Étude Des Saumures Naturelles Et Industrielles: Approche Expérimentale Et Par Modélisation De L'extraction Du Lithium Par Évaporation

Total Page:16

File Type:pdf, Size:1020Kb

Étude Des Saumures Naturelles Et Industrielles: Approche Expérimentale Et Par Modélisation De L'extraction Du Lithium Par Évaporation THÈSE UNIVERSITÉ DE PAU ET DES PAYS DE L’ADOUR ÉCOLE DOCTORALE DES SCIENCES EXACTES ET LEURS APPLICATIONS Présentée et soutenue le 13 octobre 2017 par Anne-Laure THADEE pour obtenir le grade de docteur de l’Université de Pau et des Pays de l’Adour Spécialité : Génie des Procédés Etude des saumures naturelles et industrielles : approche expérimentale et par modélisation de l’extraction du lithium par évaporation MEMBRES DU JURY RAPPORTEURS • Mme. Karine BALLERAT-BUSSEROLLES IR-CNRS Docteur-HDR / Université Blaise Pascale-ICCF • M. Lionel MERCURY Professeur / Université d’Orléans EXAMINATEURS • M. Arnault LASSIN Docteur / BRGM • Mme. Anna CHROSTOWSKA Professeur/Université de Pau et des Pays de l’Adour DIRECTEURS • M. Pierre CÉZAC Professeur / Université de Pau et de Pays de l’Adour • M. Jean-Paul SERIN Professeur / Université de Pau et de Pays de l’Adour INVITE • M. Sylvain GUIGNOT Docteur BRGM Contenu Liste des figures ....................................................................................................................................... 5 Liste des tableaux .................................................................................................................................... 7 Introduction ........................................................................................................................................... 11 1. Bibliographie ...................................................................................................................................... 15 1.1 Usage et demande en sels de lithium ......................................................................................... 15 1.2 Les ressources en lithium ............................................................................................................ 18 A. Sources de lithium ................................................................................................................. 18 B. Formation des saumures lithinifères ..................................................................................... 20 C. Répartition des ressources en lithium ................................................................................... 22 D. Composition des saumures majeures ................................................................................... 23 1.3 Les procédés de production des sels de lithium ......................................................................... 26 A. Procédés de production de sels de lithium à partir de saumures ......................................... 27 B. Comparaison des procédés d’extraction du lithium sous forme de carbonates .................. 32 C. Extraction du lithium et impacts sur l’environnement ......................................................... 34 1.4. Conclusion du chapitre bibliographique .................................................................................... 35 Références du chapitre bibliographique ........................................................................................... 36 2. Modélisation des saumures .............................................................................................................. 43 2.1. Description thermodynamique et géochimique des saumures ................................................. 43 A. Propriétés macroscopiques des saumures ............................................................................ 43 B. Propriétés thermodynamiques et géochimiques .................................................................. 45 C. Définitions ............................................................................................................................. 50 D. Modèle de Pitzer ................................................................................................................... 50 2.2. Modélisation ............................................................................................................................... 53 A. L’outil de modélisation : PhreeqC ......................................................................................... 53 B. Optimisation des systèmes électrolytiques lithinifères ........................................................ 55 2.3. Scénario, prédimensionnement et sensibilité ............................................................................ 65 A. Simulation de l’évaporation d’une saumure naturelle ......................................................... 65 B. Etude de sensibilité ............................................................................................................... 69 C. Scénario exploratoire de production de zabuyelite .............................................................. 