Sesamoid Bone in the Tendon of the Supinator Muscle of Dogs: Incidence and Comparison of Radiographic and Computed Tomographic Features

Total Page:16

File Type:pdf, Size:1020Kb

Sesamoid Bone in the Tendon of the Supinator Muscle of Dogs: Incidence and Comparison of Radiographic and Computed Tomographic Features Sesamoid bone in the tendon of the supinator muscle of dogs: incidence and comparison of radiographic and computed tomographic features Word count: 8473 Manon Dorny Student number: 01609678 Supervisor: Dr. Ingrid Gielen Supervisor: Prof. dr. Wim Van Den Broeck Supervisor: Dr. Aquilino Villamonte Chevalier A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of Master of Veterinary Medicine Academic year: 2018 - 2019 Ghent University, its employees and/or students, give no warranty that the information provided in this thesis is accurate or exhaustive, nor that the content of this thesis will not constitute or result in any infringement of third-party rights. Ghent University, its employees and/or students do not accept any liability or responsibility for any use which may be made of the content or information given in the thesis, nor for any reliance which may be placed on any advice or information provided in this thesis. ACKNOWLEDGEMENTS I would like to thank the people that helped me accomplish this thesis and helped me achieve my degree in veterinary science. First of all I would like to thank Dr. Ingrid Gielen, Dr. Aquilino Villamonte Chevalier and Prof. Dr. Wim Van Den Broeck. I thank them all for their time spend in helping me with my research, their useful advice and their endless patience. Without their help, I wouldn’t have been able to accomplish this thesis. Next I would like to thank my family and friends for their continuing support and motivation during the last years of vet school. My parents and partner especially, for all the mental breakdowns they had to endure in periods of exams and deadlines. Thank you to my dad and father in law for proofreading this study and helping me improve my English writing skills. Last I would like to thank my sister who was studying veterinary science with me. It was a tough few years, we laughed together, cried together, but in the end we made it together. TABLE OF CONTENT FRONT PAGE CLAUSE ACKNOWLEDGEMENTS TABLE OF CONTENT SUMMARY...................................................................................................................................... 5 1. Introduction.................................................................................................................................... 7 1.1. Anatomy of the elbow.................................................................................................. 7 1.2. Elbow dysplasia........................................................................................................... 10 Medial coronoid disease................................................................................ 10 Osteochondrosis of the medial humeral condyle........................................... 10 Ununited anconeal process............................................................................ 11 Elbow incongruity........................................................................................... 12 Incomplete ossification of the humeral condyles........................................... 12 1.3. Sesamoid bones.......................................................................................................... 12 2. Problem and aims......................................................................................................................... 14 3. Material and method.................................................................................................................... 14 4. Results........................................................................................................................................... 15 5. Discussion..................................................................................................................................... 16 6. Conclusion..................................................................................................................................... 19 APPENDIX..................................................................................................................................... 