Write the Formula for Each Compound, Atom Or Ion 1. Acetate Ion 2. Calcium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MATERIAL SAFETY DATA SHEET Potassium Sulfate
MATERIAL SAFETY DATA SHEET Potassium sulfate Section 1 Chemical Product and Company Identification MSDS Name: Potassium sulfate Catalog Numbers: P/6960/53, P/6960/60, P/6960/65, P/7000/53, P/7000/60, P/7000/65 Synonyms: Dipotassium sulfate; Potassium sulfate (2:1); Sulfuric acid, dipotassium salt. Company Identification: Fisher Scientific UK Bishop Meadow Road, Loughborough Leics. LE11 5RG For information in Europe, call: (01509) 231166 Emergency Number, Europe: 01509 231166 Section 2 Composition, Information on Ingredients CAS# Chemical Name: % EINECS# 7778805 Potassium sulfate >99 2319155 Hazard Symbols: None listed Risk Phrases: None listed Section 3 Hazards Identification EMERGENCY OVERVIEW Not available Potential Health Effects Eye: Dust may cause mechanical irritation. Skin: Low hazard for usual industrial handling. Ingestion: May cause gastrointestinal irritation with nausea, vomiting and diarrhea. Inhalation: Inhalation of dust may cause respiratory tract irritation. Chronic: Not expected to be a chronic hazard. Section 4 First Aid Measures Eyes: In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Get medical aid. Skin: In case of contact, flush skin with plenty of water. Remove contaminated clothing and shoes. Get medical aid if irritation develops and persists. Wash clothing before reuse. Ingestion: If swallowed, do not induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Get medical aid. Inhalation: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid. Notes to Treat symptomatically and supportively. Physician: Section 5 Fire Fighting Measures General As in any fire, wear a selfcontained breathing apparatus in pressuredemand, Information: MSHA/NIOSH (approved or equivalent), and full protective gear. -
WO 2017/106925 Al 29 June 2017 (29.06.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/106925 Al 29 June 2017 (29.06.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, C22B 26/12 (2006.01) C22B 3/06 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (21) International Application Number: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, PCT/AU20 16/05 1278 MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (22) International Filing Date: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, 22 December 2016 (22. 12.2016) RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (25) Filing Language: English ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 20159053 17 22 December 201 5 (22. 12.2015) AU GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 2016900774 2 March 2016 (02.03.2016) AU TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (72) Inventor; and DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant : HUNWICK, Richard [AU/AU]; 59 Abing LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, don Road, Roseville, New South Wales 2069 (AU). -
Managing Potassium for Organic Crop Production by Robert Mikkelsen an Adequate K Supply Is Essential for Both Organic and Conventional Crop Production
NORTH AMERICA Managing Potassium for Organic Crop Production By Robert Mikkelsen An adequate K supply is essential for both organic and conventional crop production. Potas- sium is involved in many plant physiological reactions, including osmoregulation, protein synthesis, enzyme activation, and photosynthate translocation. The K balance on many farms is negative, where more K is removed in harvested crops than is returned again to the soil. An overview of commonly used K fertilizers for organic production is provided. otassium is an essential nutrient for plant growth, but it often receives less attention than N and P in many crop Pproduction systems. Many regions of the U.S.A. and all of the Canadian provinces remove more K during harvest than is returned to the soil in fertilizer and manure (Figure 1). In the U.S.A., an average of only 3 units of K is replaced as fertilizer and manure for every 4 units of K removed in crops, resulting in a depletion of nutrients from the soil and increasing occur- rences of deficiency in many places. Potassium is the soil cation required in the largest amount by plants, regardless of nutrient management philosophy. 1,400 Removal 1,200 Hay and forage crops can remove hundreds of pounds of K from the soil Manure each year, placing a heavy demand on soil resources. 1,000 Fertilizer Large amounts of K are required to maintain plant health 800 and vigor. Some specific roles of K in the plant include os- moregulation, internal cation/anion balance, enzyme activa- 600 tion, proper water relations, photosynthate translocation, and 400 protein synthesis. -