75 D. Conclusion ............................................................................................................................. 79 2.4 Conclusion générale du chapitre de modélisation des saumures ............................................... 80 3 Références du chapitre modélisation ............................................................................................... 81 3. Expérimental ..................................................................................................................................... 85 3.1. Matériels..................................................................................................................................... 85 A. Les pilotes de travail .............................................................................................................. 85 B. Techniques d’analyse du solide ............................................................................................. 87 C. Techniques d’analyses liquides : la chromatographie ionique.............................................. 89 D. Produits utilisés ..................................................................................................................... 91 3.2. Expériences ................................................................................................................................. 92 A. Etalonnage des appareils de chromatographie ionique........................................................ 92 B. Préparation des saumures..................................................................................................... 94 C. Essais sur l’enceinte climatique ............................................................................................. 96 D. Essais sur le pilote de cristallisation .................................................................................... 102 3.3. Discussion ................................................................................................................................. 107 3.4 Conclusion du chapitre expérimental ....................................................................................... 111 Conclusion ........................................................................................................................................... 113 Annexes ............................................................................................................................................... 116 Annexe A : Liste des brevets étudiés ............................................................................................... 117 Annexe B : Diagrammes de solubilité des systèmes Li-Na-K-Ca-Mg-Cl-SO4-CO3............................. 121 Annexe C: Influence de la température sur la solubilité du Li2CO3 ................................................. 129 Annexe D : Détail des analyses TEM pour identification des cristaux............................................. 131 4 Liste des figures Figure 1 : Consommation de lithium par secteur d’activité, d’après Jaskula (2016) ............................ 15 Figure 2 : Evolution de la consommation mondiale de lithium au cours du temps .............................. 17 Figure 3 : Exemple d’une roche lithinifère (Brown et al., 2016) ........................................................... 19 Figure 4 : Modèle de dépôt des saumures lithinifères (Bradley et al. 2013) ........................................ 21 Figure 5 : Distribution des gisements de lithium (Labbé et Daw 2012) ................................................ 22 Figure 6 : Estimation de la teneur en lithium des différentes saumures (% massique) ........................ 24 Figure 7 : Sels de lithium et leurs applications (Ebensperger et al. 2005) ............................................ 26 Figure 8 : Déroulement d'un procédé d'extraction ............................................................................... 27 Figure 9 : Illustration de la pression osmotique 훱 ................................................................................ 49 Figure 10 : Exemple d’un diagramme de solubilité pour le système Li-K-Cl à 25°C .............................. 60 Figure 11 : Exemple d’ajustement pour le système Li-Na-SO4, ............................................................. 61 Figure 12 : Exemple d’ajustement pour le système Li-Ca-Cl (Lassin, com. pers.) ................................. 62 Figure 13 : Simulation de l'évaporation d'une saumure type Atacama (naturelle) .............................. 66 Figure 14 :Simulation de l'évaporation de la solution Atacama2'......................................................... 68 Figure 15 :Séquence d'évaporation pour Atacama 2' + 0.2 mol de Na2CO3 et suivi du pH................... 69 Figure 16 : Séquence d’évaporation simulée pour Atacama2’ + 0.4 mol de Na2CO3 et suivi du pH ....
Recommended publications
