Technical Versus Jargon in Anatomic Veterinary Nomenclature

Total Page:16

File Type:pdf, Size:1020Kb

Technical Versus Jargon in Anatomic Veterinary Nomenclature Journal of Animal Husbandry and Dairy Science Volume 4, Issue 3, 2020, PP 16-20 ISSN 2637-5354 Technical Versus Jargon in Anatomic Veterinary Nomenclature Parés-Casanova* Department of Animal Science, ETSEA, University of Lleida, Catalonia, Spain *Corresponding Author:Parés-Casanova, Department of Animal Science, ETSEA, University of Lleida, Catalonia, Spain. ABSTRACT Being a type of scientific nomenclature, anatomy terms must be clear, precise, logical, coherent and accepted worldwide. Therefore, astandardized veterinary anatomical nomenclaturehasnot only recognised internationally but also came highly recommended and must bringto the attention of not only teachers, students and researchers, but also to clinicians, translators, editors and publishers for use throughout their activities. Although a standard veterinary anatomical nomenclature exists, e.g.NominaAnatomicaVeterinaria,it is not always followed or well known by everyone within the profession. Additionally, casual or jargon terms are commonly used, and that is in addition to differing languages being utilised. This manuscript discusses some of the examples derived from the mix of technical versus jargon anatomical veterinary words,makesrecommendations regardingthe use of jargon or technical words according each situation and highlights some of the complexities involved in structuring and maintaining anatomical nomenclature. Keywords: Anatomical nomenclature; Clinical anatomy; NominaAnatomicaVeterinaria INTRODUCTION American Heritage Dictionary defines jargon as, "the language, especially the vocabulary, Any type of scientific nomenclature must be peculiar to a particular trade, profession, or clear, precise, coherent, comprehensive and group: medical jargon" (Crystal 1995). Lay accepted worldwide(Musil, Blankova, and Baca jargon must be used extensively to communicate 2018)(Chmielewski 2020),in addition to being with laypeople: if owners donot understand correctly usedand taught within and outside of what we are saying or what information is the field (Chmielewski and Strzelec relevant to them, we are going to be unable to 2020).Anatomy is one of the oldest medical provide high-quality care. Moreover, the use of disciplines, and indeed some of the terminology technical words with laypeople can make dates back to ancient times and has provided a owners shut down and avoid asking questions basis for current technical nomenclature because they feel self-conscious (getting clear (Kachlik et al. 2008). The knowledge of answers to questions ensures clients understand anatomical nomenclature ensures veterinarians, their animals’ health and what steps they need to and all related professionals, have access tothe take to ensure their animals’ healthy lives). same method of communicating. This helps avoid confusion when pinpointing structures and This article emphasizes some weaknesses and describing locations of lesions, surgical strengths in relation to the proper use of actuations, necropsy procedures and many more veterinary anatomical nomenclature and, above all, concentrates on the mix of jargon and essential clinical, research and teaching technical words. It is intended to evoke broader activities. Anatomical nomenclature istherefore andmore open discussions within the profession an essential tool when communicating and encourage readers to reflect upon their own information between veterinarians, academics, use, and that of others, in relation to students, researchers, veterinary nurses, terminology and nomenclature. The official physiotherapists and others within the terms (as per the NominaAnatomicaVeterinaria) profession and related professions. used throughout this article appear in italic text. But in day-to-daypractice, many veterinary Unofficial, old, incorrect or jargon terms appear clinicians are unaware on the useof the correct in normal font within brackets.It is also anatomical nomenclature and tend to use important to distinguish between nomenclature, obsolete and jargon (casual) terms. The which is a set of approved terms approved, and Journal of Animal Husbandry and Dairy Science V4 ● I2 ● 2020 16 Technical Versus Jargon in Anatomic Veterinary Nomenclature terminology, which is the standardised system to terms, the anatomical language is seen as alive define these terms precisely. We will consider and changing, and consecutive versions of only use of terminology. Nomina Anatomica Veterinaria reflect these changes. Although some changes are inspired by The Nomina Anatomica Veterinaria a long tradition and do not come as a surprise to The origins of anatomical nomenclature date anyone in the field, other modifications are back to the ancient period, more than 2,500 characterized by innovation and new years ago, and were made in the common discoveries. languages of that time, Greek and later Latin By the way: we are sure that a minimal (Kachlik et al. 2008). Veterinary anatomical academic basis of Latin and Greek roots would nomenclature is currently gathered by the help make the anatomical nomenclature more International Committee on Veterinary Gross intelligible and even interesting. Just to cite, two Anatomical Nomenclature (ICVGAN) in its cute examples: the "Azygos vein" [V. Azygos], Nomina Anatomica Veterinaria (last edition: 6th, from the Greek "without a pair", explains the published in 2017)(International Committee on lack of a similar vein, for some domestic Veterinary Gross Anatomical Nomenclature species, on the contraside of the vertebral 2017), often referred to as NAV. The World column in the region of the thorax. And the Association of