Oral History Interview with Allen Newell

Total Page:16

File Type:pdf, Size:1020Kb

Oral History Interview with Allen Newell An Interview with ALLEN NEWELL OH 227 Conducted by Arthur L. Norberg on 10-12 June 1991 Pittsburgh, PA Charles Babbage Institute Center for the History of Information Processing University of Minnesota, Minneapolis Copyright, Charles Babbage Institute 1 Allen Newell Interview 10-12 June 1991 Abstract Newell discusses his entry into computer science, funding for computer science departments and research, the development of the Computer Science Department at Carnegie Mellon University, and the growth of the computer science and artificial intelligence research communities. Newell describes his introduction to computers through his interest in organizational theory and work with Herb Simon and the Rand Corporation. He discusses early funding of university computer research through the National Institutes of Health and the National Institute of Mental Health. He recounts the creation of the Information Processing Techniques Office (IPTO) under J. C. R. Licklider. Newell recalls the formation of the Computer Science Department at Carnegie Mellon and the work of Alan J. Perlis and Raj Reddy. He describes the early funding initiatives of the Advanced Research Projects Agency (ARPA) and the work of Burt Green, Robert Cooper, and Joseph Traub. Newell discusses George Heilmeier's attempts to cut back artificial intelligence, especially speech recognition, research. He compares research at the Massachusetts Institute of Technology and Stanford's Artificial Intelligence Laboratory and Computer Science Department with work done at Carnegie Mellon. Newell concludes the interview with a discussion of the creation of the ARPANET and a description of the involvement of the research community in influencing ARPA personnel and initiatives. 2 ALLEN NEWELL INTERVIEW DATE: 10 June 1991 INTERVIEWER: Arthur L. Norberg LOCATION: Pittsburgh, PA NORBERG: Can I ask you to briefly describe for me, as you understand it, the origins of this field in the 1950s? And the reason I am asking the question is I want to distinguish the various approaches and the reasons for their emergence. Why Carnegie Mellon is interested in complex information processing as a group; why the MIT people seem to be more oriented toward machinery, and so on. NEWELL: So this is the field of AI you're talking about. NORBERG: The field of AI. NEWELL: You will push me in a moment, but it's not clear that I can give you more than what has become a standard mythology on this, which is to say that from my point of view there is this highly personal and direct relationship between Herb Simon and myself, which starts out at Rand (it's been written about, so that's sort of available), in which we both start out as people concerned with psychology and behavior. Herb, of course, is professionally from that area. Me not, when you look at my background. Organizational research was concerned with psychology. I actually joined the American Psychological Association in 1952, so it goes way back. So I am, although a bunch of odd things in terms of education, I am really operating as a psychologist, and Herb, of course, is as well. So, in fact, that whole orientation is sort of absolutely there in simply the set of problems that Herb and I are dealing with. And when we come back to CIT [Carnegie Institute of Technology] - Herb is here anyway, but when I come back it is the same thing. Now, what brings me back to CIT is officially the issue of continuing these organization studies. And in fact, there was an immense amount of planning fantasy and all the rest of this about how we were going to create a... Do you know anything about the Systems Research Lab at all? Is that part of your world? There was an attempt to build a laboratory at Rand... more than an attempt... a real attempt to build a laboratory at Rand, where they did organizational studies in which groups worked for up to a month in air defense situations. And we thus had 20 to 30 3 people working continuously eight hours a day gathering massive amounts of data on their behavior, trying to understand that. It was out of that that SDC (System Development Corporation), systems training and the air defense command, and all that sort of stuff evolved. That's a whole big area and full of its own great ideas. So when I came back to work with Herb, who is deeply involved in organization theory, which in fact is the thing that brings us together, that is sort of the imagery that's going on between us. And so, there's lots of fantasies about how we're going go do that kind of organizational studies