20 REFERENCES.................................................................................................................................. 21 Summary Sesamoid bones are present in different tendons and muscles. They develop in spots with pressure or friction. This study focuses on the sesamoid bone in the supinator muscle of the dog. The supinator muscle originates on the lateral collateral ligament of the elbow and the lateral epicondyle of the humerus. Sometimes this muscle contains a sesamoid bone in its origin. This sesamoid bone is located craniolateral of the head of the radius and occasionally they articulate. Sesamoid bones can be important in diagnosing elbow dysplasia, as they can be confused for a fragment of, for example, the medial coronoid process. In this study X-rays and CT scans of 100 dogs were scored by 3 observers with different degrees of experience. A scoring sheet was made to assess the elbows for a sesamoid bone and elbow dysplasia. The incidence of the presence of a sesamoid bone was evaluated on X-ray and CT. Interobserver statistics were performed using the Cohen’s Kappa statistics and the association between the sesamoid bone and elbow dysplasia was assessed using Chi square statistics. On X-ray the incidence of a sesamoid was an average of 8,33% of the dogs. In 43,52% of these dogs a bilateral sesamoid bone was observed. On CT a sesamoid was found in 26% of the dogs. In 76,92% of these dogs a bilateral sesamoid bone was observed. An average of 72% of the sesamoid bones were missed on X-ray. The sesamoid bone was round to oval shaped with a diameter of 0,5-6,56 mm x 0,5- 6,2 mm. The Kappa value for X-ray was 0,6910 (substantial agreement) and for CT 1,00 (perfect agreement). There was a weak positive association between elbow dysplasia and appearance of a sesamoid bone in the supinator muscle (χ2 = 9,1474; p = 0,002491). CT is clearly superior to X-ray for assessing this sesamoid bone. For assessing the X-rays experience is important, but for CT it made no difference in this study. There is an association between elbow dysplasia and the appearance of a sesamoid bone, but further research is needed to assess this correlation. Samenvatting Sesambeenderen komen voor op verschillende plaatsen in het lichaam. Ze ontstaan op plaatsen waar er druk of wrijving wordt uitgeoefend. In dit onderzoek wordt de focus gelegd op het sesambeen in de musculus supinator ter hoogte van het ellebooggewricht van de hond. In de aanhechting van deze spier op de laterale collateraalband van de elleboog en de laterale epicondyl van de humerus bevindt zich bij sommige honden een sesambeen. Dit sesambeen bevindt zich craniolateraal van het hoofd van de radius en articuleert hier soms mee. Sesamsbeenderen kunnen belangrijk zijn, aangezien ze verward kunnen worden met een fragment van bijvoorbeeld de mediale processus coronoideus. In dit onderzoek werden radiografieën en CT scans van de ellebogen van 100 honden bekeken door 3 onderzoekers met verschillend niveau van expertise. Een scoreblad werd ingevuld m.b.t. aanwezigheid van het sesambeen en elleboog dysplasie. Er werd nagegaan in hoeveel percent van de honden een dergelijk sesambeen voorkwam op RX en CT. Interobserver statistiek werd toegepast a.d.h.v. Cohen’s Kappa statistiek. Daarnaast heeft men ook gekeken naar aanwezigheid van elleboog dysplasie en of er een verband was met aanwezigheid van het sesambeen (χ2 statistiek). Bij gemiddeld 8,33% van de honden werd een sesambeen gevonden op RX. Gemiddeld 43,52% van deze honden had bilateraal een sesambeen. Op CT werd in 26% van de honden een sesambeen gevonden. Daar hadden 76,92% van de honden bilateraal een sesambeen. Er werden gemiddeld 72% van de sesambeenderen gemist op RX. het sesambeen was rond tot ovaal van vorm met een diameter van 0,5-6,56mm x 0,5-6,2mm. De Kappa waarde voor RX was 0,6910 (voldoende tot goede 5 overeenstemming) en voor CT 1,00 (perfecte overeenstemming). Er bleek een zwakke positieve associatie tussen aanwezigheid van het sesambeen en aanwezigheid van elleboog dysplasie (χ2 = 9,1474; p = 0,002491). CT is dus duidelijk superieur t.o.v. RX om dit sesambeen te beoordelen. Op RX is ervaring een pluspunt om dit sesambeen te kunnen onderscheiden, maar op CT is er geen onderscheid op vlak van ervaring. het sesambeen is gecorreleerd met aanwezigheid van elleboog dysplasie, maar verder onderzoek is nodig om deze correlatie te beoordelen. 