Veterinary Anatomists spleen, ―lien‖ or ―splen‖ (although Nomina (WAVA)has overall responsibility for the text, prefers the first term [lien]), both involving committees and publication with professionals derived adjectives such as ―lienalis‖ -Lig. from throughout the world contributing to this lienorenale- and ―splenicus‖ - Sulcus splenialis. essential undertaking. Species specific names have been brought together and terms for the The role of an anatomist academicians must be same thing, reducing the number of words and not only to broaden the knowledge of the animal making life easier, complexities and positive body and its parts, but also to extend the effects. WAVA has additionally published nomenclature in theory and practice. Veterinary similar volumes for histological and Anatomy is the basic science course that embryological anatomy, namely the Nomina essential for most veterinary curriculum Histologica Veterinaria and Nomina including the curriculum of Veterinary Embryologica Veterinaria, which also utilise a Medicine, and education and understanding of series of international nomenclature committees. anatomical nomenclature can link structural Although the publication of NAV is issued as a knowledge to mechanisms of development free open access book online and as a traditional (pathogenesis), structural alterations of cells book, its promotion has not always been (morphologic changes), and the consequences of interacted with by everyone and it is also not changes to animal diseases (Uopasai and always used by everyone. Even when used it Bunterm 2012). may not always be highlighted or referenced, for The majority of clinicians and some example when adhered to in scientific academicians have never favoured or accepted publications it is not always referred to, the NominaAnatomicaVeterinaria nomenclature, undergraduates may be taught using the not because of its intrinsic defects but simply terminology but they may not realise that the due to unknowledge. Some researchers refuse to nomenclature comes from NAV. It is not a adopt it and unfortunately, many erroneous compulsory text for all veterinary, biosciences terms have been adopted in some textbooks and or animal anatomy departments not everyone researches on veterinary anatomy. will consult the text to ensure appropriate nomenclature in presentations and publications The challenge with Veterinary students or in day-to-day discussions. The bigger picture of anatomy is what structures It is important to remember that the anatomical are and how they fit together. Although students nomenclature is part of scientific nomenclature can often get hung up with nomenclature and that deserves due consideration and can be think that anatomy is just about names, learning, updated and improved when necessary. remembering, and understanding the anatomical Anatomical nomenclature is the basis for terms are arguably the greatest challenges faced medical communication (Chmielewski and by first year veterinary students (when normally Strzelec 2020) and is elaborated into a they are introduced to Animal Anatomy). nomenclature in Latin (Chmielewski and Erroneous achievements of anatomy will affect Strzelec 2020). Like other sets of scientific their next levels and future practice. If this 17 Journal of Animal Husbandry and Dairy Science V4 ● I2 ● 2020 Technical Versus Jargon in Anatomic Veterinary Nomenclature learning affects nomenclature, it will mean that unknowledge of correct terms and at the same future Veterinarians will not take care of their time a shift towards the comprehension on non- own language and tend to use wrong terms. The professional persons, as owners -ultimately their result has been the introduction of a state of clients-. Moreover, it should be remembered chaos bewildering to the pupil as well as to the that the use of obsolete and invalid anatomical professional. names in clinical practice or teaching enhances the risk of miscommunication,
Recommended publications
  • Sesamoid Bone in the Tendon of the Supinator Muscle of Dogs: Incidence and Comparison of Radiographic and Computed Tomographic Features
    Sesamoid bone in the tendon of the supinator muscle of dogs: incidence and comparison of radiographic and computed tomographic features Word count: 8473 Manon Dorny Student number: 01609678 Supervisor: Dr. Ingrid Gielen Supervisor: Prof. dr. Wim Van Den Broeck Supervisor: Dr. Aquilino Villamonte Chevalier A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of Master of Veterinary Medicine Academic year: 2018 - 2019 Ghent University, its employees and/or students, give no warranty that the information provided in this thesis is accurate or exhaustive, nor that the content of this thesis will not constitute or result in any infringement of third-party rights. Ghent University, its employees and/or students do not accept any liability or responsibility for any use which may be made of the content or information given in the thesis, nor for any reliance which may be placed on any advice or information provided in this thesis. ACKNOWLEDGEMENTS I would like to thank the people that helped me accomplish this thesis and helped me achieve my degree in veterinary science. First of all I would like to thank Dr. Ingrid Gielen, Dr. Aquilino Villamonte Chevalier and Prof. Dr. Wim Van Den Broeck. I thank them all for their time spend in helping me with my research, their useful advice and their endless patience. Without their help, I wouldn’t have been able to accomplish this thesis. Next I would like to thank my family and friends for their continuing support and motivation during the last years of vet school. My parents and partner especially, for all the mental breakdowns they had to endure in periods of exams and deadlines.
