|Lllllillllllllll|||||Lllllllllllllllllllllllllllllllllllllllllllllllllllll US005359094A United States Patent ‘[191 [11] Patent Number: 5,359,094 Teles Et A1

Total Page:16

File Type:pdf, Size:1020Kb

|Lllllillllllllll|||||Lllllllllllllllllllllllllllllllllllllllllllllllllllll US005359094A United States Patent ‘[191 [11] Patent Number: 5,359,094 Teles Et A1 |lllllIllllllllll|||||lllllllllllllllllllllllllllllllllllllllllllllllllllll US005359094A United States Patent ‘[191 [11] Patent Number: 5,359,094 Teles et a1. [45] Date of Patent: Oct. 25, 1994 [54] PREPARATION OF GLYCERYL 3,379,693 4/1968 Hostettler et a1. ................ .. 549/229 CARBONATE 4,231,937 11/1980 Kao et a1. 549/229 4,314,945 2/ 1982 McMullen et a1. 549/229 [75] Inventors: Joaquim H. Teles, Ludwigshafen; 4,344,881 8/1982 Strege et a1. .. 549/229 Norbert Rieber, Mannheim; 4,483,994 11/1984 Jacobson 549/229 Wolfgang Harder, Weinheim, all of 4,658,041 4/1987 Renga ....... .. 549/229 Fed. Rep. of Germany 4,835,289 5/1989 Brindijpke 549/229 5,091,543 2/1992 Grey ................. .. 549/229 [73] Assignee: BASF Aktiengesellschaft, 5,118,818 6/1992 Delledonne et a1. ............. .. 549/229 Ludwigshafen, Fed. Rep. of Germany FOREIGN PATENT DOCUMENTS [21] Appl. No.: 99,142 2222488 11/1972 Fed. Rep. of Germany . 2265228 12/1976 Fed. Rep. of Germany . [22] Filed: Jul. 29, 1993 1382313 1/1975 United Kingdom . [30] Foreign Application Priority Data Primary Examiner—Cecilia Tsang Aug. 5, 1992 [DE] Fed. Rep. of Germany ..... .. 4225870 Attorney, Agent, or Firm—Kei1 & Weinkauf [51] Int. Cl.5 . .. C07D 317/36 [57] ABSTRACT [52] US. Cl. .................................. .. 549/228; 549/229; 549/230 A process for the preparation of glyceryl carbonate by [58] 'Field of Search ...................... .. 549/228, 229, 230 causing glycerol to react with carbon monoxide and oxygen in the presence of a Group Ib, Group IIb, or [56] References Cited Group VIIIb catalyst as per the Periodic Table at tem U.S. PATENT DOCUMENTS peratures ranging from 0° to 180° C. 2,856,413 10/1958 Malkemas et a1. ................ .. 549/228 3,153,051 10/1964 Kormendy et a1. ............... .. 549/229 4 Claims, No Drawings 5,359,094 1 2 dium, palladium, osmium, iridium and/or platinum and PREPARATION OF GLYCERYL CARBONATE preferably salts of the elements copper, silver, mercury, iron, cobalt and/or nickel and more preferably salts of The present invention relates to a process for the the elements copper and/or mercury. preparation of glyceryl carbonate by the reaction of Suitable salts are sulfates, chlorides, bromides and glycerol with carbon monoxide and oxygen in the pres tri?uoroacetates and preferably chlorides, bromides ence of Group Ib, Group IIb, and Group VIIIb cata and tri?uoroacetates. Suitable copper catalysts for use lysts as per the Periodic Table and the conversion in the process of the invention are generally simple thereof to glycidol at elevated temperatures over alkali copper salts such as copper halides, copper(I) sulfate, metal salts and/or alkaline earth metal salts. copper (alkoxy)halides and copper(I) tri?uoroacetate DE-A 2,222,488 and DE-A 2,265,228 describe pro and preferably copper(I) halides such as copper(I) chlo cesses for the preparation of ethylene carbonates from ride and copper(I) bromide and copper(I) sulfate and glycols using CO/O2 in the presence of Group Ib, copper(I) tri?uoroacetate. Group IIb, and Group VIIIb catalysts. Suitable inert solvents are tertiary amines such as U.S. Pat. No. 2,856,413 describes the dissociation of 15 C3—C20tertiary amines, e.g., trimethylamine, pyridine, glyceryl carbonate to produce glycidol over phos quinoline, a-, 13-, and 'y-picolines and preferably pyri phates, pyrophosphates, chlorides, bromides, acetates, dine and 'y-picoline, nitriles such as acetonitrile, propio bicarbonates, and carbonates of alkali metals and alka nitrile and benzonitrile, nitro compounds such as nitro line earth metals. benzene and