6 1. Introduction 1.1. Anatomy of the elbow The elbow is a joint consisting of 3 bones, the humerus, the radius and the ulna (Fig 1). The humerus is a long bone that ends distally in the humeral condyle. The humeral condyle consists of two parts, the medial trochlea humeri and the lateral capitulum humeri. The capitulum humeri articulates with the head of the radius. The trochlea humeri articulates with the trochlear notch of the ulna and a portion of the fovea of the radius. Caudally on the humeral condyle the olecranon fossa is located. This is the fossa fitted for the olecranon of the ulna when the leg is in extension. On the cranial side of the humeral condyle is the radial fossa. The head of the radius fits in that fossa when the elbow is in flexion. Both of these fossae communicate with each other through the foramen supratrochleare. On the medial and the lateral side of the humeral condyles are the epicondyles. These structures are mainly insertion points for different muscles and ligaments. The radius is also
Recommended publications
  • The Age Order of Epiphyseal Union Around Elbow Joint - a Radiological Study in Vidarbha
    International Journal of Recent Trends in Science And Technology, ISSN 2277-2812 E-ISSN 2249-8109, Volume 10, Issue 2, 2014 pp 251-255 The Age Order of Epiphyseal Union around Elbow Joint - A Radiological Study in Vidarbha Nemade K. S.1*, Kamdi N. Y.2, Meshram M. M.3 1Assistant Professor, 2Associate Professor, 3Professor, Department of Anatomy, GMC, Nagpur, Maharashtra, INDIA. *Corresponding Address: [email protected] Research Article Abstract: Age of union of epiphysis is an important objective even by the workers from the various provinces of the method of age determination which is a difficult task for medico- Indian subcontinent ( Lal and Nat 1934 11 ; Pillai 1936 15 ; legal person. However, this age varies with racial, geographic, Galstaun 1937 9; Basu and Basu 1938 3,4 ; Lal and climatic and various other factors. Study of various text books in 12 et al 8 Anatomy and Radiology exhibits a glaring discrepancy as regards Townsend 1939 ; Gupta . 1974 ). Because of the the ages at which the different epiphyses fuse with the respective existence of such racial, geographic and climatic diaphyses in long bones. These variations have suggested need of variations, need for separate standards of ossification for separate standard of ossification for separate regions. This leads us separate regions have been suggested (Loder et al 1993 14 ; to study ages of epiphyseal union around elbow joint, a rarely Koc et al. 2001 10 ; Crowder et al. 2005 6). So, the present studied joint. Study was performed in total 320 healthy subjects work is undertaken as a pilot study to investigate the ages having ages from 13 to 23 years and length of residence in Vidarbh more than 10 years.
    [Show full text]
  • On the Development of Sesamoid Bones
    bioRxiv preprint doi: https://doi.org/10.1101/316901; this version posted May 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. On the Development of Sesamoid Bones Shai Eyal1*, Sarah Rubin1, Sharon Krief1, Lihi Levin1 and Elazar Zelzer1 1 Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel * Current address: University of California at San Diego, Department of Cellular and Molecular Medicine, La Jolla, CA 92093, USA Corresponding author: [email protected] Keywords: Sesamoid bone, Patella, Fabella, Digits, Sox9, Scleraxis, Tgfβ, Bmp2, Bmp4, Joint, Mouse bioRxiv preprint doi: https://doi.org/10.1101/316901; this version posted May 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Sesamoid bones are a special group of small auxiliary bones that form in proximity to joints and contribute to their stability and function. Sesamoid bones display high degree of variability in size, location, penetrance and anatomical connection to the main skeleton across vertebrate species. Therefore, providing a comprehensive developmental model or classification system for sesamoid bones is challenging. Here, we examine the developmental mechanisms of three anatomically different sesamoid bones, namely patella, lateral fabella and digit sesamoids. Through a comprehensive comparative analysis at the cellular, molecular and mechanical levels, we demonstrate that all three types of sesamoid bones originated from Sox9+/Scx+ progenitors under the regulation of TGFβ and independent of mechanical stimuli from muscles.