WO 2015/084416 Al 11 June 2015 (11.06.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/084416 Al 11 June 2015 (11.06.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C09K 8/05 (2006.01) C07C 51/42 (2006.01) kind of national protection available): AE, AG, AL, AM, COW 17/00 (2006.01) E21B 21/06 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 13/076445 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 19 December 2013 (19. 12.2013) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/910,976 3 December 2013 (03. 12.2013) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: CABOT CORPORATION [US/US]; Two GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, Seaport Lane, Suite 1300, Boston, MA 01220 (US). -
(12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta Et Al
USOO74491.61B2 (12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta et al. (45) Date of Patent: Nov. 11, 2008 (54) PRODUCTION OF LITHIUM COMPOUNDS 4,207,297 A * 6/1980 Brown et al. ............. 423,179.5 DIRECTLY FROM LITHIUM CONTAINING 4,243,641 A * 1/1981 Ishimori et al. .......... 423/179.5 BRINES 4.261,960 A * 4/1981 Boryta ............. ... 423,179.5 4,271,131. A * 6/1981 Brown et al. ...... ... 423,179.5 4,274,834. A 6/1981 Brown et al. .............. 23,302 R (75) Inventors: Daniel Alfred Boryta, Cherryville, NC 4,463,209 A * 7/1984 Kursewicz et al. .......... 585/467 (US); Teresita Frianeza Kullberg, 4,465,659 A * 8/1984 Cambridge et al. ......... 423,495 Gastonia, NC (US); Anthony Michael 4,588,565 A * 5/1986 Schultze et al. .......... 423,179.5 Thurston, Edmond, OK (US) 4,747.917 A * 5/1988 Reynolds et al. ............ 205,512 4,859,343 A * 8/1989 Frianeza-Kullberg (73) Assignee: Chemetall Foote Corporation, Kings et al. .......................... 210,679 Mountain, NC (US) 4,980,136 A * 12/1990 Brown et al. ... 423,179.5 5,049,233 A 9, 1991 Davis .......................... 216.93 (*) Notice: Subject to any disclaimer, the term of this 5,219,550 A * 6/1993 Brown et al. ............. 423 (419.1 patent is extended or adjusted under 35 5,599,516 A * 2/1997 Bauman et al. .......... 423/179.5 U.S.C. 154(b) by 0 days. 5,939,038 A * 8/1999 Wilkomirsky ............... 423,276 5.993,759 A * 1 1/1999 Wilkomirsky ........... -
Crown Chemical Resistance Chart
Crown Polymers, Corp. 11111 Kiley Drive Huntley, IL. 60142 USA www.crownpolymers.com 847-659-0300 phone 847-659-0310 facisimile 888-732-1270 toll free Chemical Resistance Chart Crown Polymers Floor and Secondary Containment Systems Products: CrownShield covers the following five (4) formulas: CrownShield 50, Product No. 320 CrownCote, Product No. 401 CrownShield 40-2, Product No. 323 CrownShield 28, Product No. 322 CrownPro AcidShield, Product No. 350 CrownCote AcidShield, Product No. 430 CrownPro SolventShield, Product No. 351 CrownCote SolventShield, Product No. 440 This chart shows chemical resistance of Crown Polymers foundational floor and secondary containment product line that would be exposed to chemical spill or immersion conditions. The chart was designed to provide general product information. For specific applications, contact your local Crown Polymers Floor and Secondary Containment Representative or call direct to the factory. ; Resistant to chemical immersion up to 7 days followed by wash down with water 6 Spillage environments that will be cleaned up within 72 hours after initial exposure. 9 Not Recommended Chemical CrownShield SolventShield AcidShield Chemical CrownShield SolventShield AcidShield 1, 4-Dichloro-2-butene 9 6 6 Aluminum Bromate ; ; ; 1, 4-Dioxane 9 6 6 Aluminum Bromide ; ; ; 1-1-1 Trichloroethane 9 ; ; Aluminum Chloride ; ; ; 2, 4-Pentanedione 6 ; 6 Aluminum Fluoride (25%) ; ; ; 3, 4-Dichloro-1-butene 6 6 6 Aluminum Hydroxide ; ; ; 4-Picoline (0-50%) 9 6 6 Aluminum Iodine ; ; ; Acetic Acid (0-15%) 9 6 6 -
Table of Contents
TABLE OF CONTENTS ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF TABLES vi LIST OF FIGURES viii ABSTRACT xii CHAPTER 1 INTRODUCTION 1 1.1 Overview 1 1.2 Research Objectives and Organization of the Dissertation 2 CHAPTER 2 ALKLI SILICA REACTION AND RECYCLED CONCRETE 4 AGGREGATE 2.1 Alkali Silica Reaction (ASR) 4 2.1.1 ASR essentials 4 2.1.2 ASR mechanisms 5 2.1.3 ASR test methods review 7 2.1.4 Potential mitigation methods 9 2.2 Recycled Concrete Aggregate (RCA) 11 2.2.1 Recycled aggregate preview 11 2.2.2 RCA with ASR distress 13 2.2.3 RCA alkali contribution and alkali leaching 17 CHAPTER 3 PORE SOLUTION 19 3.1 Pore solution extraction 19 3.1.1 Instrumental introduction and description 19 3.1.2 Sample preparation 24 3.1.3 Extraction method and load scheme 25 3.2 Pore Solution Chemical Analysis 27 3.2.1 Alkali evolution process in pore solution 27 3.2.2 Pore solution test schemes and methods 29 3.2.3 Test results and analysis 32 iv CHAPTER 4 RCA ASR MITIGATION USING MINERAL ADMIXTURES 35 4.1 Fly Ash Mitigation 35 4.1.1 Fly ash as a concrete admixture 35 4.1.2 Mortar bar expansion test 38 4.1.3 Expansion results and comparison 42 4.1.4 Pore solution analysis 45 4.1.5 Mitigation mechanism analysis 49 4.2 Ground Granulated Blast Furnace Slag (GGBFS) Mitigation 54 4.2.1 Slag production and use in concrete 54 4.2.2 Expansion test results and comparison 55 4.2.3 Pore solution analysis and TGA 57 4.3 Silica Fume Mitigation 59 4.3.1 Expansion results and comparison 60 4.3.2 Pore solution analysis and TGA 65 4.3.3 Particle size issue 66 4.4 -