    [Show full text]
  • On the Development of Sesamoid Bones
    bioRxiv preprint doi: https://doi.org/10.1101/316901; this version posted May 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. On the Development of Sesamoid Bones Shai Eyal1*, Sarah Rubin1, Sharon Krief1, Lihi Levin1 and Elazar Zelzer1 1 Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel * Current address: University of California at San Diego, Department of Cellular and Molecular Medicine, La Jolla, CA 92093, USA Corresponding author: [email protected] Keywords: Sesamoid bone, Patella, Fabella, Digits, Sox9, Scleraxis, Tgfβ, Bmp2, Bmp4, Joint, Mouse bioRxiv preprint doi: https://doi.org/10.1101/316901; this version posted May 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Sesamoid bones are a special group of small auxiliary bones that form in proximity to joints and contribute to their stability and function. Sesamoid bones display high degree of variability in size, location, penetrance and anatomical connection to the main skeleton across vertebrate species. Therefore, providing a comprehensive developmental model or classification system for sesamoid bones is challenging. Here, we examine the developmental mechanisms of three anatomically different sesamoid bones, namely patella, lateral fabella and digit sesamoids. Through a comprehensive comparative analysis at the cellular, molecular and mechanical levels, we demonstrate that all three types of sesamoid bones originated from Sox9+/Scx+ progenitors under the regulation of TGFβ and independent of mechanical stimuli from muscles.
    [Show full text]
  • The Effects of Non-Surgical Interventions on Osteoarthritis-Like Changes in the Mouse Knee" (2008)
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-31-2008 The ffecE ts of Non-Surgical Interventions on Osteoarthritis-Like Changes in the Mouse Knee Wendy K. Anemaet University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Anemaet, Wendy K., "The Effects of Non-Surgical Interventions on Osteoarthritis-Like Changes in the Mouse Knee" (2008). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/121 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Effects of Non-Surgical Interventions on Osteoarthritis-Like Changes in the Mouse Knee by Wendy K. Anemaet A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy School of Aging Studies College of Arts and Sciences University of South Florida Co-Major Professor: Anna Plaas, Ph.D. Co-Major Professor: William Haley, Ph.D. Katalin Mikecz, Ph.D. Keiba Shaw, Ed.D. Brent Small, Ph.D. Date of Approval: March 31, 2008 Keywords: cartilage, degradation, exercise, hyaluronan, transforming growth factor-beta, treadmill © Copyright 2008, Wendy K. Anemaet Dedication I dedicate this to my daughter, Aviendha, who has been right there every step of the way. You have experienced and endured more than most 10 year olds in this process. My hope is that it inspires (not disheartens) you to continually ask questions and seek answers.
