Intercalibration of Solar Soft X-Ray Broad Band Measurements from SOLRAD 9 Through GOES-12

Total Page:16

File Type:pdf, Size:1020Kb

Intercalibration of Solar Soft X-Ray Broad Band Measurements from SOLRAD 9 Through GOES-12 Intercalibration of Solar Soft X-Ray Broad Band Measurements from SOLRAD 9 through GOES-12 Werner M. Neupert Solar Physics A Journal for Solar and Solar-Stellar Research and the Study of Solar Terrestrial Physics ISSN 0038-0938 Sol Phys DOI 10.1007/s11207-011-9825-3 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media B.V.. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Solar Phys DOI 10.1007/s11207-011-9825-3 Intercalibration of Solar Soft X-Ray Broad Band Measurements from SOLRAD 9 through GOES-12 Werner M. Neupert Received: 1 March 2011 / Accepted: 12 July 2011 © Springer Science+Business Media B.V. 2011 Abstract The two-band soft X-ray observations of solar flares made by the Naval Research Laboratory’s (NRL) SOLar RADiation (SOLRAD) satellites and by the Geostationary Or- biting Environmental Satellites (GOES) operated by the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Prediction Center have produced a nearly contin- uous record of solar flare observations over a period of more than forty years (1969 – 2011). However, early GOES observations (i.e., GOES-2) and later (GOES-8 and subsequent mis- sions) are not directly comparable due to changes in the conversion of measured currents to integrated fluxes in the two spectral bands that were adopted: 0.05 – 0.3 (or 0.4) nm, which we refer to as XS and 0.1 – 0.8 nm (XL). Furthermore, additional flux adjustments, using overlapping data sets, were imposed to provide consistency of flare-flux levels from mission to mission. This article evaluates the results of these changes and compares experimental GOES-8/GOES-2 results with changes predicted from modeled flare spectra. The factors by which recent GOES observations can be matched to GOES-2 are then optimized by adapt- ing a technique first used to extrapolate GOES X-ray fluxes above saturation using iono- spheric VLF radio phase enhancements. A nearly 20% increase in published GOES-8 XL data would be required to match to GOES-2 XL fluxes, which were based on observed flare spectra. On the other hand, a factor of 1.07 would match GOES-8 and later flat-spectrum 0.1 – 0.8 nm fluxes to GOES-2 XL if the latter data were converted to a flat-spectrum basis. Finally, GOES-8 observations are compared to solar soft X-ray estimates made concur- rently with other techniques. Published GOES-8 0.1 – 0.8 nm fluxes are found to be 0.59 of the mean of these other determinations. Rescaling GOES to a realistic flare spectrum and removing a 30% downward adjustment applied to the GOES-8 measurements during initial data processing would place GOES-8 and later GOES XL fluxes at 0.94 of this XL mean. GOES-2 on the same scale would lie at about 0.70 of this mean. Significant uncertainties in the absolute levels of broad band soft X-ray fluxes still remain, however. Keywords GOES · Soft X-ray · Solar flares · SOLRAD W.M. Neupert () Boulder, CO, USA e-mail: [email protected] Author's personal copy W.M. Neupert 1. Introduction Broad-band soft X-ray observations of solar flares made over more than five solar sunspot cycles have long contributed to studies of ionospheric perturbations during such events, and, more recently, provided early warning of potential impacts of heliospheric disturbances on Earth-orbiting space missions (Hill et al., 2005). Initially such observations, using sounding rockets, were used to identify the spectral range of flare emissions responsible for D-region effects (Friedman, 1960; Kreplin, Chubb, and Friedman, 1962). They have subsequently been used to infer the properties of the regions on the Sun responsible for the enhanced radiation levels (e.g., Garcia, 1994; Feldman et al., 1996). More recently, GOES fluxes have been used in evaluating the impact of flare radiation on the Earth’s ionosphere (Meier et al., 2002 and references therein). Because of the reliance on the Naval Research Laboratory’s (NRL) SOLar RADiation (SOLRAD) satellites and, since 1974, on the National Oceanic and Atmospheric