Precambrian Geology of the Van Horn Area, Texas Donald M

Total Page:16

File Type:pdf, Size:1020Kb

Precambrian Geology of the Van Horn Area, Texas Donald M New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/31 Precambrian geology of the Van Horn area, Texas Donald M. Davidson Jr., 1980, pp. 151-154 in: Trans Pecos Region (West Texas), Dickerson, P. W.; Hoffer, J. M.; Callender, J. F.; [eds.], New Mexico Geological Society 31st Annual Fall Field Conference Guidebook, 308 p. This is one of many related papers that were included in the 1980 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications. One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission. This page is intentionally left blank to maintain order of facing pages. New Mexico Geological Society Guidebook, 31st Field Conference, Trans-Pecos Region, 1980 151 PRECAMBRIAN GEOLOGY OF THE VAN HORN AREA, TEXAS DONALD M. DAVIDSON, JR. Department of Geological Sciences University of Texas at El Paso El Paso, Texas 79968 INTRODUCTION is also developed in other units to the south, again with southward Precambrian rocks are exposed in the Van Horn, Texas area as a plunges. Further detailed structural analysis appears warranted. result of block faulting of a number of adjacent, but spatially Pegmatites and various quartz veins appear to have intruded disconnected mountain ranges (fig. 1). The area has been referred these units both before and after regional metamorphism (King to as the Van Horn Dome (King and Flawn, 1953) but can be con- and Flawn, 1953). sidered domical only in the sense that it has tended to be a positive structural element during Phanerozoic time. Allamoore Formation This domical physiographic structure consists of two distinctive The oldest unit exposed in the northern terrain is the Allamoore geological terrains of late Precambrian (Proterozoic) age. The Formation which consists of 800 m of volcanics, talcose phyllite southern third of the area is composed of a thick (6000-7000 m) se- and carbonate rocks. These units have been tilted and locally com- quence of older, low- to medium-grade metamorphic rocks, while plexly folded and faulted. Determination of the stratigraphic se- the northern two-thirds contains a thinner (3000 m) assemblage of quence is therefore difficult, and an estimate of total thickness is younger, relatively unmetamorphosed sedimentary and volcanic nearly impossible. units. Volcanic rocks constitute from one-quarter to one-half of the A major structural discontinuity, the Streeruwitz overthrust, total volume of the Allamoore Formation and are usually interbed- forms the boundary between these two terrains, and movement ded with limestone. These massive, mafic volcanic rocks appar- along this surface presumably placed the older, southern meta- ently formed as subaerial or subaqueous lava flows while the morphic rocks over portions of the younger lithologies, locally thicker bodies, which occur less commonly, may represent folding them, at 950 to 1000 m.y. (Denison and Hetherington, hypabyssal intrusives. Additional volcanic units are of either 1969). pyroclastic or sedimentary origin and may include pebbly sand- Erosion and incisement of the area occurred prior to the deposi- stones and interbedded volcanic conglomerates (King, 1965). tion of a late Precambrian(?) clastic unit some 300 m thick, the Van Phyllite occurs interbedded with or spatially associated with Horn Sandstone. The region underwent tilting prior to deposition volcanic rocks; this suggests that the phyllite may have a volcanic of younger Paleozoic and Mesozoic sedimentary units which, origin. Bedding, as indicated by alternation of gray, black (appar- together with the older Precambrian rocks, have been offset by ently graphitic) and calcareous varieties, is extremely contorted faults of Tertiary age. and is crossed by well-developed slaty cleavage which parallels the axial planes of folds. STRATIGRAPHY Since 1952 talc has been mined from this phyllite unit; talc con- Carrizo Mountain Group tent within the unit varies locally from 10 to 80 percent (see Ed- The Carrizo Mountain Group constitutes the oldest assemblage wards, this guidebook). The mineral may have formed as a result of Precambrian rocks within the study area (fig. 2). These Pro- of chemical alteration of an original fine-grained, magnesium- terozoic units occur in the southern part of the area under in- bearing tuff, as adjacent carbonate units contain little magnesium vestigation and have been dated at 890 to 