    [Show full text]
  • Sesamoid Bone of the Medial Collateral Ligament of the Knee Joint
    CASE REPORT Eur. J. Anat. 21 (4): 309-313 (2017) Sesamoid bone of the medial collateral ligament of the knee joint Omar M. Albtoush, Konstantin Nikolaou, Mike Notohamiprodjo Department of Diagnostic and Interventional Radiology, Karls Eberhard Universität Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany SUMMARY tomical relations and the exclusion of other possi- bilities. The variable occurrence of the sesamoid bones This article supports the theory stating that the supports the theory stating that the development development and evolution of the sesamoid bones and evolution of these bones are controlled are controlled through the interaction between in- through the interaction between intrinsic genetic trinsic genetic factors and extrinsic epigenetic stim- factors and extrinsic stimuli. In the present article uli, which can explain their variable occurrence. we report a sesamoid bone at the medial collateral ligament of the knee joint, a newly discovered find- CASE REPORT ing in human and veterinary medicine. We present a case of a 51-year-old female pa- Key words: Sesamoid – MCL – Knee – Fabella – tient, who presented with mild pain at the medial Cyamella aspect of the left knee. No trauma has been re- ported. An unenhanced spiral CT-Scan was per- INTRODUCTION formed with 2 mm thickness, 120 kvp and 100 mAs, which showed preserved articulation of the New structural anatomical discoveries are not so knee joint with neither joint effusion, nor narrowing often encountered. However, their potential occur- of the joint space nor articulating cortical irregulari- rence should be kept in mind, which can eventually ties (Fig. 1). Mild subchondral sclerosis was de- help in a better understanding of patients’ symp- picted at the medial tibial plateau as a sign of early toms and subsequently improve the management osteoarthritis.
    [Show full text]
  • View of Long Bone Structural Features
    APPLICATIONS OF HUMAN BONE MATERIALS AND SYNTHESIZED BIOMATERIALS FOR BONE-RELATED TISSUE ENGINEERING A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment Of the requirements for the Degree Doctor of Philosophy Qing Yu December, 2016 APPLICATIONS OF HUMAN BONE MATERIALS AND SYNTHESIZED BIOMATERIALS FOR BONE-RELATED TISSUE ENGINEERING Qing Yu Dissertation Approved: Accepted: ______________________________ ______________________________ Advisor Department Chair Dr. William J. Landis Dr. Coleen Pugh ______________________________ ______________________________ Committee Member Dean of the College Dr. Nita Sahai Dr. Eric J. Amis ______________________________ ______________________________ Committee Member Dean of the Graduate School Dr. Coleen Pugh Dr. Chand Midha ______________________________ ______________________________ Committee Member Date Dr. Marnie Saunders ______________________________ Committee Member Dr. Ge Zhang ii ABSTRACT Engineered bone grafting has been considered as one of the alternative methods for bone regeneration in both fundamental research and clinical applications to address bone disorders. Bone graft materials, autologous bone, allogeneic bone and synthetic polymer scaffolds have been commonly utilized surgically as substrates for bone grafting. In this dissertation, periosteum, a thin membrane in which progenitor cells can develop into osteoblasts to regenerate bone tissue, has been applied in three different studies to determine its capability to induce new bone formation. In the first study, human periosteum-wrapped bone allografts were implanted subcutaneously in athymic mice followed by sample harvest and gene expression analysis and histological assessment. The second study developed a tissue-engineering approach to generate a functional tendon-to-bone enthesis. In this instance, the constructs were fabricated from human periosteum-wrapped allograft bone and tenocyte- and chondrocyte-seeded biomaterials.
    [Show full text]
  • Hole's Human Anatomy and Physiology
    Hole’s Human Anatomy and Physiology 1 Chapter 7 Skeletal System Bone Classification • Long Bones • Short Bones • Flat Bones • Irregular Bones • Sesamoid (Round) Bones 2 Parts of a Long Bone • epiphysis • distal • proximal • diaphysis • compact bone • spongy bone • articular cartilage • periosteum • endosteum • medullary cavity • trabeculae • marrow • red • yellow 3 Compact and Spongy Bone 4 Microscopic Structure of Compact Bone • osteon • central canal • perforating canal • osteocyte • lacuna • bone matrix • canaliculus 5 Bone Development Intramembranous Ossification • bones originate within sheetlike layers of connective tissues • broad, flat bones • skull bones (except mandible) • intramembranous bones Endochondral Ossification • bones begin as hyaline cartilage • form models for future bones • most bones of the skeleton • endochondral bones 6 Endochondral Ossification • hyaline cartilage model • epiphyseal plate • primary ossification center • osteoblasts vs. osteoclasts • secondary ossification centers 7 Growth at the Epiphyseal Plate First layer of cells • closest to the end of epiphysis • resting cells • anchors epiphyseal plate to epiphysis Second layer of cells • many rows of young cells • undergoing mitosis 8 Growth at the Epiphyseal Plate Third layer of cells • older cells • left behind when new cells appear • cells enlarging and becoming calcified Fourth layer of cells • thin • dead cells • calcified extracellular matrix 9 Homeostasis of Bone Tissue •Bone Resorption – action of osteoclasts and parathyroid hormone •Bone Deposition