Adminis- tration’s (NOAA) Geostationary Operational Environmental Satellites (GOES) to charac- terize soft X-ray flare levels, it is worthwhile to examine the consistency of these many data sets. The soft X-ray sensors were always used in pairs: a short-wavelength channel, here- after called XS, with a nominal 0.05 – 0.4 nm pass band, and a long X-ray (XL) channel, with a nominal 0.1 – 0.8 nm pass band. I first compute factors required to adjust reported fluxes for the differing assumptions of incident soft X-ray spectral distribution and (in one instance) spectral range adopted by SOLRAD and GOES (Kahler and Kreplin, 1991; Don- nelly, Grubb, and Cowley, 1977). These factors are then compared to observed ratios of X-ray flare fluxes recorded simultaneously by two spacecraft, such as two different GOES. GOES-2 is used as a reference as it overlapped both SOLRAD 11 and later GOES mis- sions. A relationship between the peak intensity of flares in the XL pass band and the ratio of XL and XS fluxes (Thomson, Rodger, and Cliverd, 2005) is then applied to refine the consistency of observations from SOLRAD 9 to GOES-8. Finally, recent GOES measurements are cross-calibrated against concurrent determina- tions of soft X-ray flare fluxes made with other techniques (Aschwanden and Alexander, 2001;Sylwesteret al., 2005; Rodgers et al., 2006; Väänänen, Alha, and Huovelin, 2009). Al- though general agreement is found, further measurements and intercomparisons are needed before absolute levels of the solar flare flux can be reported with confidence. 2. Broad Band Observations by SOLRAD and GOES 2.1. SOLRAD Observations The first soft X-ray observations to be reported routinely were made by the Naval Re- search Laboratory under the direction of Herbert Friedman and Robert Kreplin beginning with sounding rockets from 1949 through 1959 (Kreplin, 1961) followed by satellite ob- servations, beginning in May 1961 (Kreplin, Chubb, and Friedman, 1962). Spectral bands (0.1 – 0.5 nm, 0.1 – 0.8 nm, 0.1 – 2.0 nm, 0.8 – 1.6 nm, and 4.4 – 6.0 nm) of soft X-ray emis- sion were monitored with ion-chamber photometers. A Geiger–Müller counter was flown in 1959 to monitor 0.05 – 0.3 nm fluxes (Gregory and Kreplin, 1967). Subsequent missions, starting with SOLRAD 10, used an ion chamber for the 0.05 – 0.3 nm range (Dere, Horan, and Kreplin, 1974). Horan (1971) made use of the original currents from the NRL XS and XL sensors combined with expressions for free–free and free–bound emission by Culhane (1969) to infer flare isothermal temperatures and emission measures from the SOLRAD observations. Author's personal copy Intercalibration of Solar Soft X-Ray Broad Band Measurements A comprehensive calibration of the SOLRAD sensors was undertaken by Meekins et al., 1974). These laboratory calibrations were first applied to sensors on SOLRAD 11. In-flight comparisons of SOLRAD 11 with SOLRAD 10 indicated that these two sets of data were consistent (Kahler and Kreplin, 1991). Fluxes initially reported by SOLRAD 9 evidently were lower, as Kahler and Kreplin (1991) reported that multipliers of 1.2 for XS data and 2.1 for XL should be applied to SOLRAD 9 fluxes to be consistent with SOLRAD 11. Kreplin and Horan (1992) later recommended a factor of 2.2 for XL (with no mention of change for XS). SOLRAD observations used in the present analysis were published in graphical form in Solar Geophysical Data and extracted using the Un-Scan-It digitizing software package. 2.2. GOES Observations Observations in two spectral bands, 0.05 – 0.4 nm and 0.1 – 0.8 nm, were begun by NOAA’s Space Environment Laboratory (now Space Weather Prediction Center: SWPC) in May 1974 (Donnelly, Grubb, and Cowley, 1977) and continue to the present. Data are archived at the National Geophysical Data Center (http://www.ngdc.noaa.gov) and these are referred to in this article as “published” or “reported” fluxes. The primary mission of the GOES program is to support space-weather monitoring and forecasting at the SWPC (Hill et al., 2005). Detailed calibration of early sensors was carried out by Unzicker and Don- nelly (1974). The design of the sensors themselves has changed little since the inception of the program. A