here, and so forth. The concern with individual behavior, the concern with trying to do something in terms of understanding reasoning and thinking and so forth, sort of grows up within that. It doesn't happen after I am here; it happens sort of in the process of coming here. And it happens again; there is this piece of true mythology about Oliver Selfridge coming out to Rand giving an afternoon seminar for the four of us, which just totally turned me on. And within the context of understanding the behavior of the tellers and the guys who draw on plexiboard, which I can't remember what they're called, that behavior was the behavior we were analyzing. So we were analyzing individual behavior within an organizational context, but then shifted therefore from the real organizational concerns to this issue of individuals. That was sort of going on after I was already interacting deeply with Herb and made the commitment to not go to the Center for Behavioral Sciences. So Casbaugh [?] was just getting started in his first year, and I made the choice. I was one of the so-called junior fellows. NORBERG: Where was the center? NEWELL: The center at Stanford, that now exists at Stanford [Center for Advanced Studies in the Behavioral Sciences]. This was its first year; 1955 was its first year. They have had a great stratified system, called senior fellows and junior fellows. Junior fellows were supposed to go sit at the seat of the senior fellows. I was one of the junior fellows. When push came to shove I decided I would rather go to work with Herb and came back into this environment with all of this organizational and social psychological and performance stuff uppermost. Although what I had been mostly concerned about was the computer technologies for building the simulated system. So I was sort of deep in that aspect and thus not deeply involved. NORBERG: Let me ask two questions about that, please. One of them is, this sounds to me like the interaction of 4 you and Herb Simon... NEWELL: Right. NORBERG: ... was a highly personalized... NEWELL: Sure, absolutely. NORBERG: ... thing, rather than a whole group of people who happened to be at CIT at the time. NEWELL: Yes, absolutely. Absolutely. NORBERG: And the only connection then would be with a similar but not identical kind of activity going on in organizational studies and behavioral studies at Rand. Is that fair? NEWELL: Yes. Herb essentially is an organizational theorist. He is lots of things, but he is that. And so he found us at Rand. He was out there doing his thing as an economics consultant with the decision theory people. We were a bunch of peculiar characters off on one side doing these organizational studies. So he found us and was fascinated. He came over just to talk to all of us, and then he and I began to... So very personal, absolutely personal, the two of us. NORBERG: And my second question is how did you become interested in the computing machine side of this? NEWELL: I think the only answer to that is that as we cranked up... This is now actually before... Does the name by the name of Bavelas mean anything to you? Alex Bavelas was a psychologist; a mysterious psychologist because he never published, but was famously known all through psychology. He did a series of so-called task communication studies in which he put people in a room with partitions so they could only communicate by 5 messages, and so initiated a whole area of small group studies based on these task communications, where humans only communicated with little messages so you do task analyses. People at Rand got very interested in that. In fact, John Kennedy sort of came out to Rand because of Rand's electrical engineering department's (whatever it was called) interest in this. I got very interested in this. So I am sitting in the mathematics division, which is a free- floating division within Rand, famously so. Williams... a guy by the name of Jim... No, no... Anyway, famous guy, because he was not a Ph.D., an astronomer, worked at OSRD during the war, became the head of the mathematics department at Rand. And he had a habit, which he actually did on me, in which the day I walked in when I took my job out there, he said, "I have just bought all your time for the year. Here, I give it back to you. Now, go off and do something interesting." I mean, it was his standard... J.D. Williams... his standard thing. So I was floating around doing whatever I damned pleased. It was a hotbed of game theory. I turned out not to be terribly excited by game theory. And I got interested because of some of this other stuff, and some of the summer studies, in looking at small group behavior.