Zinnwald Lithium Project
Zinnwald Lithium Project Report on the Mineral Resource Prepared for Deutsche Lithium GmbH Am St. Niclas Schacht 13 09599 Freiberg Germany Effective date: 2018-09-30 Issue date: 2018-09-30 Zinnwald Lithium Project Report on the Mineral Resource Date and signature page According to NI 43-101 requirements the „Qualified Persons“ for this report are EurGeol. Dr. Wolf-Dietrich Bock and EurGeol. Kersten Kühn. The effective date of this report is 30 September 2018. ……………………………….. Signed on 30 September 2018 EurGeol. Dr. Wolf-Dietrich Bock Consulting Geologist ……………………………….. Signed on 30 September 2018 EurGeol. Kersten Kühn Mining Geologist Date: Page: 2018-09-30 2/219 Zinnwald Lithium Project Report on the Mineral Resource TABLE OF CONTENTS Page Date and signature page .............................................................................................................. 2 1 Summary .......................................................................................................................... 14 1.1 Property Description and Ownership ........................................................................ 14 1.2 Geology and mineralization ...................................................................................... 14 1.3 Exploration status .................................................................................................... 15 1.4 Resource estimates ................................................................................................. 16 1.5 Conclusions and Recommendations ....................................................................... -
Customer Information Regarding Material Resistance in Compressed Air Preparation
Customer information regarding material resistance in compressed air preparation Polycarbonate reservoirs for filter regulators, filters, and lubricators Everywhere the presence of these media cannot be avoided, such as in paint booths, gluing machines, Polycarbonate is the longest known and most vulcanization plants, etc., the use of metal reservoirs processed material in the world for reservoirs of is required. compressed air maintenance units. The high Problematic is the use of solvents not only in pressure and temperature resistances, as well as immediate contact with the reservoir, but also in its good compatibility with the normally used media immediate vicinity. For example, trichlorethylene such as water, oils and greases are some of its vapors from the compressor’s intake air can cause advantages. crack formation in the polycarbonate reservoir. Only The only “weakness” of this plastic is its clean the reservoirs using a slightly damp cloth. Only susceptibility to media that can be referred to use water to do this and, if necessary, a mild collectively using the term “solvents”. From this detergent without chemical additives. range, the materials relevant to the use of If a lubricator is used, please only use suitable compressed air preparation units are summarized pneumatic oils, e.g. AVENTICS pneumatic oil, order here: no. 8982000010 – 1L. Detergents : Trichloroethylene, (usually from outside) perchloroethylene, In most cases, the use of (pneumatic) oils with benzene, additives, for example antifreeze, results in damage super/regular gasoline to or destruction of the reservoirs and must thus be avoided. Alternatively, we recommend the use of Solvents : Acetone, metal reservoirs. (from outside/inside) paint thinners, alcohols, esters Polycarbonate can react to permanent UV-light irradiation and weathering. -
The Chiba System 千葉方式 : a Non Toxic Alternative to the Dichromate