1090 m.y. (Wasserberg (King and Flawn, 1953). and others, 1962). The upper limestone beds are characterized by interbedded The sequence consists of meta-arkose, metaquartzite, schist, seams of chert, which parallel bedding and are spaced over inter- phyllite and marble units which have been intruded by rhyolite vals of a few centimeters. The chert is either primary or diagenetic and diorite. These latter intrusive rocks have subsequently been and antedates folding and faulting, as chert seams are sliced and metamorphosed to metarhyolite and amphibolite, respectively. broken where the rocks are strongly deformed. The limestone is The sequence is at least 6300 m thick and displays moderate thin-bedded, compact, evenly laminated, generally dolomitic and homogeneity within lithologic units, yet exhibits variable intensity, commonly contains a wavy structure similar to that of stroma- as well as type, of metamorphism. Regional metamorphic facies toporoids. vary northward from amphibolite to greenschist. Dynamic (cata- clastic) metamorphism appears superimposed upon both regional Hazel Formation and thermal metamorphic events, producing retrograde and The Hazel Formation unconformably overlies the Allamoore For- cataclastic assemblages in the vicinity of the Streeruwitz overthrust mation and consists of more than 1700 m of interbedded con- zone (King and Flawn, 1953; Denison and Hetherington, 1969). glomerate, arkosic sandstone and limestone. The basal portion Foliation is well developed in these units and trends contains a thick, coarse conglomerate composed almost wholly of predominantly N40-50°E with a southeastward dip. Folded folia- angular rock fragments derived from the Allamoore. Near its top tion patterns have been noted in the high-grade rocks to the south the conglomerate is interbedded with and eventually succeeded (King and Flawn, 1953), and interference fold patterns were by a thick section of fine-grained, silty, red sandstone interbedded observed in the lower grade units. According to King and Flawn with well laminated, algae-bearing carbonate rocks (Reid, 1974). (1953), lineations are developed only in metarhyolite units from Reid (1974) stated that sediment of the Hazel Formation was the northwest part of the area where, they plunge southward at 30 deposited within an alluvial fan system, the sediment for which to 60 °; however, recent field investigations indicate that lineation was derived from a granitic highland source area to the south. CJ al_ 0 0 0 - t 0 0 0 C\0 s• - 0 (1, II 0 ‘ s q.‘ )-• _ss0. r l r o .4 • 5, -,„ ,.,01,,„-.7 r xl CD c-) -1 71 ,2 .A t z > cm cn cn C., > > 0 0 Ne 7 < --r- z 0 -4) " s CD (1) 0 n Fii > , • . • .-6 ;, () - 3> 7:, 17.1 a- CI 0 ,. 0: • ,\-- - .6, X K 4, ,- ,,, P 7 ..t" ("lilt .- ..."-.. • -< I)) . • 0 , f,) • " r)" 0 .... .. , 0 ■ 0) p 0....4 .4-6 ,s1 ,--- /--, 4 -g1 , Nso ‘,ss 4 c ..- .4 -, . m - S-1•--- >, : .--y _-= ^.., 0 -. K . = N - 4, li z , „ t I r ). I . .:- 7 , - o ^ SIERRA DIABLO 0 LJ- 0 PRECAMBRIAN GEOLOGY OF THE VAN HORN AREA 153 BLISS SANDSTONE brown thin-bedded noncalcareous sandstone, with Scofithus tubes; overlain by calcareous sandstone; 105-125 f t. t hick UNCONFORMITY VAN HORN SANDSTONE red arkosic sandstone and conglomerate; crossbedded and unfossiliferous; 1200 + f t. thick UNCONFORMITY HAZEL FORMATION : red fine- grained sandstone overlying and interbedded with conglomerate principally formed of fragments
Recommended publications
  • Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life Author(S): J
    Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life Author(s): J. William Schopf Reviewed work(s): Source: Science, New Series, Vol. 260, No. 5108 (Apr. 30, 1993), pp. 640-646 Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/2881249 . Accessed: 07/04/2012 21:09 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and extend access to Science. http://www.jstor.org REFERENCESAND NOTES 9. Y. Hiwatari,in Molecular Dynamics Simulations, F. (World Scientific, Singapore, 1988), vol. 1, p. Yonezawa, Ed., vol. 113 of Springer Series in 247. 1. H. Takayama, News Letter No. 1 (Research Group Solid State Sciences (Springer-Verlag, Heidel- 23. F. Yonezawa, S. Sakamoto, M. Hori, J. Non-Ctyst. on a new project, "Computational Physics as a berg, 1992), p. 32. Solids 137, 135 (1991). New Frontier in Condensed Matter Research" 10. S. Fujiwara and F. Yonezawa, in preparation. 24. F. Yonezawa and S. Sakamoto, Optoelectronics- under the support of the Grant-in-Aidfor Scientific 11.