  • WO 2015/084416 Al 11 June 2015 (11.06.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/084416 Al 11 June 2015 (11.06.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C09K 8/05 (2006.01) C07C 51/42 (2006.01) kind of national protection available): AE, AG, AL, AM, COW 17/00 (2006.01) E21B 21/06 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 13/076445 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 19 December 2013 (19. 12.2013) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/910,976 3 December 2013 (03. 12.2013) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: CABOT CORPORATION [US/US]; Two GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, Seaport Lane, Suite 1300, Boston, MA 01220 (US).
    [Show full text]
  • High Purity Inorganics
    High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality.
    [Show full text]
  • Sodium Sulfate - Wikipedia, the Free Encyclopedia Page 1 of 7
    Sodium sulfate - Wikipedia, the free encyclopedia Page 1 of 7 Sodium sulfate From Wikipedia, the free encyclopedia Sodium sulfate is the sodium salt of Sodium sulfate sulfuric acid. When anhydrous, it is a white crystalline solid of formula Na2SO4 known as the mineral thenardite; the decahydrate Na2SO4·10H2O has been known as Glauber's salt or, historically, sal mirabilis since the 17th century. Another Other names solid is the heptahydrate, which transforms Thenardite (mineral) to mirabilite when cooled. With an annual Glauber's salt (decahydrate) production of 6 million tonnes, it is a major Sal mirabilis (decahydrate) commodity chemical and one of the most Mirabilite (decahydrate) damaging salts in structure conservation: when it grows in the pores of stones it can Identifiers achieve high levels of pressure, causing CAS number 7757-82-6 , structures to crack. 7727-73-3 (decahydrate) Sodium sulfate is mainly used for the PubChem 24436 manufacture of detergents and in the Kraft ChemSpider 22844 process of paper pulping. About two-thirds UNII 36KCS0R750 of the world's production is from mirabilite, the natural mineral form of the decahydrate, RTECS number WE1650000 and the remainder from by-products of Jmol-3D images Image 1 chemical processes such as hydrochloric (http://chemapps.stolaf.edu/jmol/jmol.php? acid production. model=%5BNa%2B%5D.%5BNa%2B% 5D.%5BO-%5DS%28%5BO-%5D%29% 28%3DO%29%3DO) Contents SMILES InChI ■ 1History ■ 2 Physical and chemical properties Properties ■ 3 Production Molecular Na2SO4 ■ 3.1 Natural sources formula
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds
    EPA/690/R-16/012F l Final 9-02-2016 Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (CASRN 7440-17-7, Rubidium) (CASRN 7791-11-9, Rubidium Chloride) (CASRN 1310-82-3, Rubidium Hydroxide) (CASRN 7790-29-6, Rubidium Iodide) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGERS Puttappa R. Dodmane, BVSc&AH, MVSc, PhD National Center for Environmental Assessment, Cincinnati, OH Scott C. Wesselkamper, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY SRC, Inc. 7502 Round Pond Road North Syracuse, NY 13212 PRIMARY INTERNAL REVIEWER Paul G. Reinhart, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC This document was externally peer reviewed under contract to: Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this PPRTV assessment should be directed to the EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). ii Rubidium Compounds TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS AND ACRONYMS .................................................. iv BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1
    [Show full text]
  • US5359094.Pdf
    |||||||||||||I|| US005359094A United States Patent 19 11 Patent Number: 5,359,094 Teles et al. 45) Date of Patent: Oct. 25, 1994 (54) PREPARATION OF GLYCERYL 3,379,693 4/1968 Hostettler et al. .................. 549/229 CARBONATE 4,231,937 1/1980 Kao et al. ............ ... 549/229 4,314,945 2/1982 McMullen et al. ... 549/229 75 Inventors: Joaquim H. Teles, Ludwigshafen; 4,344,881 8/1982 Strege et al. ..... ... 549/229 Norbert Rieber, Mannheim; 4,483,994 11/1984 Jacobson ...... ... 549/229 Wolfgang Harder, Weinheim, all of 4,658,041 4/1987 Renga .......... ... 549/229 Fed. Rep. of Germany 4,835,289 5/1989 Brindapke ... ... 549/229 73) Assignee: BASF Aktiengesellschaft, 5,091,543 2/1992 Grey .................... ... 549/229 Ludwigshafen, Fed. Rep. of 5, 18,818, 6/1992 Delledonine et al. ............... 549/229 Germany FOREIGN PATENT DOCUMENTS (21) Appl. No.: 99,142 2222488 11/1972 Fed. Rep. of Germany. 2265228 12/1976 Fed. Rep. of Germany . 22 Filed: Jul. 29, 1993 1382313 1/1975 United Kingdom . 30 Foreign Application Priority Data Primary Examiner-Cecilia Tsang Aug. 5, 1992 (DE Fed. Rep. of Germany ....... 4225870 Attorney, Agent, or Firm-Keil & Weinkauf 51 Int. Cl. ............................................ CO7D 317/36 (57) ABSTRACT 52 U.S. C. .................................... 549/228; 549/229; 549/230 A process for the preparation of glyceryl carbonate by 58) Field of Search ........................ 549/228, 229, 230 causing glycerol to react with carbon monoxide and oxygen in the presence of a Group Ib, Group IIb, or (56) References Cited Group VIIIb catalyst as per the Periodic Table attem U.S.
