWXUH 9RO  SS 50$7680272-52&.(1%$&++.$:$12  7,6+,.$:$DQG67687680, <7$.$6+,0$02+$7$7,6+,,<+$*,+$5$DQG )DWLJXH6WUHQJWK,PSURYHPHQWRI5LE7R'HFN-RLQWV )0,1$0, RI2UWKRWURSLF6WHHO'HFNE\3HHQLQJ :(6  IRU %ULWWOH )UDFWXUH $VVHVVPHQW RI 6WHHO 0DLQWHQDQFH 0RQLWRULQJ 6DIHW\ 5LVN DQG &RPSRQHQWV XQGHU 6HLVPLF &RQGLWLRQV3DUW 9, 5HVLOLHQFHRI%ULGJHVDQG%ULGJH1HWZRUNV   $SSOLFDWLRQ RI :(6  WR %HDPWR&ROXPQ SS &RQQHFWLRQV  6WUXFWXUDO ,QWHJULW\ 3URFHGLD VW (XURSHDQ &RQI 67687680,.8('$DQG5),1&$72 RQ)UDFWXUH 9RO  SS 1XPHULFDO 6WXG\ RI 5HOD[DWLRQ %HKDYLRU RI +DPPHU  3HHQLQJ,QGXFHG5HVLGXDO6WUHVVHV <6(.2<,0$,00,768<$12*8&+,DQG 3URFWK,QW2IIVKRUHDQG3RODU(QJLQHHULQJ&RQI )0,1$0,  SS (IIHFWVRI&UDFN&RQILJXUDWLRQDQG5HVLGXDO6WUHVVRQ  )UDFWXUH 'ULYLQJ )RUFH IRU :HOGHG -RLQW ZLWK 5),1&$72DQG67687680, (PEHGGHG)ODZ 'XFWLOH 'DPDJH $FFXPXODWLRQ XQGHU &\FOLF /RDGLQJ 6WUXFWXUDO ,QWHJULW\ 3URFHGLD VW (XURSHDQ &RQI (YDOXDWHGE\WKH([WHQGHG6XEORDGLQJ6XUIDFH RQ)UDFWXUH 9RO  SS 3URFWK,QW2IIVKRUHDQG3RODU(QJLQHHULQJ&RQI   SS )0,1$0,  6WUHQJWKDQG)UDFWXUHRI:HOGHG-RLQWV 76$127(,085$$+,526(67687680, 7H[WERRN IRU VXPPHU VFKRRO RI ZHOGLQJ 00,=87$1,<.$:$+,726.$7$<$0$ HQJLQHHULQJ  SS LQ-DSDQHVH  .$5$.$:$$6+,5276+2%8.0$6$.,DQG  <6$12 <7$.$6+,0$02+$7$.,126(+<$0$2.$ )HPWRVHFRQG /DVHU 3HHQLQJ IRU ,PSURYHPHQW RI <1$.$1,6+,DQG)0,1$0, )DWLJXH 3URSHUWLHV RI /DVHU :HOGHG  $OXPLQXP (YDOXDWLRQ RI &KDUS\ ,PSDFW 7RXJKQHVV 8VLQJ $OOR\ 6LGH*URRYHG 6SHFLPHQ IRU +\EULG /DVHU$UF :HOGV WK ,,: $QQXDO $VVHPEO\ DQG ,QW &RQI  RI8OWUD+LJK6WUHQJWK6WHHO  &,9 :HOGLQJLQWKH:RUOG9RO1R    SS 67687680,.8('$DQG5),1&$72  5HOD[DWLRQ %HKDYLRU RI 3HHQLQJ ,QGXFHG 5HVLGXDO 67687680,+020,,DQG5),1&$72 6WUHVVHV 3UHGLFWHG E\ DQ (ODVWRSODVWLFLW\ 0RGHO ZLWK ,QIOXHQFH RI 7DQJHQWLDO 3ODVWLFLW\ IRU (ODVWRSODVWLF &\FOLF+DUGHQLQJDQG6RIWHQLQJ(IIHFWV %HKDYLRU RI D 7KLQ :DOO 6WHHO %ULGJH 3LHU XQGHU WK ,,: $QQXDO $VVHPEO\ DQG ,QW &RQI  /DWHUDO%LGLUHFWLRQDO/RDG3DWKV  ,,:'RF;,,, - 6WUXFW (QJ 9RO $   SS        LQ-DSDQHVH      