beryllium window was added over the GOES-1 sensors (and successor instruments) to provide ultraviolet shielding (Donnelly, Grubb, and Cowley, 1977). Pre- launch calibration from GOES-8 onward included accurate measurements of ion-chamber windows, chamber pressure, and sensitivity to X-rays from a radioactive 55Fe source. Beginning with GOES-3 (Garcia, 1994), a change in the nominal wavelength applica- ble to reported XS fluxes was made as were spectral assumptions used in data process- ing. At several points in the program modifications were made in the post-launch data processing to match newly launched sensor fluxes with then-operating sensors (Panamet- rics, 1987; Hill et al., 2005). These changes are summarized in Table 1. The reduction of 17% made to GOES-6 XL to match GOES-5 was made by increasing the XL trans- fer function (see next section).
Recommended publications
  • AERONET Annual Review
    AERONET Annual Review Colleagues, your AERONET sun and sky scanning network has continued to be a valued resource for basic aerosol research, satellite validation, global and regional aerosol model validation and synergism with field campaigns, in situ and RS observations. Following is my tome on our current state, issues we are facing and plans for the future. 1.0 Introduction and News 2.0 Calibration 3.0 Issues 4.0 Future Developments 5.0 Related Initiatives **Note** Wayne Newcomb, our good friend and primary person responsible for keeping instruments functional network wide and maintaining the swapout rotation through the system among many other things, has made progress in his battle with cancer. After two weeks on life support and multiple surgeries, he’s breathing on his own, talking and is annoyed that he wasn’t able to vote. We’re encouraged by his determination and strength. We need everyone’s help to fill the void left by his absence. We especially need everyone’s support to keep their equipment running in the field. Please see the proactive site manager section under ‘3.0 Issues’. 1.0 Introduction and News I’m very happy to announce the third AERONET workshop and conference to be held in mid August 2009 at or near Hangzhou, China. Although the details will be forthcoming in the months ahead, the plan is for a combined technical and training forum and aerosol science conference that will emphasize surface, airborne and satellite research with several themes. Our host and organizer will be Prof. Jiang Hong of Zhejiang Forestry University and facilitated by Prof.
    [Show full text]
  • STUDIES on HARD X-RAY EMISSION from SOLAR FLARES and on Cyclotrop ~- RADIATION from a COLD Magnelt)Pllima
    STUDIES ON HARD X-RAY EMISSION FROM SOLAR FLARES AND ON CYCLOTROp ~- RADIATION FROM A COLD MAGNElt)PLliMA PETER HOYNG 30VST: Solar flare of 7 August 1972, taken 0.5 A offband Ha at UT 1520:20. field of viev 3' x 4' (courtesy Big Bear Solar Observatory) STELLINGEN Het elektromagnetische veld in een willekeurig medium is op na- tuurlijke -wijze splitsbaar in stralingsvelden (index s) en Coulomb- velden (index c) -. ->->-->-->- 1 S •"*• **•_ p = D [p ^ o] ; J=J + J ; J =--— -r— D [div J - o] ; c s sec 4TT dt c s -> -+.-•-»•-* -+• E - E + E ; B = 3 [B Ho]. se s c Beide deelvelden met hun bronnen voldoen aan de volledige Maxwell vergelijkingen: div. D = o; div B ~ o div D = 4TTO s 3 c ' c -* 13-* rot E = -—•=— B rot E = o s c at s c * 4T -* 1 J •* rot H = J + — T— D s c s c ót s Het verdient aanbeveling bij de behandeling van elektromagnetische problemen deze splitsing vóóraf uit te voeren en (zonodig) beide vergelijkingssystemen gescheiden op te lossen. II Het leidt ir. principe tot onjuiste resultaten wanneer men bij de berekening van het uitgestraalde vermogen per eenheid van ruimte- hoek een scalaire uitdrukking als uitgangspunt neemt -- zoals bij- .-r -f 3-f- •+• voorbeeld . E"J d r, de arbeid verricht door het door J opgewekte elektrische veld. dit proefschrift, hoofdstuk VI. UI Het onlangs door Molodensky gegeven bewijs van de stabiliteit van het randwaardeprobleem van een krachtvrij magnetisch veld is onjuist; veeleer wordt nogmaals aangetoond dat zeer kritische beoordeling onontbeerlijk is om een tijdschrift op peil te houden.