The Chiba System 千葉方式 A Non Toxic Alternative to the Dichromate Processes January 2007 Halvor Bjoerngaard Graduate School of Science and Technology CHIBA UNIVERSITY (千葉大学学位申請論文) The Chiba System 千葉方式 : A Non Toxic Alternative to the Dichromate Processes or The Production of Photographic Prints in Permanent Pigments by Utilising the Sensitivity of the Ferric Salt to the Spectre and Employing the Polymerization of Colloids. 2007年1月 千葉大学大学院自然科学研究科 情報科学専攻画像科学 Halvor Bjørngård Abstract This study has the main purpose of presenting a non-toxic, or an alternative, printing system for the dichromate based pigment processes. The two methods presented in depth are modelled on first Carbon printing then Gum Printing. Achieving non-toxicity for these systems means replacing the dichromate sensitizer and secondly to avoid the practise of hardening the substrate. An alternative sensitizer is presented and hardening is avoided by using modified working methods. The chemistry utilised for this purpose is iron based, red-ox induced, free radical polymerization. The sensitizer is ammonium ferric citrate, using either hydrogen peroxide or ammonium persulphate as developer. For Carbon Printing a solution to both the need for hardeners and the problem of oxygen inhibition, which is usual for this kind of polymerisation, is achieved. This is done by using a covering layer of agar-agar that blocks oxygen and changes the transfer system, obsolescing the use of hardeners. For Gum Printing two methods are presented. One is based on gelatine, which allows the use of a hydrogen peroxide bath for development. The second method is with gum arabicum, which necessitates inclusion of ammonium persulphate in the coating as a developing agent. -
Prohibited and Restricted Chemical List
School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List PROHIBITED AND RESTRICTED CHEMICAL LIST Introduction After incidents of laboratory chemical contamination at several schools, DCPS, The American Association for the Advancement of Science (AAAS) and DC Fire and Emergency Management Services developed an aggressive program for chemical control to eliminate student and staff exposure to potential hazardous chemicals. Based upon this program, all principals are required to conduct a complete yearly inventory of all chemicals located at each school building to identify for the removal and disposal of any prohibited/banned chemicals. Prohibited chemicals are those that pose an inherent, immediate, and potentially life- threatening risk, injury, or impairment due to toxicity or other chemical properties to students, staff, or other occupants of the school. These chemicals are prohibited from use and/or storage at the school, and the school is prohibited from purchasing or accepting donations of such chemicals. Restricted chemicals are chemicals that are restricted by use and/or quantities. If restricted chemicals are present at the school, each storage location must be addressed in the school's written emergency plan. Also, plan maps must clearly denote the storage locations of these chemicals. Restricted chemicals—demonstration use only are a subclass in the Restricted chemicals list that are limited to instructor demonstration. Students may not participate in handling or preparation of restricted chemicals as part of a demonstration. If Restricted chemicals—demonstration use only are present at the school, each storage location must be addressed in the school's written emergency plan. Section 7: Appendices – October 2009 37 School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List Following is a table of chemicals that are Prohibited—banned, Restricted—academic curriculum use, and Restricted—demonstration use only. -
The Institute of Paper Chemistry
The Institute of Paper Chemistry Appleton, Wisconsin Doctor's Dissertation A Study of the Order and Nature of the Aspenwood Hemicellulose Removed During a Neutral Sulfite Semichemical Cook Robert Harold Quick June, 1955 A STUDY OF THE ORDER AND NATURE OF THE ASPENWOOD HEMICELLULOSE REMOVED DURING A NEUTRAL SULFITE SEMICHEMICAL COOK A thesis submitted by Robert Harold Quick B.S. in M.E. 1948, University of Washington M.S. 1953, Lawrence College in partial fulfillment of the requirements of The Institute of Paper Chemistry for the degree of Doctor of Philosophy from Lawrence College, Appleton, Wisconsin June, 1955 TABLE OF CONTENTS GLOSSARY iv INTRODUCTION Background of the Problem 1 Statement of the Problem 3 Historical Review 3 EXPERIMENTAL RESULTS Approach to the Problem 7 Wood Data 7 Cooking Conditions 7 Spent Liquor Study During a NSSC Cook Cook C2P1 8 Hydrolysis of C2P1 Spent Liquor 10 Approximate Organic Balance on C2P1SL 10 Study of the Pulp and Liquor Cooks C3P1, C4P2, and C5P1 17 Hydrolysis of Spent Liquor 19 Wood and Pulp Analyses 23 Spent Liquor "Hemicellulose" Analysis 31 DISCUSSION OF RESULTS Liquor Study 35 Pulp and Liquor Study 37 SUMMARY 51 CONCLUSIONS 54 APPENDIX I Experimental Procedures Preparation of Chips 56 Pulping 56 iii Preparation of Holocellulose 57 Extraction of Hemicellulose from Holocellulose 59 Recovery of "Hemicellulose" from the Spent Liquor 61 Isolation of the Cold Water Extract of Aspenwood 62 Determination of the Degree of Polymerization Hemicellulose 63 Alkali-Resistant Cellulose 64 Hydrolysis Procedures