    [Show full text]
  • Catalog-2016-2017.Pdf
    Catalog # Item Description Structure Pack Rs./Pack ASD2594 198.13, see 3,5-Dinitrobenzyl alcohol Page No 183 ASA2593 ABTS, 98% (Custom work) 30931-67-0 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt F.W. 548.68 POR ASC1136 ACE-Cl, see 1-Chloroethyl chloroformate Page No 117 ASA1617 Acenaphthene, 99% 83-32-9 1,8-Ethylenenaphthalene F.W. 154.2 100 g 400 mp : 92-95°C, bp : 278°C 500 g 1400 d : 1.15 MERCK : 13,29, UN 3077 R : 36/37/38-50/53, S : 26-36/37/39-60-61 ASA1992 Acenaphthenequinone, 95% 82-86-0 F.W. 182.18 25 g 3000 mp : 257-259°C 100 g 11000 R : 36/37/38, S : 26-36 ASA1001 Acetal, see Acetaldehyde diethyl acetal Page No 1 ASA1001 Acetaldehyde diethyl acetal, 97% Acetal Or 1,1-Diethoxyethane F.W. 118.1 25 ml 500 105-57-7 bp : 101-102°C 100 ml 1600 d : 0.831, Fp : -21°C(-6°F) RI : 1.3810, MERCK : 13,39, UN 1088 R : 11-36/38, S : 16-33/9 ASA1002 Acetaldehyde dimethyl acetal, 90% 1,1-Dimethoxyethane Or Dimethyl acetal F.W. 90.1 25 g 1500 534-15-6 bp : 64°C 100 g 2600 d : 0.852, Fp : -17°C(1°F) 500 g 4500 RI : 1.3670, MERCK : 13,3253, UN 2377 R : 11, S : 16-33/9 ASA2477 Acetaldehyde, 20-30% solution 75-07-0 F.W. 44.05 500 ml 400 bp : 20.8 °C 2.5 lt 1900 d : 1.004 5 lt 3500 ASA1003 Acetamide, 98% Amide C2 F.W.
    [Show full text]
  • CASRN 7791-11-9, Rubidium Chloride) (CASRN 1310-82-3, Rubidium Hydroxide) (CASRN 7790-29-6, Rubidium Iodide)
    FINAL 09-02-2016 Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (CASRN 7440-17-7, Rubidium) (CASRN 7791-11-9, Rubidium Chloride) (CASRN 1310-82-3, Rubidium Hydroxide) (CASRN 7790-29-6, Rubidium Iodide) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGERS Puttappa R. Dodmane, BVSc&AH, MVSc, PhD National Center for Environmental Assessment, Cincinnati, OH Scott C. Wesselkamper, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY SRC, Inc. 7502 Round Pond Road North Syracuse, NY 13212 PRIMARY INTERNAL REVIEWER Paul G. Reinhart, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC This document was externally peer reviewed under contract to: Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this PPRTV assessment should be directed to the EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). ii Rubidium Compounds TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS AND ACRONYMS .................................................. iv BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1
    [Show full text]
  • The Radiochemistry of Rubidium
    546.5 473P CL National Academy v of Sciences ,1 National Research Council B NUCLEAR SCIENCE SERIES The Radiochemistry of Rubidium -. ,. \ COMMITTEE ON NUCLEAR SCIENCE J. A. ~, SkmhIV We-use Eledrlo COzpntlm C. J. BOREOW8KI J. W.IRVINE, JR. W Ridm Nmtiud UIOmarF ~hwutute afTe01nr01a@3 BOBEBT G. COC- E. D. NLEMA ‘Yeas Agrldturd d MadI&lfud Narfhw~ DhlverOf& calle@P W. WAYNB ~ Univerdtg d Mtahf@n J. J, NICKK)N Memorial Br@@td, NW York U. FAIW Nattmd B- d ~ BOBBBT L, PM~ LdOrmbh dsclrimle PhgdqM EEBBEET C+O=EIN Nuak hvviformeat CoIPOrattoII of Arm* LIAISON MEMBERS PAUL C. AEBW~ cFmmE8 K BEED Abm.lo EmIID Cmnd.mkm U. S, .4x Farm J. HfWMD WMILLEN WIJJIJ.AM E. WEIGBT Nadand Eole Foaddan - of Nnvd Ba~ SUBCOMMlllEE ON RADIOCHEMISTRY W.WAYNE MEDW03, C~ EARL NYDE lmiv9rd* of rdfahf13nn university d cOlifOrniamrkel.q) NATEAN BALI.OU JULIAN NIEISEN Naval Eadblc@oEI Mmse Iabornh’F BdOrd Idwmk.rien ‘ OREooRY R. CEOPPIN (3. DAVID O’IU2LLEY FlOrfAs =* UnivOrfd& O& IN- Nn130nd Lrbmkmy GEOEQE L cmm ELIJs P. 6TELNBER0 m Aluwm Bderltlno hboratoq ArPUM Ndiod IabJmhnq ARTBUE W. F~ PBIZR C. SiZVENWN untv’Orsi* of waahir@m vJnivelnit#of Cdlbrnia (il— re) JEROME BuDm DUANE N. 6UNDERMAN Bma&lxwn NaUond Iaturatory BatbUa Marrmr&l hdttvte CONSULTANTS BERBERT M.CLARK JOHN W. ~CHE6TER B8n8daer POlyteubia Inutlbta bfnAaaahumt& Inmtlti of Te&dow CA The Radiochemistry of Rubidium G. W. LEDDICOTTE Oak Ridge National L.aboratoyy Oak Ridge, Tennessee IssuanceDab: February 1962 MAY 4-1962 e’ Subcommittee on Radiochemiatrg NationalAcademy of Sciences—National Research Council J= Printed~ WA.