preferably benzonitrile or esters such as It is thus an object of the present invention to provide 20 cg-czoalkyl carboxylates, e.g., methyl acetate, ethyl a process which makes it possible to prepare glyceryl acetate, ethyl benzoate and preferably ethyl benzoate carbonate starting from glycerol and to ?nd means for and lactones such as butyrolactone, ureas such as tetra the conversion thereof to glycidol. methyl urea and carbonates such as propylene carbon Accordingly, we have found a novel and improved ate. process for the preparation of glyceryl carbonate, 25 The conversion of the glyceryl carbonate to glycidol wherein glycerol is caused to react with carbon monox can be carried out at temperatures ranging from 100° to ide and oxygen in the presence of a Group Ib, IIb, or 300° C. and preferably from 125° to 275° C. and more VIIIb catalyst as per the Periodic Table at temperatures preferably from 210° to 250° C. and pressures of from ranging from 0° to 150° C. and the conversion thereof to 0.001 to 5 bar and preferably from 0.005 to 2 bar and glycidol by reaction at temperatures ranging from 80° more preferably from 0.01 to 1 bar over alkali metal to 300° C. and pressures of from 0.001 to 5 bar over salts and/or alkaline earth metal salts, for example, in alkali metal salts and/ or alkaline earth metal salts. distillation apparatus. The process of the invention may be carried out as Suitable salts of alkali metals and alkaline earth metals follows: ‘ are halides such as ?uorides, chlorides, bromides, and The reaction can be started by feeding a gaseous iodides, phosphates, monohydrogenphosphates, dihy mixture of carbon monoxide and oxygen into the reac drogen phosphates, pyrophosphates, sulfates, borates, tion mixture. The composition of the gas mixture can be acetates, carbonates and bicarbonates and preferably varied as desired within wide limits. Air can be used ?uorides, iodides, and sulfates and more preferably instead of oxygen if desired, for example, or the gas ?uorides, sulfates and borates. Speci?c examples mixture can be diluted, if desired, with an inert gas such 40 thereof are: as nitrogen, argon or carbon dioxide. Generally speak lithium ?uoride, sodium ?uoride, potassium ?uoride, ing, a CO:O2 molar ratio of from 100:1 to 05:1 and rubidium ?uoride, cesium ?uoride, berylium ?uo preferably from 50:1 to 1:1 and more preferably from ride, magnesium fluoride, calcium ?uoride, stron 20:1 to 1.5:1 is used. tium ?uoride, barium ?uoride, lithium chloride, The reaction gases carbon monoxide and oxygen are 45 sodium chloride, potassium chloride, rubidium introduced into the liquid present in the reactor. To chloride, cesium chloride, berylium chloride, mag ensure better intermixing and dispersion of the reaction nesium chloride, calcium chloride, strontium chlo gases in the reactor, it is preferred to use additional ride, barium chloride, lithium bromide, sodium mechanical stirring means. Suitable types of reactor are bromide, potassium bromide, rubidium bromide, stirred boilers or stirred autoclaves or bubble reactors cesium bromide, berylium bromide, magnesium which are advantageously capable of being heated and bromide, calcium bromide, strontium bromide, which may also be equipped with stirring means, if barium bromide, lithium iodide, sodium iodide, desired. potassium iodide, rubidium iodide, cesium iodide, The reaction can be advantageously carried out berylium iodide, magnesium iodide, calcium io under elevated pressure, generally under a pressure of 55 dide, strontium iodide, barium iodide, lithium sul from 1 to 100 bar and preferably from 2 to 10 bar and fate, sodium sulfate, potassium sulfate, rubidium more preferably from 2.5 to 5 bar, optionally in the sulfate, cesium sulfate, berylium sulfate, magne presence of an inert solvent. The reaction temperature sium sulfate, calcium sulfate, strontium sulfate, generally ranges from 0° to 180° C. and preferably from barium sulfate, lithium borate, sodium