    [Show full text]
  • Sesamoid Disorders of the First Metatarsophalangeal Joint
    1 2 Sesamoid Disorders 3 4 of the First 5 6 Metatarsophalangeal 7 8 Joint 9 10 11 Allan Boike, DPM, Molly Schnirring-Judge, DPM*, 12 Sean McMillin, DPM Q2 Q3 13 Q4 Q5 14 15 KEYWORDS 16 Sesamoids Feet First metatarsophalangeal joint 17 Disorders Q6 18 19 20 21 The sesamoids of the feet were named by Galen circa 180 CE because of their resem- 22 blance to sesame seeds. These tiny bones were believed by the ancient Hebrews to 23 be indestructible and therefore the housing for the soul after death, which would 1 24 ultimately be resurrected on the Day of Judgment. However, the sesamoid complex, 25 which transmits 50% of body weight and more than 300% during push-off, is not 2,3 26 invincible and is susceptible to numerous pathologies. These pathologies include 27 sesamoiditis, stress fracture, avascular necrosis, osteochondral fractures, and 28 chondromalacia, and are secondary to these large weight-bearing loads. This article 29 discusses sesamoid conditions and their relationship with hallux limitus, and reviews 30 the conditions that predispose the first metatarsophalangeal joint (MPJ) to osteoar- 31 thritic changes. 32 There is much debate regarding the causes of hallux limitus and rigidus and the role 33 of the sesamoids in precipitating the decreased range of motion of the first MPJ has 34 been considered in some detail. Typically, little is done to the sesamoids at the time of 35 surgical treatment of the hallux limitus deformity. This article reviews the recent 36 literature of sesamoid disorders and, more specifically, their role in hallux limitus.
    [Show full text]
  • 2015 AACA Annual Meeting Program
    June 9 – 12, 2015 | Henderson, Nevada President’s Report June 9-12, 2015 Green Valley Ranch Resort & Casino Henderson, NV Another year has quickly passed and I have been asked to summarize achievements/threats to the Association for our meeting program booklet. Much of this will be recanted in my introductory message on the opening day of the meeting in Henderson. As President, I am representing Council in recognizing the work of those individuals not already recognized in our standing committee reports that you will find in this program. One of our most active ad hoc committees has been the one looking into creating an endowment for the association through member and vendor sponsorships. Our past president, Anne Agur, has chaired this committee and deserves accolades for having the committee work hard and produce the materials you have either already seen, or will be introduced to in Henderson. The format was based on that used by many clinical organizations. It allows support at many different levels, the financial income from which is being invested for student awards and travel stipends. Our ambitious 5 year goal is $100,000. I hope that you will join me in thinking seriously about supporting this initiative - at whichever level you feel comfortable with. Every dollar goes to the endowment. In October, Council ratified the creation of our new standing committee - Brand Promotion and Outreach. This committee was formed by fusing the two ad hoc committees struck by Anne Agur when she was President. Last year our new branding was highly visible in Orlando and we want to use this momentum to continue raising the profile of the Association at many different types of events within and outside North America.
    [Show full text]
  • Orthopaedics 1
    LEARNING PLATFORM- Terminology Orthopaedics 1 1. Read the text1 and underline the keywords that describe the human musculoskeletal system. Make sure you know how to say these terms in all your working languages. Modern orthopaedics is concerned with the diagnosis and management of disorders of the musculoskeletal system, that is the skeleton and the soft tissues associated with it. The skeletal system forms the rigid internal framework of the body and consists of the bones, cartilages, ligaments and tendons. Bones support the weight of the body, allow for body movements and protect internal organs. Cartilage provides flexible strength and support for body structures such as the thoracic cage, the external ear, and the trachea and larynx. At joints of the body, cartilage can also unite adjacent bones or provide cushioning between them. Ligaments are the strong connective tissue bands that hold the bones at a moveable joint together and serve to prevent excessive movements of the joint that would result in injury. Providing movement of the skeleton are the muscles of the body, which are firmly attached to the skeleton via connective tissue structures called tendons. As muscles contract, they pull on the bones to produce movements of the body. As each bone of the body serves a particular function, bones vary in size, shape and strength, based on their function. For example, the bones of the lower back and lower limb are thick and strong to support our body weight. Similarly, the size of a bony landmark that serves as a muscle attachment site on an individual bone is related to the strength of this muscle (bony landmarks are areas on a bone to which something attaches – another bone, a muscle, blood vessels and nerves).