    [Show full text]
  • Morphology and Evolution of Sesamoid Elements in Bats (Mammalia: Chiroptera)
    Morphology and Evolution of Sesamoid Elements in Bats (Mammalia: Chiroptera) Author(s): http://orcid.org/0000-0002-7292-3256Lucila Inés Amador, Norberto Pedro Giannini, http://orcid.org/0000-0001-8807-7499Nancy B. Simmons and http:// orcid.org/0000-0002-4615-5011Virginia Abdala Source: American Museum Novitates, (3905):1-40. Published By: American Museum of Natural History https://doi.org/10.1206/3905.1 URL: http://www.bioone.org/doi/full/10.1206/3905.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. AMERICAN MUSEUM NOVITATES Number 3905, 38 pp. August 17, 2018 Morphology and Evolution of Sesamoid Elements in Bats (Mammalia: Chiroptera) LUCILA INÉS AMADOR,1 NORBERTO PEDRO GIANNINI,1, 2, 3 NANCY B. SIMMONS,2 AND VIRGINIA ABDALA4 ABSTRACT Sesamoids are skeletal elements found within a tendon or ligament as it passes around a joint or bony prominence.
    [Show full text]
  • The Histology of Epiphyseal Union in Mammals
    J. Anat. (1975), 120, 1, pp. 1-25 With 49 figures Printed in Great Britain The histology of epiphyseal union in mammals R. WHEELER HAINES* Visiting Professor, Department of Anatomy, Royal Free Hospital School of Medicine, London (Accepted 11 November 1974) INTRODUCTION Epiphyseal union may be defined as beginning with the completion of the first mineralized bridge between epiphyseal and diaphyseal bone and ending with the complete disappearance of the cartilaginous epiphyseal plate and its replacement by bone and marrow. The phases have been described by Sidhom & Derry (1931) and many others from radiographs, but histological material showing union in progress is rare, probably because of the rapidity with which union, once begun, comes to completion (Stephenson, 1924; Dawson, 1929). Dawson (1925, 1929) described the histology of 'lapsed union' in rats, where the larger epiphyses at the 'growing ends' of the long bones remain un-united through- out life. He and Becks et al. (1948) also discussed the early and complete type of union found at the distal end of the humerus in the rat. Here a single narrow per- foration pierced the cartilaginous plate near the olecranon fossa and later spread to destroy the whole plate. Lassila (1928) described a different type of union in the metatarsus of the calf, with multiple perforations of the plate. Apart from a few notes on human material (Haines & Mohiuddin, 1960, 1968), nothing else seems to have been published on the histology of union in mammals. In this paper more abundant material from dog and man is presented and will serve as a basis for discussion of the main features of the different types of union.
    [Show full text]
  • The Effects of Non-Surgical Interventions on Osteoarthritis-Like Changes in the Mouse Knee" (2008)
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-31-2008 The ffecE ts of Non-Surgical Interventions on Osteoarthritis-Like Changes in the Mouse Knee Wendy K. Anemaet University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Anemaet, Wendy K., "The Effects of Non-Surgical Interventions on Osteoarthritis-Like Changes in the Mouse Knee" (2008). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/121 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Effects of Non-Surgical Interventions on Osteoarthritis-Like Changes in the Mouse Knee by Wendy K. Anemaet A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy School of Aging Studies College of Arts and Sciences University of South Florida Co-Major Professor: Anna Plaas, Ph.D. Co-Major Professor: William Haley, Ph.D. Katalin Mikecz, Ph.D. Keiba Shaw, Ed.D. Brent Small, Ph.D. Date of Approval: March 31, 2008 Keywords: cartilage, degradation, exercise, hyaluronan, transforming growth factor-beta, treadmill © Copyright 2008, Wendy K. Anemaet Dedication I dedicate this to my daughter, Aviendha, who has been right there every step of the way. You have experienced and endured more than most 10 year olds in this process. My hope is that it inspires (not disheartens) you to continually ask questions and seek answers.