borate, po 80° to 150° C. and more preferably from 100° to 140° C. 60 tassium borate, rubidium borate, cesium borate, The reaction may be carried out continuously or berylium borate, magnesium borate, calcium bo batchwise. In the preferred continuous mode of opera rate, strontium borate, barium borate, lithium ace tion, the reaction gases are usually used in excess and tate, sodium acetate, potassium acetate, rubidium the unconverted gas is circulated. acetate, cesium acetate, berylium acetate, magne Suitable catalysts are those containing elements in 65 sium acetate, calcium acetate, strontium acetate, Groups Ib, IIb, and VIIIb in the Periodic Table such as barium acetate, lithium carbonate, sodium carbon salts of the elements copper, silver, gold, zinc, cad ate, potassium carbonate, rubidium carbonate, ce mium, mercury, iron, cobalt, nickel, ruthenium, rho sium carbonate, berylium carbonate, magnesium 5,359,094 3 4 carbonate, calcium carbonate, strontium carbonate, rupted and the effluent subjected to GC analysis. The barium carbonate, lithium phosphate, sodium phos conversion was 96%, and glyceryl carbonate was the phate, potassium phosphate, rubidium phosphate, only detectable product. Comparable results would be cesium phosphate, berylium phosphate, magnesium possible using butyrolactone, tetramethyl urea, N,N phosphate, calcium phosphate, strontium phos dimethylimidazol-2-one, or propylene carbonate as sol phate, and barium phosphate and preferably lith vent. ium ?uoride, sodium ?uoride, potassium ?uoride, rubidium ?uoride, cesium fluoride, berylium ?uo EXAMPLE 3 ride, magnesium ?uoride, calcium ?uoride, stron Preparation of Glycidol tium ?uoride, barium ?uoride, lithium iodide, so dium iodide, potassium iodide, rubidium iodide, 15 g of glyceryl carbonate and 1.5 g of catalyst were cesium iodide, berylium iodide, magnesium iodide, placed in a small-size distillation unit and evacuated to calcium iodide, strontium iodide, barium iodide, from 10 to 40 mbar. The mixture
Recommended publications
  • Reducing Mg Anode Overpotential Via Ion Conductive Surface Layer Formation by Iodine Additive
    COMMUNICATION Electrolytes www.advenergymat.de Reducing Mg Anode Overpotential via Ion Conductive Surface Layer Formation by Iodine Additive Xiaogang Li, Tao Gao, Fudong Han, Zhaohui Ma, Xiulin Fan, Singyuk Hou, Nico Eidson, Weishan Li,* and Chunsheng Wang* Another challenge is the development Electrolytes that are able to reversibly deposit/strip Mg are crucial for of electrolytes that can effectively utilize rechargeable Mg batteries. The most studied complex electrolytes based an Mg metal anode. Extensive effort has on Lewis acid-base chemistry are expensive, difficult to be synthesized, and been put in to develop electrolytes capable of reversibly depositing/stripping Mg. show limited anodic stability. Conventional electrolytes using simple salts Most work has focused on complex elec- such as Mg(TFSI)2 can be readily synthesized, but Mg deposition/stripping in trolytes that allow fast and reversible Mg these simple salt electrolytes is accompanied by a large overpotential due to deposition/stripping. Such electrolytes the formation of a surface layer on the Mg metal with a low Mg ion conduc- were first proposed by Aurbach’s group [8] tivity. Here the overpotential for Mg deposition/stripping in a simple salt, in 2000, and subsequently they devel- oped the all phenyl complex showing high Mg(TFSI) -1,2-dimethoxyethane (DME), electrolyte is significantly reduced by 2 anodic stability.[9] Later, a non-nucleophilic −3 adding a small concentration of iodine (≤50 × 10 M) as an additive. Mecha- electrolyte, Mg-HMDS, was developed by nism studies demonstrate that an Mg ion conductive solid MgI2 layer is Muldoon and co-workers, and Fichtner formed on the surface of the Mg metal and acts as a solid electrolyte inter- and co-workers for Mg/S batteries.[10,11] To eliminate the organic Grignard species in face.