    [Show full text]
  • Each Bone Is an Organ
    7 Chapter 7 Karen Webb Smith HOMUNCULUS Unit Two SOME AMAZING BONE FACTS *at birth humans have 300 bones; several fuse together = 206 in adults I. Introduction *half of your bones are in your hands and feet *one person in 20 has an extra rib; this is more common in males A. Bones are very physiologically active tissues. *older people often develop a slight curve in the spine, right-handed B. Each bone is made up of several types of tissues: people curve right, and left-handed people curve left bone tissue, cartilage, dense connective *each bone is beautifully fitted and shaped for its own particular place tissue, blood, & nervous tissue *the last bone to close is the collarbone, between the ages of 18 & 25 *bones carry on all life’s function, they do so more slowly *30% of bone is living tissue, cells, & blood vessels Each bone is an organ. *45% is mineral deposits, mostly calcium phosphate, forms layers of crystals on the surface of a bone & gives bone hardness *25% of bone is water II. Bone Structure A. Bone Classification *long bones – long longitudinal axes & expanded ends = forearm & thigh bones *short bones – cubelike = wrists & ankles *flat bones – broad surface = ribs, scapulae, skull bones *irregular bones – different shapes = vertebrae & facial bones *sesamoid bones – round, small, & nodular = tendons & joints; kneecap B. Parts of a Long Bone long bone example = femur *epiphysis – expanded portion of a long bone that forms a joint (articulation) with another bone *articular cartilage – area of hyaline cartilage that covers the articulating surface of the epiphysis *diaphysis – shaft of the bone located between the epiphyses *periosteum – tough, vascular covering of fibrous tissue that covers the length of the diaphysis; attaches to bones & is continuous with tendons & ligaments; also functions in the formation & repair of bone tissue *processes – bony projections provide sites for ligament & tendon attachments *grooves, openings & depressions – allow passageways for blood vessels, nerves and articulations with other bones (continued next slide) C.
    [Show full text]
  • FIPAT-TA2-Part-2.Pdf
    TERMINOLOGIA ANATOMICA Second Edition (2.06) International Anatomical Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TA2, PART II Contents: Systemata musculoskeletalia Musculoskeletal systems Caput II: Ossa Chapter 2: Bones Caput III: Juncturae Chapter 3: Joints Caput IV: Systema musculare Chapter 4: Muscular system Bibliographic Reference Citation: FIPAT. Terminologia Anatomica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, 2019 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Anatomica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput II: OSSA Chapter 2: BONES Latin term Latin synonym UK English US English English synonym Other 351 Systemata Musculoskeletal Musculoskeletal musculoskeletalia systems systems
    [Show full text]
  • Sesamoid Injuries in the Foot
    SESAMOID INJURIES IN THE FOOT What is a Sesamoid? absorbing the weight placed on the break, but usually does not affect sesamoid is a bone embedded ball of the foot when walking, the entire big toe joint. A in a tendon. Sesamoids are running, and jumping. A chronic fracture is a stress found in several joints in the body. Sesamoid injuries—which can fracture—a hairline break usually In the foot, the sesamoids are two involve the bones, tendons, and/or caused by repetitive stress or pea-shaped bones located in the ball surrounding tissue in the joint—are overuse. A chronic sesamoid of the foot, beneath the big toe joint. often associated with activities fracture produces longstanding requiring increased pressure on the pain in the ball of the foot ball of the foot, such as running, beneath the big toe joint. The basketball, football, golf, tennis, and pain, which tends to come and go, ballet. In addition, people with high generally is aggravated with Sesamoid arches are at risk for developing activity and relieved with rest. bones sesamoid problems. Frequently • Sesamoiditis. This is an overuse wearing high-heeled shoes can also injury involving chronic be a contributing factor. inflammation of the sesamoid bones and the tendons involved Types of Sesamoid with those bones. Sesamoiditis Injuries in the Foot is caused by increased pressure There are three types of sesamoid to the sesamoids. Often, injuries in the foot: sesamoiditis is associated with Sesamoid bones are located • Turf toe. This is an injury of the a dull, longstanding pain beneath the big toe joint.
    [Show full text]