    [Show full text]
  • An Alluvial Fan Model for Mineral Exploration, Report of Investigations No
    Waste Isolation Pilot Plant Compliance Certification Application Reference 428 McGowen, J.H., and Groat, C. G. 1971. Van Horn Sandstone, West Texas: An Alluvial Fan Model for Mineral Exploration, Report of Investigations No. 72. Bureau of Economic Geology, Austin, TX. Submitted in accordance with 40 CFR 5194.13, Submission of Reference Materials. - t*- An Allurjial Fan kdel for Mineral Exploration J. H. McGowen and C. G. Groat BUREAU OF ECONOMIC GEOLOGY The University of Texas at Austin Austin, Texas 78712 W. L. Fisher. Director Report of Investigations-No. 72 Van Horn Sandstone, West Texas: An Alluvial Fan Model for Mineral Exploration BY J. H. McGowen and C. G. Groat 1971 Second Printing, December 1975 Third Printing, October 1982 Abstract . .......... Proximal fan ........ Introduction ........... Mid-fan .......... General description .......... Distal fan ......... Geologic setting ........... Main braided channels .... Van Horn Sandstone: a large alluvial fan system Braided distributaries ..... Sedimrntology ........... Braided interlobe area .... Facies ............. Summary ........... Proximal f'acies......... Compositionandmineralogy ...... Massive l~oulder1. cds ....... Gravel composition ........ iilterriating gravel and thin sand beds . Sandstone petrography ....... Thick sand and muddy sand of the proxi- Quartz ........... mal facics .......... Feldspar ........... Other feat.urcs of the proximal facies . Rock fragments ........ Mid-fan l'acies .......... Hematite .......... F:tcies dcscrlptioli ........ Cement and matrix
    [Show full text]
  • West Texas Geological Society Publications and Contents Purchase from West Texas Geological Society
    West Texas Geological Society Publications and Contents Purchase from West Texas Geological Society: http://www.wtgs.org/ 77-68 Geology of the Sacramento Mountains Otero County, New Mexico Regional Distribution of Phylloid Algal Mounds in Late Pennsylvanian and Wolfcampian Strata of Southern New Mexico James Lee Wilson Growth History of a Late Pennsylvanian Phylloid Algal Organic Buildup, Northern Sacramento Mains, New Mexico D.F. Toomey, J.L. Wilson, R. Rezak Paleoecological Evidence on the Origin of the Dry Canyon Pennsylvanian Bioherms James M. Parks Biohermal Submarine Cements, Laborcita Formation (Permian), Northern Sacramento Mountains, New Mexico John M. Cys and S.J. Mazzullo Carbonate and Siliciclastic Facies of the Gobbler Formation John C. Van Wagoner The Rancheria Formation: Mississippian Intracratonic Basinal Limestones Donald A. Yurewicz Stratigraphic and Structural Features of the Sacramento Mountain Escarpment, New Mexico Lloyd C. Pray Conglomeratic Lithofacies of the Laborcita and Abo Formations ( Wolfcampian), North Central Sacramento Mountains: Sedimentology and Tectonic Importance David J. Delgado Paleocaliche Textures from Wolfcampian Strata of the Sacramento Mountains, New Mexico David J. Delgado Introduction to Road Logs Lloyd C. Pray Alamogordo to Alamo Canyon and the Western Sacramento Mountains Escarpment Field Guide and Road Log “A” Lloyd C. Pray Supplemental Field Guide to Southernmost Sacramento Mountains Escarpment – Agua Chiquita and Nigger Ed Canyons Lloyd C. Pray Alamogordo to Indian Wells Reentrant Field Guide and Road Log “B” Lloyd C. Pray Guide Locality B-1-West End of Horse Ridge John C. Van Wagoner 1 Field Guide and Road Log “C” Lloyd C. Pray Plate Shaped Calcareous Algae in Late Paleozoic Rocks of Midcontinent (abstract): James M.