Recommended publications
  • Edsger Dijkstra: the Man Who Carried Computer Science on His Shoulders
    INFERENCE / Vol. 5, No. 3 Edsger Dijkstra The Man Who Carried Computer Science on His Shoulders Krzysztof Apt s it turned out, the train I had taken from dsger dijkstra was born in Rotterdam in 1930. Nijmegen to Eindhoven arrived late. To make He described his father, at one time the president matters worse, I was then unable to find the right of the Dutch Chemical Society, as “an excellent Aoffice in the university building. When I eventually arrived Echemist,” and his mother as “a brilliant mathematician for my appointment, I was more than half an hour behind who had no job.”1 In 1948, Dijkstra achieved remarkable schedule. The professor completely ignored my profuse results when he completed secondary school at the famous apologies and proceeded to take a full hour for the meet- Erasmiaans Gymnasium in Rotterdam. His school diploma ing. It was the first time I met Edsger Wybe Dijkstra. shows that he earned the highest possible grade in no less At the time of our meeting in 1975, Dijkstra was 45 than six out of thirteen subjects. He then enrolled at the years old. The most prestigious award in computer sci- University of Leiden to study physics. ence, the ACM Turing Award, had been conferred on In September 1951, Dijkstra’s father suggested he attend him three years earlier. Almost twenty years his junior, I a three-week course on programming in Cambridge. It knew very little about the field—I had only learned what turned out to be an idea with far-reaching consequences. a flowchart was a couple of weeks earlier.
    [Show full text]
  • Reinventing Education Based on Data and What Works • Since 1955
    Reinventing Education Based on Data and What Works • Since 1955 Carnegie Mellon is reinventing education and the way we think about leveraging technology through its study of the science of learning – an interdisciplinary effort that we’ve been tackling for more than 50 years with both computer scientists and psychologists. CMU's educational technology innovations have inspired numerous startup companies, which are helping students to learn more effectively and efficiently. 1955: Allen Newell (TPR ’57) joins 1995: Prof. Kenneth R. Koedinger (HSS Prof. Herbert Simon’s research team as ’88,’90) and Anderson develop Practical a Ph.D. student. Algebra Tutor. The program pioneers a new form of computer-aided instruction for high 1956: CMU creates one of the world’s first school students based on cognitive tutors. university computation centers. With Prof. Alan Perlis (MCS ’42) as its head, it is a joint 1995: Prof. Jack Mostow (SCS ’81) undertaking of faculty from the business, develops Project LISTEN, an intelligent tutor Simon, Newell psychology, electrical engineering and that helps children learn to read. The National mathematics departments, and the Science Foundation included Project precursor to computer science. LISTEN’s speech recognition system as one of its top 50 innovations from 1950-2000. 1956: Simon creates a “thinking machine”—enacting a mental process 1995: The Center for Automated by breaking it down into its simplest Learning and Discovery is formed, led steps. Later that year, the term “artificial by Prof. Thomas M. Mitchell. intelligence” is coined by a small group Perlis including Newell and Simon. 1998: Spinoff company Carnegie Learning is founded by CMU scientists to expand 1956: Simon, Newell and J.
    [Show full text]
  • The Advent of Recursion & Logic in Computer Science
    The Advent of Recursion & Logic in Computer Science MSc Thesis (Afstudeerscriptie) written by Karel Van Oudheusden –alias Edgar G. Daylight (born October 21st, 1977 in Antwerpen, Belgium) under the supervision of Dr Gerard Alberts, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: November 17, 2009 Dr Gerard Alberts Prof Dr Krzysztof Apt Prof Dr Dick de Jongh Prof Dr Benedikt Löwe Dr Elizabeth de Mol Dr Leen Torenvliet 1 “We are reaching the stage of development where each new gener- ation of participants is unaware both of their overall technological ancestry and the history of the development of their speciality, and have no past to build upon.” J.A.N. Lee in 1996 [73, p.54] “To many of our colleagues, history is only the study of an irrele- vant past, with no redeeming modern value –a subject without useful scholarship.” J.A.N. Lee [73, p.55] “[E]ven when we can't know the answers, it is important to see the questions. They too form part of our understanding. If you cannot answer them now, you can alert future historians to them.” M.S. Mahoney [76, p.832] “Only do what only you can do.” E.W. Dijkstra [103, p.9] 2 Abstract The history of computer science can be viewed from a number of disciplinary perspectives, ranging from electrical engineering to linguistics. As stressed by the historian Michael Mahoney, different `communities of computing' had their own views towards what could be accomplished with a programmable comput- ing machine.