    [Show full text]
  • |Lllllillllllllll|||||Lllllllllllllllllllllllllllllllllllllllllllllllllllll US005359094A United States Patent ‘[191 [11] Patent Number: 5,359,094 Teles Et A1
    |lllllIllllllllll|||||lllllllllllllllllllllllllllllllllllllllllllllllllllll US005359094A United States Patent ‘[191 [11] Patent Number: 5,359,094 Teles et a1. [45] Date of Patent: Oct. 25, 1994 [54] PREPARATION OF GLYCERYL 3,379,693 4/1968 Hostettler et a1. ................ .. 549/229 CARBONATE 4,231,937 11/1980 Kao et a1. 549/229 4,314,945 2/ 1982 McMullen et a1. 549/229 [75] Inventors: Joaquim H. Teles, Ludwigshafen; 4,344,881 8/1982 Strege et a1. .. 549/229 Norbert Rieber, Mannheim; 4,483,994 11/1984 Jacobson 549/229 Wolfgang Harder, Weinheim, all of 4,658,041 4/1987 Renga ....... .. 549/229 Fed. Rep. of Germany 4,835,289 5/1989 Brindijpke 549/229 5,091,543 2/1992 Grey ................. .. 549/229 [73] Assignee: BASF Aktiengesellschaft, 5,118,818 6/1992 Delledonne et a1. ............. .. 549/229 Ludwigshafen, Fed. Rep. of Germany FOREIGN PATENT DOCUMENTS [21] Appl. No.: 99,142 2222488 11/1972 Fed. Rep. of Germany . 2265228 12/1976 Fed. Rep. of Germany . [22] Filed: Jul. 29, 1993 1382313 1/1975 United Kingdom . [30] Foreign Application Priority Data Primary Examiner—Cecilia Tsang Aug. 5, 1992 [DE] Fed. Rep. of Germany ..... .. 4225870 Attorney, Agent, or Firm—Kei1 & Weinkauf [51] Int. Cl.5 . .. C07D 317/36 [57] ABSTRACT [52] US. Cl. .................................. .. 549/228; 549/229; 549/230 A process for the preparation of glyceryl carbonate by [58] 'Field of Search ...................... .. 549/228, 229, 230 causing glycerol to react with carbon monoxide and oxygen in the presence of a Group Ib, Group IIb, or [56] References Cited Group VIIIb catalyst as per the Periodic Table at tem U.S.
    [Show full text]
  • Magnetic Susceptibility of the Elements and Inorganic Compounds
    MAGNETIC SUSCEPTIBILITY OF THE ELEMENTS AND INORGANIC COMPOUNDS When a material is placed in a magnetic field H, a magnetization (magnetic moment per unit volume) M is induced in the material which is related to H by M = κH, where κ is called the volume susceptibility. Since H and M have the same dimensions, κ is dimensionless. A more useful parameter χ is the molar susceptibility m , defined by χ κ κ ρ m = Vm = M/ ρ χ where Vm is the molar volume of the substance, M the molar mass, and the mass density. When the cgs system is used, the customary units for m are cm3 mol-1; the corresponding SI units are m3 mol-1. χ Substances that have no unpaired electron orbital or spin angular momentum generally have negative values of m and are called diamagnetic. Their χ molar susceptibility varies only slightly with temperature. Substances with unpaired electrons, which are termed paramagnetic, have positive m and show a much stronger temperature dependence, varying roughly as 1/T. The net susceptibility of a paramagnetic substance is the sum of the paramagnetic and diamagnetic contributions, but the former almost always dominates. χ This table gives values of m for the elements and selected inorganic compounds. All values refer to nominal room temperature (285 to 300 K) unless otherwise indicated. When the physical state (s = solid, l = liquid, g = gas, aq = aqueous solution) is not given, the most common crystalline form is understood. An entry of “Ferro.” indicates a ferromagnetic substance. Substances are arranged in alphabetical order by the most common name, except that compounds such as hydrides, oxides, and acids are grouped with the parent element (the same ordering used in the table “Physical Constants of Inorganic Compounds”).