    [Show full text]
  • WO 2015/084416 Al 11 June 2015 (11.06.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/084416 Al 11 June 2015 (11.06.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C09K 8/05 (2006.01) C07C 51/42 (2006.01) kind of national protection available): AE, AG, AL, AM, COW 17/00 (2006.01) E21B 21/06 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 13/076445 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 19 December 2013 (19. 12.2013) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/910,976 3 December 2013 (03. 12.2013) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: CABOT CORPORATION [US/US]; Two GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, Seaport Lane, Suite 1300, Boston, MA 01220 (US).
    [Show full text]
  • Net Ionic Equation Worksheet Answers
    Honors Chemistry Name__________________________________ Period_____ Net Ionic Equation Worksheet READ THIS: When two solutions of ionic compounds are mixed, a solid may form. This type of reaction is called a precipitation reaction, and the solid produced in the reaction is known as the precipitate. You can predict whether a precipitate will form using a list of solubility rules such as those found in the table below. When a combination of ions is described as insoluble, a precipitate forms. There are three types of equations that are commonly written to describe a precipitation reaction. The molecular equation shows each of the substances in the reaction as compounds with physical states written next to the chemical formulas. The complete ionic equation shows each of the aqueous compounds as separate ions. Insoluble substances are not separated and these have the symbol (s) written next to them. Water is also not separated and it has a (l) written next to it. Notice that there are ions that are present on both sides of the reaction arrow –> that is, they do not react. These ions are known as spectator ions and they are eliminated from complete ionic equation by crossing them out. The remaining equation is known as the net ionic equation. For example: The reaction of potassium chloride and lead II nitrate Molecular Equation: 2KCl (aq) + Pb(NO3)2 (aq) -> 2KNO3 (aq) + PbCl2 (s) + - 2+ 3– + – Complete Ionic Equation: 2K (aq) + 2Cl (aq) + Pb (aq) + 2NO (aq) -> 2K (aq) + 2NO3 (aq) + PbCl2 (s) - 2+ Net Ionic Equation: 2Cl (aq) + Pb (aq) -> PbCl2 (s) Directions: Write balanced molecular, ionic, and net ionic equations for each of the following reactions.
    [Show full text]
  • SAFETY DATA SHEET Santa Cruz Biotechnology, Inc
    SAFETY DATA SHEET Santa Cruz Biotechnology, Inc. Revision date 05-Apr-2018 Version 1 1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING _____________________________________________________________________________________________________________________ Product identifier Product Name Methyl-d3-magnesium iodide solution Product Code SC-235856 Recommended use of the chemical and restrictions on use For research use only. Not intended for diagnostic or therapeutic use. Details of the supplier of the safety data sheet Emergency telephone number Chemtrec Santa Cruz Biotechnology, Inc. 1.800.424.9300 (Within USA) 10410 Finnell Street +1.703.527.3887 (Outside USA) Dallas, TX 75220 831.457.3800 800.457.3801 [email protected] 2. HAZARDS IDENTIFICATION _____________________________________________________________________________________________________________________ This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification Acute toxicity - Oral Category 4 Specific target organ toxicity (single exposure) Category 3 Substances or mixtures which, in contact with water, emit Category 1 flammable gases Flammable liquids Label elements Signal word Danger Hazard statements Harmful if swallowed May cause drowsiness or dizziness Extremely flammable liquid and vapor In contact with water releases flammable gases which may ignite spontaneously Symbols/Pictograms Precautionary Statements - Prevention Wash face, hands and any exposed skin thoroughly after handling Do not eat, drink or smoke when using this product Avoid breathing dust/fume/gas/mist/vapors/spray Use only outdoors or in a well-ventilated area Keep away from heat/sparks/open flames/hot surfaces. — No smoking Keep container tightly closed Ground/bond container and receiving equipment Use only non-sparking tools Take precautionary measures against static discharge Wear protective gloves/protective clothing/eye protection/face protection Handle under inert gas.