    [Show full text]
  • Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms”
    “Alan Turing Centenary Year - India Celebrations” 3-Day Faculty Development Program on “Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms” Organized by Foundation for Advancement of Education and Research In association with Computer Society of India - Division II [Software] NASSCOM, IFIP TC - 1 & TC -2, ACM India Council Co-sponsored by P.E.S Institute of Technology Venue PES Institute of Technology, Hoskerehalli, Bangalore Date : 18 - 20 December 2012 Compiled by : Prof. K. Rajanikanth Trustee, FAER “Alan Turing Centenary Year - India Celebrations” 3-Day Faculty Development Program on “Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms” Organized by Foundation for Advancement of Education and Research In association with Computer Society of India - Division II [Software], NASSCOM, IFIP TC - 1 & TC -2, ACM India Council Co-sponsored by P.E.S Institute of Technology December 18 – 20, 2012 Compiled by : Prof. K. Rajanikanth Trustee, FAER Foundation for Advancement of Education and Research G5, Swiss Complex, 33, Race Course Road, Bangalore - 560001 E-mail: [email protected] Website: www.faer.ac.in PREFACE Alan Mathison Turing was born on June 23rd 1912 in Paddington, London. Alan Turing was a brilliant original thinker. He made original and lasting contributions to several fields, from theoretical computer science to artificial intelligence, cryptography, biology, philosophy etc. He is generally considered as the father of theoretical computer science and artificial intelligence. His brilliant career came to a tragic and untimely end in June 1954. In 1945 Turing was awarded the O.B.E. for his vital contribution to the war effort. In 1951 Turing was elected a Fellow of the Royal Society.
    [Show full text]
  • Oral History Interview with Bernard A. Galler
    An Interview with BERNARD A. GALLER OH 236 Conducted by Enid H. Galler on 8, 10-11, and 16 August 1991 Sutton's Bay, MI Ann Arbor, MI Charles Babbage Institute Center for the History of Information Processing University of Minnesota, Minneapolis Copyright, Charles Babbage Institute 1 Bernard A. Galler Interview 8, 10-11, and 16 August 1991 Abstract In this wide-ranging interview, Galler describes the development of computer science at the University of Michigan from the 1950s through the 1980s and discusses his own work in computer science. Prominent subjects in Galler's description of his work at Michigan include: his arrival and classes with John Carr, research use of International Business Machines (IBM) and later Amdahl mainframe computers, the establishment of the Statistical Laboratory in the Mathematics Dept., the origin of the computer science curriculum and the Computer Science Dept. in the 1950s, interactions with Massachusetts Institute of Technology and IBM about timesharing in the 1960s, the development of the Michigan Algorithm Decoder, and the founding of the MERIT network. Galler also discusses Michigan's relationship with ARPANET, CSNET, and BITNET. He describes the atmosphere on campus in the 1960s and early 1970s and his various administrative roles at the university. Galler discusses his involvement with the Association for Computing Machinery, the American Federation of Information Processing Societies, the founding of the Charles Babbage Institute, and his work with the Annals of the History of Computing. He describes his consultative work with Israel and his consulting practice in general, his work as an expert witness, and his interaction with the Patent Office on issues surrounding the patenting of software and his role in the establishment of the Software Patent Institute.
    [Show full text]
  • Mount Litera Zee School Grade-VIII G.K Computer and Technology Read and Write in Notebook: 1
    Mount Litera Zee School Grade-VIII G.K Computer and Technology Read and write in notebook: 1. Who is called as ‘Father of Computer’? a. Charles Babbage b. Bill Gates c. Blaise Pascal d. Mark Zuckerberg 2. Full Form of virus is? a. Visual Information Resource Under Seize b. Virtual Information Resource Under Size c. Vital Information Resource Under Seize d. Virtue Information Resource Under Seize 3. How many MB (Mega Byte) makes one GB (Giga Byte)? a. 1025 MB b. 1030 MB c. 1020 MB d. 1024 MB 4. Internet was developed in _______. a. 1973 b. 1993 c. 1983 d. 1963 5. Which was the first virus detected on ARPANET, the forerunner of the internet in the early 1970s? a. Exe Flie b. Creeper Virus c. Peeper Virus d. Trozen horse 6. Who is known as the Human Computer of India? a. Shakunthala Devi b. Nandan Nilekani c. Ajith Balakrishnan d. Manish Agarwal 7. When was the first smart phone launched? a. 1992 b. 1990 c. 1998 d. 2000 8. Which one of the following was the first search engine used? a. Google b. Archie c. AltaVista d. WAIS 9. Who is known as father of Internet? a. Alan Perlis b. Jean E. Sammet c. Vint Cerf d. Steve Lawrence 10. What us full form of GOOGLE? a. Global Orient of Oriented Group Language of Earth b. Global Organization of Oriented Group Language of Earth c. Global Orient of Oriented Group Language of Earth d. Global Oriented of Organization Group Language of Earth 11. Who developed Java Programming Language? a.