    [Show full text]
  • Aeronautics and Space Report of the President
    Aeronautics and Space Report of the President 1971 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 197 I Activities i W Executive Office of the President National Aeronautics and Space Council Washington, D.C. 20502 PRESIDENT’S MESSAGE OF TRANSMITTAL To the Congress of the United States: I am pleased to transmit herewith a report of our national progress in aero- nautics and space activities during 1971. This report shows that we have made forward strides toward each of the six objectives which I set forth for a balanced space program in my statement of March 7, 1970. Aided by the improvements we have made in mobility, our explorers on the moon last summer produced new, exciting and useful evidence on the structure and origin of the moon. Several phenomena which they uncovered are now under study. Our unmanned nearby observation of Mars is similarly valuable and significant for the advancement of science. During 1971, we gave added emphasis to aeronautics activities which contribute substantially to improved travel conditions, safety and security, and we gained in- creasing recognition that space and aeronautical research serves in many ways to keep us in the forefront of man’s technological achievements. There can be little doubt that the investments we are now making in explora- tions of the unknown are but a prelude to the accomplishments of mankind in future generations. THEWHITE HOUSE, March 1972 iii Table of Contents Page Page I . Progress Toward U.S.
    [Show full text]
  • Jacques Tiziou Space Collection
    Jacques Tiziou Space Collection Isaac Middleton and Melissa A. N. Keiser 2019 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series : Files, (bulk 1960-2011)............................................................................... 4 Series : Photography, (bulk 1960-2011)................................................................. 25 Jacques Tiziou Space Collection NASM.2018.0078 Collection Overview Repository: National Air and Space Museum Archives Title: Jacques Tiziou Space Collection Identifier: NASM.2018.0078 Date: (bulk 1960s through
    [Show full text]
  • National Reconnaissance Office Review and Redaction Guide
    NRO Approved for Release 16 Dec 2010 —Tep-nm.T7ymqtmthitmemf- (u) National Reconnaissance Office Review and Redaction Guide For Automatic Declassification Of 25-Year-Old Information Version 1.0 2008 Edition Approved: Scott F. Large Director DECL ON: 25x1, 20590201 DRV FROM: NRO Classification Guide 6.0, 20 May 2005 NRO Approved for Release 16 Dec 2010 (U) Table of Contents (U) Preface (U) Background 1 (U) General Methodology 2 (U) File Series Exemptions 4 (U) Continued Exemption from Declassification 4 