39 5),1&$72DQG67687680, >*HQHUDO:HOGLQJ@ 1XPHULFDO 0RGHOOLQJ RI 'XFWLOH 'DPDJH 0HFKDQLFV  &RXSOHGZLWKDQ8QFRQYHQWLRQDO3ODVWLFLW\0RGHO )0,1$0,et al. )UDFW6WUXFW,QWHJULW\9RO  SS *XLGHOLQHVIRU5HSDLU:HOGLQJRI3UHVVXUH(TXLSPHQW  LQ5HILQHULHVDQG&KHPLFDO3ODQWVQG(GLWLRQ %RRN  67687680,.025,7$5),1&$72DQG+020,, 3XEOLVKHG E\ &KHPLFDO 3ODQW :HOGLQJ 5HVHDUFK )DWLJXH /LIH $VVHVVPHQW RI D 1RQ/RDG &DUU\LQJ &RPPLWWHH7KH-DSDQ:HOGLQJHQJLQHHULQJ6RFLHW\ )LOOHW -RLQW &RQVLGHULQJ WKH (IIHFWV RI D &\FOLF   3ODVWLFLW\DQG:HOG%HDG6KDSH  )UDFW6WUXFW,QWHJULW\9RO  SS )0,1$0, et al.  :5&%XOOHWLQ*XLGHOLQHVIRU5HSDLU:HOGLQJRI 7+,5$,'(6,*,77$*$:$5,.('$DQG 3UHVVXUH(TXLSPHQWLQ5HILQHULHVDQG&KHPLFDO3ODQWV 67687680, %RRN  ,QYHVWLJDWLRQ RI 0LFURVWUXFWXUDO )DFWRUV RQ )DWLJXH 3XEOLVKHG E\ :HOGLQJ 5HVHDUFK &RXQFLO ,QF &UDFN ,QLWLDWLRQ %HKDYLRU 8VLQJ &U\VWDO 3ODVWLFLW\   )LQLWH(OHPHQW0HWKRG  3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ :6   SS  5),1&$72DQG67687680, 1XPHULFDO 0RGHO RI 'XFWLOH 'DPDJH 8VLQJ WKH 6XEORDGLQJ6XUIDFH0RGHO 3URFWK,QW&RQIRQ7UHQGVLQ:HOGLQJ5HVHDUFK WK,QW:HOGLQJ6\PSRI-DSDQ:HOGLQJ6RFLHW\ :6   SS  76$127(,085$5.$6+,:$%$5$70$768'$ <,66+,.,$+,526(67687680,.$5$.$:$ 7+$6+,0272.0$6$.,DQG<6$12 )HPWRVHFRQG/DVHU3HHQLQJRI$OXPLQXP$OOR\ ZLWKRXW D 6DFULILFLDORYHUOD\ XQGHU $WPRVSKHULF &RQGLWLRQV - /DVHU $SSOLFDWLRQV 9RO    SS   <6$.,12.6+,2'(10$7680272.,126(DQG 67687680, $SSOLFDWLRQRI/DVHU:HOGLQJRQ+LJK6WUHQJWK6WHHO IRU%XLOGLQJ +6$  - &RQVWU 6WHHO 9RO    SS      LQ-DSDQHVH   01$.$7$1,+<872$1$*$,.7$1,'0$ +025,7$67867687680,DQG072<26$'$ 'HYHORSPHQW RI 0XOWLD[LDO 3LSH -RLQW ZLWK +LJK )DWLJXH6WUHQJWK WK ,,: $QQXDO $VVHPEO\ DQG ,QW &RQI   ,,:'RF;  71$*$,5.$6$,.8(12002&+,=8.,DQG 768*$ 5HODWLRQEHWZHHQ5HVLGXDO6WUHVVDQG)DWLJXH6WUHQJWK IRU(OHFWURQ%HDP:HOGHG-RLQWVRI6KHHW0HWDO ,6,-,QW9RO1R  SS

40 Editorial Members Chairman ································ FUJII Hidetoshi TANAKA Manabu KONDOH Katsuyoshi NAITO Makio LIU Huihong

Published by Joining and Welding Research Institute, Osaka University 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan Telephone (06) 6877-5111 Facsimile (06) 6879-8689

Published in December 2016

Printed by SEIEI Printing Co., Ltd. 2-10-33, GAMO, Joto-ku, OSAKA

[This article is not for sale.] Transactions of JWRI, Vol. 45, 2016 CONTENTS

RESEARCH ACTIVITIES OF JWRI

Qualitative and quantitative analyses of arc characteristics in SMAW...... 1 - Effects of nonthermal plasma jet irradiation on the selective production of H2O2 and NO2 in liquid water...... 2 Cell spreading on titanium periodic nanostructures with periods of 200, 300 and 600 nm produced by femtosecond laser irradiation...... 3

Relationship between melt flows based on three-dimensional X-ray transmission in-situ observation and spatter reduction by angle of incidence and defocusing distance in high-power laser welding of stainless steel...... 4

Direct solid-state diffusion bonding of zirconium carbide using a spark plasma sintering system...... 5

Stabilization of austenite in low carbon Cr-Mo steel by high speed deformation during friction stir welding...... 6

Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions ...... 7

Finite element analysis of deformation in early stage of multi-pass circumferential dissimilar welding of thick-walled pipes with narrow gap...... 8

Evaluation of Charpy impact toughness using side-grooved specimen for hybrid laser-arc welds of ultra-high-strength steel...... 9

Fatigue life assessment of a non-load carrying fillet joint considering the effects of a cyclic plasticity and weld bead shape ...... 10

Fundamental study on intragranular transformation mechanism in low alloy steel weld metal ...... 11

Insertion of lattice strains into ordered LiNi0.5Mn1.5O4 spinel by mechanical stress: A comparison of perfect versus imperfect structures as a cathode for Li-ion of batteries...... 12

Additive manufacturing of ceramic components using laser scanning stereolithography ...... 13

Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging...... 14

Application to duplex stainless steel of narrow gap oscillation laser welding ...... 15

Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo...... 16

Activity report on “The Project to Create Research and Educational Hubs for Innovative Manufacturing in Asia” ...... 17

Friction lap joining of thermoplastic materials to carbon steel...... 18

The influence of oxygen diffusion path at carbon cathode on electrochemical discharge performance in Mg-air batteries...... 19

Hydrothermal synthesis of yttria-stabilized zirconia nanocrystals with controlled yttria content...... 20

Experimental assessment of temperature distribution in heat affected zone (HAZ) in dissimilar joint between 8Cr-2W steel and SUS316L fabricated by 4 kW fiber laser welding...... 21

Biological response to nanostructure of carbon nanotube/titanium composite surfaces ...... 22

CONTRIBUTIONS TO OTHER ORGANIZATIONS ...... 23