    [Show full text]
  • Halting Problems: a Historical Reading of a Paradigmatic Computer Science Problem
    PROGRAMme Autumn workshop 2018, Bertinoro L. De Mol Halting problems: a historical reading of a paradigmatic computer science problem Liesbeth De Mol1 and Edgar G. Daylight2 1 CNRS, UMR 8163 Savoirs, Textes, Langage, Universit´e de Lille, [email protected] 2 Siegen University, [email protected] 1 PROGRAMme Autumn workshop 2018, Bertinoro L. De Mol and E.G. Daylight Introduction (1) \The improbable symbolism of Peano, Russel, and Whitehead, the analysis of proofs by flowcharts spearheaded by Gentzen, the definition of computability by Church and Turing, all inventions motivated by the purest of mathematics, mark the beginning of the computer revolution. Once more, we find a confirmation of the sentence Leonardo jotted despondently on one of those rambling sheets where he confided his innermost thoughts: `Theory is the captain, and application the soldier.' " (Metropolis, Howlett and Rota, 1980) Introduction 2 PROGRAMme Autumn workshop 2018, Bertinoro L. De Mol and E.G. Daylight Introduction (2) Why is this `improbable' symbolism considered relevant in comput- ing? ) Different non-excluding answers... 1. (the socio-historical answers) studying social and institutional developments in computing to understand why logic, or, theory, was/is considered to be the captain (or not) e.g. need for logic framed in CS's struggle for disciplinary identity and independence (cf (Tedre 2015)) 2. (the philosophico-historical answers) studying history of computing on a more technical level to understand why and how logic (or theory) are in- troduced in the computing practices { question: is there something to com- puting which makes logic epistemologically relevant to it? ) significance of combining the different answers (and the respective approaches they result in) ) In this talk: focus on paradigmatic \problem" of (theoretical) computer science { the halting problem Introduction 3 PROGRAMme Autumn workshop 2018, Bertinoro L.
    [Show full text]
  • Pioneers of Computing
    Pioneers of Computing В 1980 IEEE Computer Society учредило Золотую медаль (бронзовую) «Вычислительный Пионер» Пионерами учредителями стали 32 члена IEEE Computer Society, связанных с работами по информатике и вычислительным наукам. 1 Pioneers of Computing 1.Howard H. Aiken (Havard Mark I) 2.John V. Atanasoff 3.Charles Babbage (Analytical Engine) 4.John Backus 5.Gordon Bell (Digital) 6.Vannevar Bush 7.Edsger W. Dijkstra 8.John Presper Eckert 9.Douglas C. Engelbart 10.Andrei P. Ershov (theroretical programming) 11.Tommy Flowers (Colossus engineer) 12.Robert W. Floyd 13.Kurt Gödel 14.William R. Hewlett 15.Herman Hollerith 16.Grace M. Hopper 17.Tom Kilburn (Manchester) 2 Pioneers of Computing 1. Donald E. Knuth (TeX) 2. Sergei A. Lebedev 3. Augusta Ada Lovelace 4. Aleksey A.Lyapunov 5. Benoit Mandelbrot 6. John W. Mauchly 7. David Packard 8. Blaise Pascal 9. P. Georg and Edvard Scheutz (Difference Engine, Sweden) 10. C. E. Shannon (information theory) 11. George R. Stibitz 12. Alan M. Turing (Colossus and code-breaking) 13. John von Neumann 14. Maurice V. Wilkes (EDSAC) 15. J.H. Wilkinson (numerical analysis) 16. Freddie C. Williams 17. Niklaus Wirth 18. Stephen Wolfram (Mathematica) 19. Konrad Zuse 3 Pioneers of Computing - 2 Howard H. Aiken (Havard Mark I) – США Создатель первой ЭВМ – 1943 г. Gene M. Amdahl (IBM360 computer architecture, including pipelining, instruction look-ahead, and cache memory) – США (1964 г.) Идеология майнфреймов – система массовой обработки данных John W. Backus (Fortran) – первый язык высокого уровня – 1956 г. 4 Pioneers of Computing - 3 Robert S. Barton For his outstanding contributions in basing the design of computing systems on the hierarchical nature of programs and their data.