    [Show full text]
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • Compound Formula Tin (II) Nitride Silver Oxide Lithium Sulfide Magnesium Sulfide
    Ionic Bonding Drill Write the correct formula for the following compounds Compound Formula tin (II) nitride silver oxide lithium sulfide magnesium sulfide copper (I) nitride AgCl boron iodide potassium fluoride copper (I) chloride is CuCl iron (II) oxide is FeO tin (IV) fluoride is SnF4 nickel (II) fluoride is NiF2 lead (IV) oxide is PbO2 silver chloride is calcium iodide is CaI2 potassium bromide sodium phosphide iron (II) chloride copper (I) bromide lead (II) sulfide lead (IV) nitride beryllium nitride potassium bromide is KBr sodium phosphide is Na3P iron (II) chloride is FeCl2 copper (I) bromide is CuBr lead (II) sulfide is PbS lead (IV) nitride is Pb3N4 beryllium nitride is Be3N2 copper (I) chloride iron (II) oxide tin (IV) fluoride nickel (II) fluoride lead (IV) oxide Ag2O silver chloride calcium iodide Answers copper (I) nitride is Cu3N boron iodide is BI3 potassium fluoride is KF silver oxide is lithium sulfide is Li2S magnesium sulfide is MgS tin (II) nitride is Sn3N2 Ionic Bonding Drill Write the correct formula for the following compounds Compound Formula lithium bromide sodium sulfide lead (II) chloride nickel (II) oxide AlBr3 copper (II) oxide AlI3 iron (II) fluoride tin (II) oxide iron (II) oxide is FeO lead (II) oxide is PbO aluminum bromide is potassium oxide is K2O potassium oxide is K2O aluminum iodide is lead (II) nitride is Pb3N2 tin (IV) sulfide iron (III) sulfide lead (II) nitride copper (II) oxide silver fluoride AgF sodium chloride magnesium bromide tin (IV) sulfide is SnS2 iron (III) sulfide is Fe2S3 lead (II)
    [Show full text]
  • High Purity Inorganics
    High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality.
    [Show full text]
  • Sodium Sulfate - Wikipedia, the Free Encyclopedia Page 1 of 7
    Sodium sulfate - Wikipedia, the free encyclopedia Page 1 of 7 Sodium sulfate From Wikipedia, the free encyclopedia Sodium sulfate is the sodium salt of Sodium sulfate sulfuric acid. When anhydrous, it is a white crystalline solid of formula Na2SO4 known as the mineral thenardite; the decahydrate Na2SO4·10H2O has been known as Glauber's salt or, historically, sal mirabilis since the 17th century. Another Other names solid is the heptahydrate, which transforms Thenardite (mineral) to mirabilite when cooled. With an annual Glauber's salt (decahydrate) production of 6 million tonnes, it is a major Sal mirabilis (decahydrate) commodity chemical and one of the most Mirabilite (decahydrate) damaging salts in structure conservation: when it grows in the pores of stones it can Identifiers achieve high levels of pressure, causing CAS number 7757-82-6 , structures to crack. 7727-73-3 (decahydrate) Sodium sulfate is mainly used for the PubChem 24436 manufacture of detergents and in the Kraft ChemSpider 22844 process of paper pulping. About two-thirds UNII 36KCS0R750 of the world's production is from mirabilite, the natural mineral form of the decahydrate, RTECS number WE1650000 and the remainder from by-products of Jmol-3D images Image 1 chemical processes such as hydrochloric (http://chemapps.stolaf.edu/jmol/jmol.php? acid production. model=%5BNa%2B%5D.%5BNa%2B% 5D.%5BO-%5DS%28%5BO-%5D%29% 28%3DO%29%3DO) Contents SMILES InChI ■ 1History ■ 2 Physical and chemical properties Properties ■ 3 Production Molecular Na2SO4 ■ 3.1 Natural sources formula
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Graduate College the Etherates of Magnesium Halides a Dissertation