    [Show full text]
  • 1-Pb-701 Mukund Sargeev1
    The Palaeobotanist 57(2008) : 323-358 0031-0174/2008 $2.00 Mesoproterozoic silicified microbiotas of Russia and India—Characteristics and Contrasts VLADIMIR N. SERGEEV1, MUKUND SHARMA2 AND YOGMAYA SHUKLA2 1Geological Institute, Russian Academy of Sciences, Moscow, 109017, Russia. 2Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India. (Received 11 July, 2007; revised version accepted 08 May, 2008) ABSTRACT Sergeev VN, Sharma M & Shukla Y 2008. Mesoproterozoic silicified microbiotas of Russia and India—Characteristics and Contrasts. The Palaeobotanist 57(3): 323-358. The paper analyses eight silicified Mesoproterozoic microbiotas of peritidal and shallow subtidal settings from Siberia, Ural and India. These microbiotas, subdivided into three main types - Kotuikan, Satka and Kataskin-are characterized by different taxonomic composition of microfossils. Mat-building entophysalidacean algae Eoentophysalis, ellipsoidal akinetes of nostocalean cyanobacteria genus Archaeoellipsoides and spherical large planktic microfossils Myxococcoides grandis of uncertain affinities dominate the Kotuikan-type microbiotas, the short trichomes are a rare but a distinctive element of these assemblages. The Satka type microbiotas are dominated by mat-building hormogonian cyanobacteria of genus Siphonophycus and chroococcacean dwellers genera Gloeodiniopsis, Eosynechococcus, Sphaerophycus, whereas entophysalidacean cyanobacteria are conspicuously missing and akinetes of genus Archaeoellipsoides occur but never abundant. Besides, microbiotas
    [Show full text]
  • Industrial Minerals Industrial Minerals
    37th FORUM on the GEOLOGY of INDUSTRIAL MINERALS MAY 23-25, 2001 VICTORIA, BC, CANADA Industrial Minerals with emphasis on Western North America Editors: George J. Simandl, William J. McMillan and Nicole D. Robinson Ministry of Energy and Mines Geological Survey Branch Paper 2004-2 Recommended reference style for individual papers: Nelson, J. (2004): The Geology of Western North America (Abridged Version);in G.J. Simandl, W.J. McMillan and N.D. Robinson, Editors, 37th Annual Forum on Industrial Minerals Proceedings, Industrial Minerals with emphasis on Western North America, British Columbia Ministry of Energy and Mines, Geological Survey Branch, Paper 2004-2, pages 1-2. Cover photo: Curved, grey magnesite crystals in a black dolomite matrix. Mount Brussilof magnesite mine, British Columbia, Canada Library and Archives Canada Cataloguing in Publication Data Forum on the Geology of Industrial Minerals (37th : 2001 : Victoria, B.C.) Industrial mineral with emphasis on western North America (Paper / Geological Survey Branch) ; 2004-2) "37th Forum on the Geology of Industrial Minerals, May 23-25, 2001, Victoria, B.C. Canada." Includes bibliographical references: p. ISBN 0-7726-5270-8 1. Industrial minerals - Geology - North America - Congresses. 2. Ore deposits - North America - Congresses. 3. Geology, Economic - North America - Congresses. I. Simandl, George J. (George Jiri), 1953- . II. McMillan, W. J. (William John). III. Robinson, Nicole D. IV. British Columbia. Ministry of Energy and Mines. V. British Columbia. Geological Survey Branch. VI. Title. VII. Series: Paper (British Columbia. Geological Survey Branch) ; 2004-2. TN22.F67 2005 553.6'097 C2005-960004-7 Recommended reference style for individual papers: Nelson, J.
    [Show full text]
  • Hydrogeology of the Trans-Pecos Texas
    Guidebook 25 Trans-Pecos ISxas Charles W. Kreitler andJohn M. Sharp, Jr. Field Trip Leaders and Guidebook Editors Bureau of Economic Geology*W. L. Fisher, Director The University ofTexas at Austin*Austin, Texas 78713 1990 Guidebook 25 Hydrogeology of Trans-Pecos Texas Charles W. Kreitler and John M. Sharp, Jr. Field Trip Leaders and Guidebook Editors Contributors J. B. Ashworth, J. B. Chapman, R. S. Fisher, T. C. Gustavson, C. W. Kreitler, W. F. Mullican III, Ronit Nativ, R. K. Senger, and J. M. Sharp, Jr. with selected reprints by F. M. Boyd and C. W. Kreitler; L. K Goetz; W. L. Hiss; J. I. LaFave and J. M. Sharp, Jr.; P. D. Nielson and J. M. Sharp, Jr.; B. R. Scanlon, B. C. Richter, F. P. Wang, and W. F. Mullican III; and J. M. Sharp, Jr. Prepared for the 1990 Annual Meeting ofthe Geological Society ofAmerica Dallas, Texas October 29-November 1,1990 Bureau ofEconomic Geology*W. L. Fisher, Director The University ofTexas atAustin*Austin, Texas 78713 1990 Cover: One ofthe five best swimming holes inTexas. San Solomon Spring with divers, during construction ofBalmorhea State Park, 1930's. Photograph courtesy ofDarrel Rhyne, Park Superintendent, Balmorhea State Park, 1990. Contents Preface v Map ofthe field trip area, showing location ofstops vi Field Trip Road Log First-Day Road Log: El Paso, Texas-Rio Grande-Carlsbad, New Mexico l Second-Day Road Log: Carlsbad, New Mexico-Fort Davis, Texas 7 Third-Day Road Log: Fort Davis-Balmorhea State Park- Monahans State Park 14 References 19 Technical Papers Water Resources ofthe El Paso Area, Texas 21 John B.