1. (U) Reveal Information that Involves the Application of Intelligence Sources and Methods (25X1) 6 1.1 (U) Document Administration 7 1.2 (U) About the National Reconnaissance Program (NRP) 10 1.2.1 (U) Fact of Satellite Reconnaissance 10 1.2.2 (U) National Reconnaissance Program Information 12 1.2.3 (U) Organizational Relationships 16 1.2.3.1. (U) SAF/SS 16 1.2.3.2. (U) SAF/SP (Program A) 18 1.2.3.3. (U) CIA (Program B) 18 1.2.3.4. (U) Navy (Program C) 19 1.2.3.5. (U) CIA/Air Force (Program D) 19 1.2.3.6. (U) Defense Recon Support Program (DRSP/DSRP) 19 1.3 (U) Satellite Imagery (IMINT) Systems 21 1.3.1 (U) Imagery System Information 21 1.3.2 (U) Non-Operational IMINT Systems 25 1.3.3 (U) Current and Future IMINT Operational Systems 32 1.3.4 (U) Meteorological Forecasting 33 1.3.5 (U) IMINT System Ground Operations 34 1.4 (U) Signals Intelligence (SIGINT) Systems 36 1.4.1 (U) Signals Intelligence System Information 36 1.4.2 (U) Non-Operational SIGINT Systems 38 1.4.3 (U) Current and Future SIGINT Operational Systems 40 1.4.4 (U) SIGINT
    [Show full text]
  • Solar Radiation (SOLRAD) Satellite Summary Table As of 26 March 2004
    Solar Radiation (SOLRAD) Satellite Summary Table as of 26 March 2004 Satellite Name Launch Date Transmitter(s) Vanguard 3 18 September 1959 108.00 Mc/s 30 mW FM/PM IRIG 2, 3, 4 & 5 Explorer 7 13 October 1959 19.9915 Mc/s 660 mW FM/AM IRIG 2, 3, 4 & 5 Solrad Dummy 13 April 1960 Inert Test Article Sun Ray 1 22 June 1960 108.00 Mc/s 40 mW FM/AM IRIG Ch 4 & Ch 5 Sun Ray 2 30 November 1960 (Failure) 108.00 Mc/s 40 mW FM/AM IRIG Ch 4 & Ch 5 here Sun Ray 3 29 June 1961 (Partial failure) 108.00 Mc/s Sun Ray 4 24 January 1962 (Failure) 108.09 Mc/s 100 mW FM/AM Sun Ray 4B 26 April 1962 (Failure) 108.00 Mc/s 100 mW FM/AM 20 inch sp Sun Ray 5 Not Launched Sun Ray 6 15 June 1963 136.890 MHz 100 mW FM/AM SolRad 7A 11 January 1964 136.887 MHz 100 mW FM/AM IRIG Ch 3 to 8 SolRad 7B 9 March 1965 136.800 MHz 100 mW FM/AM IRIG Ch 3 to 8 SolRad 8 19 November 1965 137.41 MHz 1W Stored data playback Explorer 30 136.44 MHz 100mW 24 inch sphere Solar Explorer A 136.53 MHz 100mW SolRad 9 5 March 1968 136.41 MHz 500 mW Stored data playback Explorer 37 136.52 MHz 150 mW Primary RT FM/AM IRIG 3 to 8 Solar Explorer B 137.59 MHz 150 mW RT FM/AM IRIG 3 to 7, 12 PCM SolRad 10 8 July 1971 136.38 MHz 250 mW 5W on cmd TM2 - PCM/PM or Stored Data or Stellrad on cmd Explorer 44 137.71 MHz 250 mW TM1 - PAM/PCM/FM/PM RT analog (chs 4-8, COSPAR Ch 7) Solar Explorer-C and digital PCM (ch 12) SolRad 11A & 14 March 1976 137.44 MHz 5W (11A), 136.53 MHz 5W (11B) SolRad 11B 102.4 bps PCM/BiØ-L/PM convolutional encoded (R=½, k=7) Early X-ray missions Name Vanguard 3 Launch Date 1959 September 18.22 UTC SAO ID 1959 ? (Eta) COSPAR ID 1959-07A Catalog No.