    [Show full text]
  • MTS on Wikipedia Snapshot Taken 9 January 2011
    MTS on Wikipedia Snapshot taken 9 January 2011 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 09 Jan 2011 13:08:01 UTC Contents Articles Michigan Terminal System 1 MTS system architecture 17 IBM System/360 Model 67 40 MAD programming language 46 UBC PLUS 55 Micro DBMS 57 Bruce Arden 58 Bernard Galler 59 TSS/360 60 References Article Sources and Contributors 64 Image Sources, Licenses and Contributors 65 Article Licenses License 66 Michigan Terminal System 1 Michigan Terminal System The MTS welcome screen as seen through a 3270 terminal emulator. Company / developer University of Michigan and 7 other universities in the U.S., Canada, and the UK Programmed in various languages, mostly 360/370 Assembler Working state Historic Initial release 1967 Latest stable release 6.0 / 1988 (final) Available language(s) English Available programming Assembler, FORTRAN, PL/I, PLUS, ALGOL W, Pascal, C, LISP, SNOBOL4, COBOL, PL360, languages(s) MAD/I, GOM (Good Old Mad), APL, and many more Supported platforms IBM S/360-67, IBM S/370 and successors History of IBM mainframe operating systems On early mainframe computers: • GM OS & GM-NAA I/O 1955 • BESYS 1957 • UMES 1958 • SOS 1959 • IBSYS 1960 • CTSS 1961 On S/360 and successors: • BOS/360 1965 • TOS/360 1965 • TSS/360 1967 • MTS 1967 • ORVYL 1967 • MUSIC 1972 • MUSIC/SP 1985 • DOS/360 and successors 1966 • DOS/VS 1972 • DOS/VSE 1980s • VSE/SP late 1980s • VSE/ESA 1991 • z/VSE 2005 Michigan Terminal System 2 • OS/360 and successors
    [Show full text]
  • Programming Languages: Design and Implementation
    طراحی و پیادهسازی زبان های برنامهسازی Programming Languages: Design and Implementation 40364 نیمسال دوم 1400 - 1399 slide 1 اهداف درس سیر طبیعی تحوﻻت مفاهیم و روش های طراحی و پیادهسازی نسل های مختلف زبان های برنامهسازی به روشی تجربی و گام به گام مهندسی زبان های برنامه سازی )زبان های ویژه دامنه( آشنایی با پیاده سازی مفسرها به ویژه بر بستر ماشین های مجازی اصول طراحی زبان های برنامه سازی و روش ها و ساختارهای داده ای به کار رفته در پیادهسازی یا محقق کردن محیط برنامه نویسی ایجاد توانایی ارزیابی، مقایسه و انتخاب میان زبان های برنامه سازی موجود برنامه سازی تابعی معناشناسی و استدﻻل پیرامون برنامه slide 2 Grading and Other Admin affairs Your grade components: • Final Exam • Mid Term Exam • Assignments (paper based) • Assignments (programming including a final project) • Class Presentation … Class Administration Policies: slide 3 Main References Daniel P. Friedman and Mitchell Wand, Essentials of Programming Languages, 3rd Edition, MIT Press, 2008. M.Felleisen, R.Findler, M.Flatt, S.Krishnamurthi, E.Barzilay, J.McCarthy, S.Tobin-Hochstadt, A Programmable Programming Language, Communications of the ACM, Vol. 61, No. 3, Pp. 62-71, March 2018. https://racket-lang.org/ My class and Slides slide 4 Other Useful General Text Books S.Krishnamurthi, Programming Languages: Application and Interpretation, 2nd Edition, http://cs.brown.edu/courses/cs173/2012/book/b ook.pdf, 2017. Peter Sestoft, Programming Language Concepts, 2nd Edition, 2017. Michael Scott, Programming Language Pragmatics, (with its complimentary CD) slide 5 Other Useful General Text Books
    [Show full text]
  • Using History to Teach Computer Science and Related Disciplines