    -THE-- UNI VBRS-I-TY-GF---0K-M-HOMA- GRADUATE COLLEGE THE ETHERATES OF MAGNESIUM HALIDES ( A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY BY B. KENNETH LEWIS Norman, Oklahoma 195a THE ETHERATES OF MAGHESÏUM HALIDES APPROVED BY /s.# DISSERTATidîKCOMMITTEE ACKNOWLEDGEMENTS 'To Dr. H. H. Rowley goes my deepest expression of gratitude for the suggestion of the problem and for his guidance while I was working on the problem. His patience and counsel have been appreciated. To Jack Anderson go my thanks for his help in getting equipment and chemicals needed in my research. He was most considerate of my needs. I am grateful to the Chemistry Department for ,making the research possible by providing convenient and adequate facilities. Without these facilities, the help land guidance indicated, this research would not have been possible. ' TABLE OF CONTENTS Page LIST OF TABLES..................................... v LIST OF FIGURES................................... vi Chapter I. HISTORICAL BACKGROUND AND PRESENTATION OF PROBLEM..................................... 1 I II. EXPERIMENTAL ANALYSES AND MATERIALS......... 6 III. EXPERIMENTAL PROCEDURES................... 22 IV. EXPERBENTAL RESULTS......................... 29 V. DISCUSSION.................................. 41 VI. SUl#iARY...................................... 51 BIBLIOGRAPHY......................................... 53 IV LIST OF TABLES Table Page 1. Analysis of Magnesium Fluoride at Various Stages in its Preparation....................... 11 2. Loss in Weight of Magnesium Fluoride upon Ignition................................... 12 3. Solubility of Magnesium Iodide in Ether .... 30 4. Analysis of Lower Oily L a y e r ................. 32 5. Analysis of Crystals of Magnesium Iodide Etherate..................................... 32 6. Solubility of Magnesium Iodide in Ether .... 34 7. Solubility of Magnesium Bromide in Ether ...
    [Show full text]
  • 10377-58-9 SDS Document Number: 000167 1.2: Recommended Uses and Restrictions Recommended Uses Manufacture of Substances Restrictions Not for Food Or Drug Use
    Safety Data Sheet 1: Identification 1.1: Product Identifier Product Name: MgI2 Product Number(s): 1MGI2-0002F CAS Number: 10377-58-9 SDS Document Number: 000167 1.2: Recommended Uses and Restrictions Recommended Uses Manufacture of substances Restrictions Not for food or drug use. 1.3: Supplier Contact Information APL Engineered Materials, Inc. 2401 N. Willow Rd. Urbana, IL 61802 Phone: 217-367-1340 Fax: 217-367-9084 1.4: Emergency Phone Number International: +01-813-248-0585 United States: 800-255-3924 2: Hazards Identification 2.1: Classifications Not a hazardous substance or mixture - . 2.2: GHS Label Elements Pictograms Signal Word: Hazard Statements Not a hazardous substance. Precautionary Statements Not a hazardous substance. 2.3: Hazards Not Otherwise Classified or Not Covered by GHS Monday, January 13, 2020 Page 1 of 8 None. 2.4: Amount(s) of substances with unknown toxicity None 3: Composition/Information on Ingredients 3.1: .Ingredient .Weight% .Formula .CAS Number .Mol Wt .EC Number MgI2 100 MgI2 10377-58-9 278.11 233-825-1 3.2: Other Hazardous components none 3.3: Trade Secret Disclaimer none 3.4: Synonyms Magnesium Iodide 4: First Aid Measures 4.1: First Aid General Consult with physician and provide this Safety Data Sheet Remove person from area of exposure and remove any contaminated clothing In contact with eyes Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Seek medical attention if irritation develops or persists In contact with skin Wash thoroughly with soap and plenty of water.
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds
    EPA/690/R-16/012F l Final 9-02-2016 Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (CASRN 7440-17-7, Rubidium) (CASRN 7791-11-9, Rubidium Chloride) (CASRN 1310-82-3, Rubidium Hydroxide) (CASRN 7790-29-6, Rubidium Iodide) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGERS Puttappa R. Dodmane, BVSc&AH, MVSc, PhD National Center for Environmental Assessment, Cincinnati, OH Scott C. Wesselkamper, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY SRC, Inc. 7502 Round Pond Road North Syracuse, NY 13212 PRIMARY INTERNAL REVIEWER Paul G. Reinhart, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC This document was externally peer reviewed under contract to: Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this PPRTV assessment should be directed to the EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). ii Rubidium Compounds TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS AND ACRONYMS .................................................. iv BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1
    [Show full text]