    [Show full text]
  • Sesamoid Bone of the Medial Collateral Ligament of the Knee Joint
    CASE REPORT Eur. J. Anat. 21 (4): 309-313 (2017) Sesamoid bone of the medial collateral ligament of the knee joint Omar M. Albtoush, Konstantin Nikolaou, Mike Notohamiprodjo Department of Diagnostic and Interventional Radiology, Karls Eberhard Universität Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany SUMMARY tomical relations and the exclusion of other possi- bilities. The variable occurrence of the sesamoid bones This article supports the theory stating that the supports the theory stating that the development development and evolution of the sesamoid bones and evolution of these bones are controlled are controlled through the interaction between in- through the interaction between intrinsic genetic trinsic genetic factors and extrinsic epigenetic stim- factors and extrinsic stimuli. In the present article uli, which can explain their variable occurrence. we report a sesamoid bone at the medial collateral ligament of the knee joint, a newly discovered find- CASE REPORT ing in human and veterinary medicine. We present a case of a 51-year-old female pa- Key words: Sesamoid – MCL – Knee – Fabella – tient, who presented with mild pain at the medial Cyamella aspect of the left knee. No trauma has been re- ported. An unenhanced spiral CT-Scan was per- INTRODUCTION formed with 2 mm thickness, 120 kvp and 100 mAs, which showed preserved articulation of the New structural anatomical discoveries are not so knee joint with neither joint effusion, nor narrowing often encountered. However, their potential occur- of the joint space nor articulating cortical irregulari- rence should be kept in mind, which can eventually ties (Fig. 1). Mild subchondral sclerosis was de- help in a better understanding of patients’ symp- picted at the medial tibial plateau as a sign of early toms and subsequently improve the management osteoarthritis.
    [Show full text]
  • The Anatomy of the Medial Part of the Knee
    LaPrade.fm Page 2000 Thursday, August 16, 2007 12:24 PM COPYRIGHT © 2007 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED The Anatomy of the Medial Part of the Knee By Robert F. LaPrade, MD, PhD, Anders Hauge Engebretsen, Medical Student, Thuan V. Ly, MD, Steinar Johansen, MD, Fred A. Wentorf, MS, and Lars Engebretsen, MD, PhD Investigation performed at the University of Minnesota, Minneapolis, Minnesota Background: While the anatomy of the medial part of the knee has been described qualitatively, quantitative de- scriptions of the attachment sites of the main medial knee structures have not been reported. The purpose of the present study was to verify the qualitative anatomy of medial knee structures and to perform a quantitative evaluation of their anatomic attachment sites as well as their relationships to pertinent osseous landmarks. Methods: Dissections were performed and measurements were made for eight nonpaired fresh-frozen cadaveric knees with use of an electromagnetic three-dimensional tracking sensor system. Results: In addition to the medial epicondyle and the adductor tubercle, a third osseous prominence, the gastrocne- mius tubercle, which corresponded to the attachment site of the medial gastrocnemius tendon, was identified. The average length of the superficial medial (tibial) collateral ligament was 94.8 mm. The superficial medial collateral lig- ament femoral attachment was 3.2 mm proximal and 4.8 mm posterior to the medial epicondyle. The superficial me- dial collateral ligament had two separate attachments on the tibia. The distal attachment of the superficial medial collateral ligament on the tibia was 61.2 mm distal to the knee joint.
    [Show full text]
  • View of Long Bone Structural Features
    APPLICATIONS OF HUMAN BONE MATERIALS AND SYNTHESIZED BIOMATERIALS FOR BONE-RELATED TISSUE ENGINEERING A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment Of the requirements for the Degree Doctor of Philosophy Qing Yu December, 2016 APPLICATIONS OF HUMAN BONE MATERIALS AND SYNTHESIZED BIOMATERIALS FOR BONE-RELATED TISSUE ENGINEERING Qing Yu Dissertation Approved: Accepted: ______________________________ ______________________________ Advisor Department Chair Dr. William J. Landis Dr. Coleen Pugh ______________________________ ______________________________ Committee Member Dean of the College Dr. Nita Sahai Dr. Eric J. Amis ______________________________ ______________________________ Committee Member Dean of the Graduate School Dr. Coleen Pugh Dr. Chand Midha ______________________________ ______________________________ Committee Member Date Dr. Marnie Saunders ______________________________ Committee Member Dr. Ge Zhang ii ABSTRACT Engineered bone grafting has been considered as one of the alternative methods for bone regeneration in both fundamental research and clinical applications to address bone disorders. Bone graft materials, autologous bone, allogeneic bone and synthetic polymer scaffolds have been commonly utilized surgically as substrates for bone grafting. In this dissertation, periosteum, a thin membrane in which progenitor cells can develop into osteoblasts to regenerate bone tissue, has been applied in three different studies to determine its capability to induce new bone formation. In the first study, human periosteum-wrapped bone allografts were implanted subcutaneously in athymic mice followed by sample harvest and gene expression analysis and histological assessment. The second study developed a tissue-engineering approach to generate a functional tendon-to-bone enthesis. In this instance, the constructs were fabricated from human periosteum-wrapped allograft bone and tenocyte- and chondrocyte-seeded biomaterials.