    [Show full text]
  • NASA Astronauts
    PUBLISHED BY Public Affairs Divisio~l Washington. D.C. 20546 1983 IColor4-by-5 inch transpar- available free to information lead and sent to: Non-informstionmedia may obtain identical material for a fee through a photographic contractor by using the order forms in the rear of this book. These photqraphs are government publications-not subject to copyright They may not be used to state oiimply the endorsement by NASA or by any NASA employee of a commercial product piocess or service, or used in any other manner that might mislead. Accordingly, it is requested that if any photograph is used in advertising and other commercial promotion. layout and copy be submitted to NASA prior to release. Front cover: "Lift-off of the Columbia-STS-2 by artist Paul Salmon 82-HC-292 82-ti-304 r 8arnr;w u vowzn u)rorr ~ nsrvnv~~nrnno................................................ .-- Seasat .......................................................................... 197 Skylab 1 Selected Pictures .......................................................150 Skylab 2 Selected Pictures ........................................................ 151 Skylab 3 Selected Pictures ........................................................152 Skylab 4 Selected Pictures ........................................................ 153 SpacoColony ...................................................................183 Space Shuttle ...................................................................171 Space Stations ..................................................................198 \libinn 1 1f.d Apoiio 17/Earth 72-HC-928 72-H-1578 Apolb B/Earth Rise 68-HC-870 68-H-1401 Voyager ;//Saturn 81-HC-520 81-H-582 Voyager I/Ssturian System 80-HC-647 80-H-866 Voyager IN~lpiterSystem 79-HC-256 79-H-356 Viking 2 on Mars 76-HC-855 76-H-870 Apollo 11 /Aldrin 69-HC-1253 69-H-682 Apollo !I /Aldrin 69-HC-684 69-H-1255 STS-I /Young and Crippen 79-HC-206 79-H-275 STS-1- ! QTPLaunch of the Columbia" 82-HC-23 82-H-22 Major Launches NAME UUNCH VEHICLE MISSIONIREMARKS 1956 VANGUARD Dec.
    [Show full text]
  • Table of Artificial Satellites Launched in 1971
    This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library & Archives Service from an original paper document in the ITU Library & Archives collections. La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections de ce service. Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del Servicio de Biblioteca y Archivos de la UIT. (ITU) ﻟﻼﺗﺼﺎﻻﺕ ﺍﻟﺪﻭﻟﻲ ﺍﻻﺗﺤﺎﺩ ﻓﻲ ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﺃﺟﺮﺍﻩ ﺍﻟﻀﻮﺋﻲ ﺑﺎﻟﻤﺴﺢ ﺗﺼﻮﻳﺮ ﻧﺘﺎﺝ (PDF) ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻨﺴﺨﺔ ﻫﺬﻩ .ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﻓﻲ ﺍﻟﻤﺘﻮﻓﺮﺓ ﺍﻟﻮﺛﺎﺋﻖ ﺿﻤﻦ ﺃﺻﻠﻴﺔ ﻭﺭﻗﻴﺔ ﻭﺛﻴﻘﺔ ﻣﻦ ﻧﻘﻼ ً◌ 此电子版(PDF版本)由国际电信联盟(ITU)图书馆和档案室利用存于该处的纸质文件扫描提供。 Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе Международного союза электросвязи путем сканирования исходного документа в бумажной форме из библиотечно-архивной службы МСЭ. © International Telecommunication Union A COSMOS-428 1971 57A E 0 COSMOS-429 1971 61A COSMGS-430 1971 62A COSMOS-431 1971 65A APOLLO-14 1971 8A COSMOS-432 1971 66A EOLE 1971 71A OAR-901 1971 67C APOLLO-15 1971 63A COSMOS-433 1971 68A EXPLORER-43 1971 19A CAR-907 1971 67D APOLLO-15 CSUB•SAT 3 1971 63D COSMOS-434 1971 69A EXPLORER-44 1971 58A OREOL-1 1971 119A ARIEL-4 1971 109A COSMOS-435 1971 72A EXPLORER-45 1971 96A OSO- 7 1971 83A COSMOS-436
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • Journal Vol21 No106 Pp311-340
    Vol. Vol. 21 No. 106 Journal of the Radio Research Laboratories 1974 Printed Printed in Tokyo, Japan pp. 311-340 UDC 523. 7: 525 “1972.08 ” SOLAR-TERRESTRIAL DISTURBANCES OF AUGUST 1972 4. 4. SOLAR X-RAY FLARES AND THEIR CORRESPONDING SUDDEN IONOSPHERIC DISTURBANCES By Mitsuo OHSHIO (Received (Received Feb. 22, 1973) ABSTRACT Four Four solar X-ray flares which occurred early in August, 1972, were large, being being inferred from sudden ionospheric disturbances caused by the pertinent flares. The time variations of the solar X-ray flux intensity observed could not be obtained obtained at the maximum stage of these four events owing to the artificial satel- lite lite eclipse and/or the saturation of the detector. Both of estimation from extra- polation polation in the shape of time variation and from the maximum phase deviation of of the normalized sudden phase anomaly (SP A) observed show that the maximum solar solar X-ray (1 ~8 A) flare flux intensities or the maximum enhanced ones for August August 4 and 7 were as large as to exceed 1 erg cm-2 s-1. Their decreasing stages stages were as long as to last more than half a day. The use of a flare model valid valid for the arrival of solar ionizing agents of the largest class during the pertinent pertinent period showed that the enhanced electron density in the ionosphere was larger larger than the quiet one by about two orders at the altitude of 70 km and by 2 to to 1 times at the altitude of 90 to 120 km.