    Computing Research Association Using History T o T eachComputer Science and Related Disciplines Using History To Teach Computer Science and Related Disciplines Edited by Atsushi Akera 1100 17th Street, NW, Suite 507 Rensselaer Polytechnic Institute Washington, DC 20036-4632 E-mail: [email protected] William Aspray Tel: 202-234-2111 Indiana University—Bloomington Fax: 202-667-1066 URL: http://www.cra.org The workshops and this report were made possible by the generous support of the Computer and Information Science and Engineering Directorate of the National Science Foundation (Award DUE- 0111938, Principal Investigator William Aspray). Requests for copies can be made by e-mailing [email protected]. Copyright 2004 by the Computing Research Association. Permission is granted to reproduce the con- tents, provided that such reproduction is not for profit and credit is given to the source. Table of Contents I. Introduction ………………………………………………………………………………. 1 1. Using History to Teach Computer Science and Related Disciplines ............................ 1 William Aspray and Atsushi Akera 2. The History of Computing: An Introduction for the Computer Scientist ……………….. 5 Thomas Haigh II. Curricular Issues and Strategies …………………………………………………… 27 3. The Challenge of Introducing History into a Computer Science Curriculum ………... 27 Paul E. Ceruzzi 4. History in the Computer Science Curriculum …………………………………………… 33 J.A.N. Lee 5. Using History in a Social Informatics Curriculum ....................................................... 39 William Aspray 6. Introducing Humanistic Content to Information Technology Students ……………….. 61 Atsushi Akera and Kim Fortun 7. The Synergy between Mathematical History and Education …………………………. 85 Thomas Drucker 8. Computing for the Humanities and Social Sciences …………………………………... 89 Nathan L. Ensmenger III. Specific Courses and Syllabi ………………………………………....................... 95 Course Descriptions & Syllabi 9.
    [Show full text]
  • Computing at the University of Michigan: the Early Years, Through the 1960’S”
    n a display case in the Lurie Engineering Center of the University of Professor Emeritus Norman R. Michigan’s College of Engineering, an example of advanced computing Scott joined the Department technology of the early 20th century, a cylindrical slide rule can be seen. It of Electrical Engineering at the consists of two coaxial cylinders 18 inches long, carrying segments of a 30-foot slide University of Michigan in 1951 rule, mounted so that they can be rotated independently and moved axially relative to and retired from the Depart- ment of Electrical Engineering each other. It is a Keuffel and Esser product, model 4012, and the instruction manual and Computer Science (EECS) in refers to it as “Thacher’s Calculating Instrument, for performing a great variety of useful 1988. He was actively involved in calculations with unexampled rapidity and accuracy, cylinder 18” in polished Mahogany the early days of computing at Box with Directions — each $35.00.” Michigan, including teaching one The preface of the manual says, “— With the Thacher Calculating Instrument — the of the first courses on analog and scales are 30 feet long so that they will give results correctly to four and usually five digital computer technology in places of figures, sufficient to satisfy nearly every requirement of the professional and 1954, and completing much of the design work for the Michigan business man. — By the use of this instrument, the drudgery of calculation is avoided, Instructional Computer (MIC) in and the relief to the mind may be compared with the most improved mechanical 1955. He became a fellow of the devices in overcoming the wear and tear of manual labor.”1 IEEE in 1965.
    [Show full text]