    [Show full text]
  • Upper Extremity Physeal Injury in Young Baseball Pitchers
    Property of JTE Multimedia LLC; all rights reserved. Unauthorized duplication and/or distribution of this content is strictly prohibited. Saltzman_proof CLINICAL FEATURES Upper Extremity Physeal Injury in Young Baseball Pitchers Bryan M. Saltzman, MD1 DOI: Peter N. Chalmers, MD1 Randy Mascarenhas, MD, Abstract: Adolescent baseball players, especially pitchers, are at increased risk for shoulder and FRCSC2 elbow injuries as their level of competition increases. The intersection of the adolescent growth Brian J. Cole, MD, MBA3 spurt with the high levels of elbow valgus and shoulder rotational torques placed upon the arm during overhand pitching predisposes the shoulder and elbow to physeal injuries. Little League Anthony A. Romeo, MD3 shoulder and Little League elbow syndromes most commonly represent pathology at the physeal 1Resident, Department of Orthopedic regions of the proximal and distal humerus and proximal ulna sustained from repetitive loads Surgery, Rush University Medical Center, Chicago, IL; 2Sports Medicine caused by overhead throwing. There is a growing understanding that these injuries occur on a Fellow, Department of Orthopedic wide spectrum from delayed physeal closure and physeal widening to acute transphyseal fracture. Surgery, Rush University Medical Although operative intervention is infrequently required, patient and parent counseling can be Center, Chicago, IL; 3Professor of Orthopedic Surgery, Department of complex. Health care professionals who care for adolescent baseball players also can play an Orthopedic Surgery, Rush University important role in prevention. Appropriate counseling requires a comprehensive understanding of Medical Center, Chicago, IL the clinical, radiographic, and biomechanical aspects of these injuries. This review summarizes these major concepts, focusing on the best available evidence from recent biomechanical and clinical studies on shoulder and elbow injuries in adolescent baseball pitchers.
    [Show full text]
  • Humeral Condylar Fractures and Incomplete Ossification of the Humeral Condyle in Dogs ANDY MOORES
    A five-year old springer PRACTICE ANIMAL COMPANION spaniel that was treated for an intercondylar Y fracture Humeral condylar fractures and incomplete ossification of the humeral condyle in dogs ANDY MOORES HUMERAL condylar fractures are among the most common fractures seen in dogs and account for approximately 20 per cent of the author’s canine fracture caseload, although this is a referral population and probably does not represent the true incidence of these injuries. It has long been recognised that spaniels are predisposed to humeral condylar fractures. It is now recognised that many of these dogs have a condition known as incomplete ossification of the humeral condyle (IOHC) that predisposes them to condylar fractures, often occurring during normal activity or associated with only minor trauma. This article discusses the management of humeral condylar fractures and IOHC. HUMERAL CONDYLAR FRACTURES the force from sudden impacts is primarily directed lat- Andy Moores erally. Secondly, the lateral epicondylar ridge is smaller graduated from Bristol in 1996. He CLASSIFICATION and weaker than its medial counterpart. Lateral condylar spent five years in Humeral condylar fractures can be divided into lateral fractures are most prevalent in skeletally immature dogs. small animal practice condylar, medial condylar and intercondylar fractures. In one retrospective review, 67 per cent of cases were before returning to Bristol to complete Lateral and medial humeral condylar fractures involve less than one year of age, the most common age being a residency in small only one epicondylar ridge of the condyle. Intercondylar four months (Denny 1983). Lateral and medial condylar animal surgery. In 2004, he joined the fractures involve both the medial and lateral epicondylar fractures are often associated with a minor fall, although Royal Veterinary ridges and are commonly described as ʻYʼ or ʻTʼ frac- in some dogs with IOHC they can occur during relative- College as a lecturer in small animal tures depending on the orientation of the fracture lines ly normal activity.