    [Show full text]
  • Write the Formula for Each Compound, Atom Or Ion 1. Acetate Ion 2. Calcium
    Write the formula for each compound, atom or ion 1. acetate ion 27. barium chloride 2. calcium hydroxide 28. calcium oxide 3. magnesium sulfate 29. barium ion 4. aluminum 30. magnesium phosphate 5. lithium carbonate 31. lithium sulfide 6. barium nitrate 32. barium sulfite 7. aluminum ion 33. calcium nitrate 8. calcium bromide 34. magnesium iodide 9. magnesium fluoride 35. beryllium ion 10. ammonium ion 36. lithium chloride 11. lithium oxide 37. barium nitrite 12. barium phosphate 38. calcium phosphate 13. antimony (III) ion 39. magnesium sulfide 14. calcium sulfate 40. bicarbonate ion 15. magnesium carbonate 41. lithium sulfite 16. lithium nitrate 42. barium phosphite 17. barium iodide 43. calcium iodide 18. antimony (V) ion 44. biphosphate ion 19. calcium fluoride 45. magnesium chloride 20. magnesium oxide 46. lithium nitrite 21. lithium phosphate 47. barium dichromate 22. barium sulfide 48. calcium sulfide 23. arsenide ion 49. bismuth (III) ion 24. calcium carbonate 50. magnesium sulfite 25. magnesium nitrate 51. lithium phosphite 26. lithium iodide 52. barium chromate 53. calcium chloride 79. bromine 54. magnesium nitrite 80. potassium carbonate 55. bismuth (V) ion 81. ammonium nitrate 56. lithium dichromate 82. aluminum iodide 57. barium bicarbonate 83. sodium chloride 58. calcium sulfite 84. cadmium ion 59. magnesium phosphite 85. potassium oxide 60. bisulfate ion 86. ammonium phosphate 61. lithium chromate 87. aluminum sulfide 62. barium hydrogen sulfate 88. calcium 63. potassium phosphite 89. sodium sulfite 64. ammonium chromate 90. potassium nitrate 65. bisulfite ion 91. ammonium iodide 66. potassium bromide 92. aluminum chloride 67. ammonium fluoride 93. sodium nitrite 68. aluminum oxide 94.
    [Show full text]
  • Density of Molten Elements and Representative Salts 4-126
    DENSITY OF MOLTEN ELEMENTS AND REPRESENTATIVE SALTS ρ This table lists the liquid density at the melting point, m , for elements that are solid at room temperature, as well as for some representative salts of these elements. Densities at higher temperatures (up to the tmax given in the last column) may be estimated from the equation ρ ρ (t) = m - k(t-tm) where tm is the melting point and k is given in the fifth column of the table. If a value of tmax is not given, the equation should not be used to extrapolate more than about 20°C beyond the melting point. Data for the elements were selected from the primary literature; the assistance of Gernot Lang in compiling these data is gratefully acknowledged. The molten salt data were derived from Reference 1. REFERENCE 1. Janz, G. J., Thermodynamic and Transport Properties of Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data, J. Phys. Chem. Ref. Data, 17, Suppl. 2, 1988. 2. Nasch, P. M., and Steinemann, S. G., Phys. Chem. Liq., 29, 43, 1995. ° ρ –3 –3 ° –1 Formula Name tm/ C m/g cm k/g cm C tmax Ag Silver 961.78 9.320 0.0009 1500 AgBr Silver(I) bromide 432 5.577 0.001035 667 AgCl Silver(I) chloride 455 4.83 0.00094 627 AgI Silver(I) iodide 558 5.58 0.00101 802 AgNO3 Silver(I) nitrate 212 3.970 0.001098 360 Ag2SO4 Silver(I) sulfate 652 4.84 0.001089 770 Al Aluminum 660.32 2.375 0.000233 1340 AlBr3 Aluminum bromide 97.5 2.647 0.002435 267 AlCl3 Aluminum chloride 192.6 1.302 0.002711 296 AlI3 Aluminum iodide 188.32 3.223
    [Show full text]