    [Show full text]
  • Talc Resources of the Conterminous United States
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY TALC RESOURCES OF THE CONTERMINOUS UNITED STATES By Robert C. Greene J_/ Open-File Report OF 95-586 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1995 Menlo Park, CA 94025 Talc Resources of the conterminous United States Contents Abstract ....................................................................................4 Introduction ..............................................................................8 Talc and talc-bearing rocks .........................................................9 Physical, chemical, and optical properties of talc .........................10 Geology and Genesis of Talc Deposits ........................................11 Deposits in sedimentary rocks ..........................................11 Deposits in ultramafic rocks .............................................12 Uses for talc ............................................................................17 Mining and processing ..............................................................18 Environmental considerations ....................................................19 Acknowledgments ....................................................................19 California ...............................................................................20 Nevada ...................................................................................39
    [Show full text]
  • Tumbledown Mountain Talc Deposit, Allamoore District, Culberson County, Texas Gerald Edwards, 1980, Pp
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/31 Tumbledown Mountain talc deposit, Allamoore District, Culberson County, Texas Gerald Edwards, 1980, pp. 245-250 in: Trans Pecos Region (West Texas), Dickerson, P. W.; Hoffer, J. M.; Callender, J. F.; [eds.], New Mexico Geological Society 31st Annual Fall Field Conference Guidebook, 308 p. This is one of many related papers that were included in the 1980 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Geology of the Northern Franklin Mountains, Texas and New Mexico
    Geology of the Northern Franklin Mountains, Texas and New Mexico By R. L. HARBOUR GEOLOGICAL SURVEY BULLETIN 1298 The geology of a complex fault-block range with emphasis on stratigraphy of Paleozoic rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGER~ C. B. MORT~N, Secretory GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. i0-187909 For sale by the Superintendent of Documents, U.S. Government PrintinQ Office WashinQton, D.C. 20402 Stock Number 2401-2052 CONTENTS Page Abstract ________________________________ ------____ ---------__ ----- 1 Introduction ___________ ---__________ ------____ ------_______ -----__ 2 Geography _______ ---_________________ -"- ______ ------ ___ ---:..--- 2 Regional setting _______________________ -----------____ ----- 2 PhysiographY--------------------------------------------- 4 Climate, flora, and fauna·---------------'-------------- .. -~-- 6 Population------------------------------------------------ 6 Previous geologic accounts ______ -------- ___ ;. __ -"----------------- 7 Description of the rocks ______ -----"-_________________ -..,------------- 9 Precambrianrocks_____________________________________________ 11 Castner Limestone ______________ ---____________ ------------ 11 ~undyBreccia-------------------------------------------- 13 Lanoria Quartzite _________________________ ----_____________ 14 Granite porphyry-----______ ---__ ------_______ ----_________ 16 Rhyolite ____ --- ___ -- __ -------__________ -----____
    [Show full text]
  • Understanding the Late Mesoproterozoic Earth System From
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2018 Understanding the Late Mesoproterozoic Earth System from the Oldest Strata in Grand Canyon: C-Isotope Stratigraphy and Facies Analysis of the 1254 Ma Bass Formation, Grand Canyon Supergroup, AZ., USA Erin C. Lathrop Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Lathrop, Erin C., "Understanding the Late Mesoproterozoic Earth System from the Oldest Strata in Grand Canyon: C-Isotope Stratigraphy and Facies Analysis of the 1254 Ma Bass Formation, Grand Canyon Supergroup, AZ., USA" (2018). All Graduate Theses and Dissertations. 7046. https://digitalcommons.usu.edu/etd/7046 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. UNDERSTANDING THE LATE MESOPROTEROZOIC EARTH SYSTEM FROM THE OLDEST STRATA IN GRAND CANYON: C-ISOTOPE STRATIGRAPHY AND FACIES ANALYSIS OF THE 1254 MA BASS FORMATION, GRAND CANYON SUPERGROUP, AZ., USA by Erin C. Lathrop A thesis submitted in partial fulfillment of the requirements for the of MASTER OF SCIENCE in Geology Approved: ______________________ ____________________ Carol M. Dehler, Ph.D. Joel L. Pederson, Ph.D. Major Professor Committee Member ______________________ ____________________ Jerome M. Timmons, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2018 ii Copyright © Erin C.