    [Show full text]
  • Space Test Program
    The Space Congress® Proceedings 1973 (10th) Technology Today and Tomorrow Apr 1st, 8:00 AM Space Test Program Neal T. Anderson Project Officer, HQ SAMSO/Spaee Test Program, Los Angeles, CA 90009 Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Anderson, Neal T., "Space Test Program" (1973). The Space Congress® Proceedings. 4. https://commons.erau.edu/space-congress-proceedings/proceedings-1973-10th/session-6/4 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. SPACE TEST PROGRAM Neal T. Anderson, Capt, USAF Project Officer HQ SAMSO/Spaee Test Program Los Angeles, CA 90009 ABSTRACT The Department of Defense Space Test Program is a certain operational payloads. The only limitation unique organization dedicated to stimulating space- on this charter is that the payloads must not be related technology by providing launch and orbital authorized their own means of spaceflight. The support for research and development payloads. Program was never intended to be a launch agency This paper delineates program management techniques, for the large space programs. past accomplishments, and current activities. The benefit to the DOD is discussed. To achieve this objective a governing philosophy was established which required the Program to: INTRODUCTION • be comprehensive in scope In large measure the military power of the United • select and support the most States depends upon the possession of space systems beneficial payloads which are products of superior technology.
    [Show full text]
  • The Relation Betweeg Solar Cell Flight Performance Data and Materials and Manufacturing Data Report No. 3 Third Quarterly Report
    The Relation BetweeG Solar Cell Flight Performance Data and Materials and Manufacturing Data Report No. 3 Third Quarterly Report Contract No. NASW-1732 Prepared by The CARA Corporation 101 N. 33rd Street Philadelphia, Pennsylvania ’S. R. Pollack, Ph.D. G. R. Zin, P’h.D. Principal Investigator L. A. Girifalco, Ph.D. Staff Scientists ABS TRACT This quarter was spent in acquiring data for the flights chosen for study in the last quarter. Analysis of the environment for the individual flights has begun. This work is progressing with the viewpoint of trying to simplify the environmental specification. The most difficult aspect of the environmental analysis is the speci- fication of the vehicle's thermal history. The vehicles under study are therefore being grouped according to subclassifica- tions based on the nature of the vehicle as the first attempt to find any performance correlations. All of the specific data for the flights under study have been extracted from the literature obtained from the computer searches conducted earlier. These data are incomplete and in- adequate for this study. Examples of the nature of this data were reported in the last quarterly,report and are shown in 8 this report. The data required for this study must be obtained by personal contacts with individuals who have been connected with the various flights. The appropriate individuals to contact have been identified for 75 of the 77 flights included in this study. These people have been and are being contacted to obtain the required data. i Table of Contents Fage I. Introduction 1 11. The Selected Flights and Environment 3 111.
    [Show full text]