    [Show full text]
  • Hole's Human Anatomy and Physiology
    Hole’s Human Anatomy and Physiology 1 Chapter 7 Skeletal System Bone Classification • Long Bones • Short Bones • Flat Bones • Irregular Bones • Sesamoid (Round) Bones 2 Parts of a Long Bone • epiphysis • distal • proximal • diaphysis • compact bone • spongy bone • articular cartilage • periosteum • endosteum • medullary cavity • trabeculae • marrow • red • yellow 3 Compact and Spongy Bone 4 Microscopic Structure of Compact Bone • osteon • central canal • perforating canal • osteocyte • lacuna • bone matrix • canaliculus 5 Bone Development Intramembranous Ossification • bones originate within sheetlike layers of connective tissues • broad, flat bones • skull bones (except mandible) • intramembranous bones Endochondral Ossification • bones begin as hyaline cartilage • form models for future bones • most bones of the skeleton • endochondral bones 6 Endochondral Ossification • hyaline cartilage model • epiphyseal plate • primary ossification center • osteoblasts vs. osteoclasts • secondary ossification centers 7 Growth at the Epiphyseal Plate First layer of cells • closest to the end of epiphysis • resting cells • anchors epiphyseal plate to epiphysis Second layer of cells • many rows of young cells • undergoing mitosis 8 Growth at the Epiphyseal Plate Third layer of cells • older cells • left behind when new cells appear • cells enlarging and becoming calcified Fourth layer of cells • thin • dead cells • calcified extracellular matrix 9 Homeostasis of Bone Tissue •Bone Resorption – action of osteoclasts and parathyroid hormone •Bone Deposition
    [Show full text]
  • Sesamoid Disorders of the First Metatarsophalangeal Joint
    1 2 Sesamoid Disorders 3 4 of the First 5 6 Metatarsophalangeal 7 8 Joint 9 10 11 Allan Boike, DPM, Molly Schnirring-Judge, DPM*, 12 Sean McMillin, DPM Q2 Q3 13 Q4 Q5 14 15 KEYWORDS 16 Sesamoids Feet First metatarsophalangeal joint 17 Disorders Q6 18 19 20 21 The sesamoids of the feet were named by Galen circa 180 CE because of their resem- 22 blance to sesame seeds. These tiny bones were believed by the ancient Hebrews to 23 be indestructible and therefore the housing for the soul after death, which would 1 24 ultimately be resurrected on the Day of Judgment. However, the sesamoid complex, 25 which transmits 50% of body weight and more than 300% during push-off, is not 2,3 26 invincible and is susceptible to numerous pathologies. These pathologies include 27 sesamoiditis, stress fracture, avascular necrosis, osteochondral fractures, and 28 chondromalacia, and are secondary to these large weight-bearing loads. This article 29 discusses sesamoid conditions and their relationship with hallux limitus, and reviews 30 the conditions that predispose the first metatarsophalangeal joint (MPJ) to osteoar- 31 thritic changes. 32 There is much debate regarding the causes of hallux limitus and rigidus and the role 33 of the sesamoids in precipitating the decreased range of motion of the first MPJ has 34 been considered in some detail. Typically, little is done to the sesamoids at the time of 35 surgical treatment of the hallux limitus deformity. This article reviews the recent 36 literature of sesamoid disorders and, more specifically, their role in hallux limitus.
    [Show full text]