    [Show full text]
  • The Rise and Fall of Stromatolites in Shallow Marine Environments
    The rise and fall of stromatolites in shallow marine environments Shanan E. Peters, Jon M. Husson, and Julia Wilcots Department of Geoscience, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA ABSTRACT Stromatolites are abundant in shallow marine sediments deposited before the evolution of animals, but in the modern ocean they are restricted to locations where the activity of animals is limited. Overall decline in the abundance of stromatolites has, therefore, been attributed to the evolution of substrate-modifying metazoans, with Phanerozoic stromatolite resurgences attributed to the aftermaths of mass extinctions. Here we use a comprehensive stratigraphic database, the published literature, and a machine reading system to show that the rock record–normalized occurrence of stromatolites in marine environments in North America exhibits three phases: an initial Paleoproterozoic (ca. 2500 Ma) increase, a sustained interval of dominance during the Proterozoic (2500–800 Ma), and a late Neoproterozoic (700–541 Ma) decline to lower mean prevalence during the Phanerozoic (541–0 Ma). Stro- matolites continued to exhibit large changes in prevalence after the evolution of metazoans, and they transiently achieved Proterozoic-like prevalence during the Paleozoic. The after- maths of major mass extinctions are not well correlated with stromatolite resurgence. Instead, stromatolite occurrence is well predicted by the prevalence of dolomite, a shift in carbonate mineralogy that is sensitive to changes in water-column and pore-water chemistry occurring during continent-scale marine transgressive-regressive cycles. Figure 1. Spatial distribution and number of stromatolite-bearing sedimentary units in INTRODUCTION abundance (Awramik, 1971, 1991; Awramik and Macrostrat (https://macrostrat.org) for North Stromatolites, attached accretionary sedi- Sprinkle, 1999; Walter and Heys, 1985; Semikha- America–Caribbean region.
    [Show full text]
  • Complex Structural and Fluid Flow Evolution Along the Grenville Front, West Texas
    Research Paper GEOSPHERE Complex structural and fluid flow evolution along the Grenville Front, west Texas GEOSPHERE; v. 11; no. 3 Ben R. Davis* and Sharon Mosher Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA doi:10.1130/GES01098.1 ABSTRACT occurred in the Llano area (ca. 1150–1120 Ma) and that continued subduction 24 figures; 1 table along strike caused clockwise rotation of the indenting continent and collision A narrow (~7 km wide) fold and thrust belt in west Texas that represents in west Texas (ca. 1060–980 Ma). CORRESPONDENCE: [email protected] the northernmost extent of a Grenville-age collisional belt along the south- ern margin of Laurentia (Grenville Front), records a complex history of defor- CITATION: Davis, B.R., and Mosher, S., 2015, Com- mation and associated fluid flow. The Streeruwitz thrust that emplaced ca. INTRODUCTION plex structural and fluid flow evolution along the Gren ville Front, west Texas: Geosphere, v. 11, no. 3, 1.35 Ga high-grade metamorphic rocks over ca. 1.25 Ga foreland sedimentary p. 868–898, doi:10.1130/GES01098.1. and volcanic rocks postdates polyphase deformation in the footwall and is Mesoproterozoic Grenville orogenesis (ca. 1.3–0.9 Ga) resulted in the complexly folded into domes and basins. Four phases of tectonism, recording formation of the supercontinent Rodinia (e.g., Dalziel et al., 2000) with the Received 1 July 2014 a changing kinematic setting, affected the area and formed: (1) pre-Streeru- Laurentian continental
    [Show full text]