Studies of Geology and Hydrology in the Basin and Range Province

Total Page:16

File Type:pdf, Size:1020Kb

Studies of Geology and Hydrology in the Basin and Range Province Studies of Geology and Hydrology in the Basin and Range Province, Southwestern United States, For Isolation of High-Level Radioactive Waste Characterization of Hie Trans-Pecos Region, Texas U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1370-B Prepared in cooperation with the States of Arizona, California^ Idaho, Nevada, New Mexico, Texas, and Utah Studies of Geology and Hydrology in the Basin and Range Province, Southwestern United States, For Isolation of High-Level Radioactive Waste Characterization of the Trans-Pecos Region, Texas Edited by M.S. BEDINGER, K.A. SARGENT, and WILLIAM H. LANGER STUDIES OF GEOLOGY AND HYDROLOGY FOR ISOLATION OF HIGH-LEVEL RADIOACTIVE WASTE U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1370-B Prepared in cooperation with the States of Arizona, California, Idaho, Nevada, New Mexico, Texas, and Utah UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1989 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U. S. GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging-in-Publication Data Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste characterization of the Trans-Pecos region, Texas. (U.S. Geological Survey professional paper ; 1370-B) "Prepared in cooperation with the States of Arizona, California, Idaho, Nevada, New Mexico, Texas, and Utah." Includes bibliographies. Supt. of Docs, no.: I 19.16:1370-8 1. Geology Trans-Pecos Region (Tex. and N.M.) 2. Geology Texas. 3. Water, Under­ ground Trans-Pecos Region (Tex. and N.M.) 4. Water, Underground Texas. 5. Radioactive waste disposal in the ground Trans-Pecos Region (Tex. and N.M.) 6. Radioactive waste disposal in the ground Texas. I. Bedinger, M.S. II. Sargent, Kenneth A. III. Longer, William H. IV. Series. QE168.T7S78 1989 557.64 86-600318 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 Any use of trade, product, industry, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. WORKING GROUP AFFILIATIONS III BASIN AND RANGE PROVINCE WORKING GROUP U.S. Geological Survey Members Nevada Bureau of Mines and Geology University of Nevada, Reno Chairman of the Province Working Group: Reno, NV M.S. Bedinger Hydrologist Alternate: Denver, CO Susan L. Tingley Deputy to the State Geologist Member: Nevada Bureau of Mines and Geology K.A. Sargent University of Nevada, Reno Geologist Reno, NV Denver, CO NEW MEXICO State Members and Alternates Member: ARIZONA James M. Hill Member: Chief, Bureau of Geology Larry D. Fellows New Mexico Energy and Minerals Department State Geologist and Assistant Director Santa Fe, NM Arizona Bureau of Geology and Mineral Technology Alternate: Tucson, AZ Frank E. Kottlowski Alternate: Director H. Wesley Peirce New Mexico Bureau of Mines and Mineral Resources Principal Geologist Socorro, NM Arizona Bureau of Geology and Mineral Technology Tucson, AZ TEXAS Member: CALIFORNIA Christopher D. Henry Member: Geologist Robert Streitz Texas Bureau of Economic Geology Geologist University of Texas at Austin California Division of Mines and Geology Austin, TX Sacramento, CA Alternate: Douglas Ratcliff IDAHO Associate Director Member: Texas Bureau of Economic Geology Frank B. Sherman University of Texas at Austin Chief, Ground-Water Section Austin, TX Idaho Department of Water Resources Boise, ID UTAH Alternate: Member: Darrel Clapp Genevieve Atwood Chief, Technical Services Bureau State Geologist Idaho Department of Water Resources Utah Geological and Mineral Survey Boise, ID Salt Lake City, UT Alternate: NEVADA Don R. Mabey Member: Senior Geologist John Schilling Utah Geological and Mineral Survey State Geologist Salt Lake City, UT CONTENTS Page Page Abstract ........................................... Bl Quaternary tectonism, by Christopher D. Henry, Jonathan G. Introduction, by M.S. Bedinger, K.A. Sargent, and Christopher Price, and K.A. Sargent ......................... B26 D. Henry ..................................... 2 Seismicity ...................................... 26 Background and purpose ......................... 2 Heat flow ...................................... 26 Geographic setting ............................... 2 Quaternary faulting .............................. 28 Acknowledgments ............................... 3 Vertical crustal movement ........................ 29 References cited ................................. 3 References cited ................................. 30 Geology, by Christopher D. Henry and Jonathan G. Ground-water hydrology, by M.S. Bedinger, William H. Price ......................................... 4 Langer, and J.E. Reed .......................... 31 Stratigraphy .................................... 4 Major hydrogeologic units ........................ 31 Precambrian rocks ........................... 4 Ground-water flow regime ......................... 32 Paleozoic rocks .............................. 4 Ground-water flow analysis ....................... 32 Mesozoic rocks .............................. 7 Areal ground-water flow ........................ 32 Cenozoic rocks ............................... 12 Cross-sectional models ........................ 33 Structure ....................................... 17 Quality of ground water .......................... 34 Precambrian ................................. 18 Pleistocene hydrologic conditions .................. 34 Paleozoic .................................... 19 References cited ................................. 37 Mesozoic .................................... 19 Mineral and energy resources, by Jonathan G. Price, Chris­ topher D. Henry, and B.T. Brady ................ 38 Cenozoic .................................... 19 Laramide deformation ..................... 19 Metallic mineral resources ........................ 38 Silver, lead, zinc, and copper ................... 38 Middle Tertiary volcanism ................. 20 Mercury .................................... 38 Basin and Range extension ................. 20 Molybdenum, tungsten, and tin ................ 38 References cited ................................. 21 Uranium .................................... 40 Potential host media for radioactive waste, by K.A. Other metals ................................ 41 Sargent ...................................... 23 Nonmetallic mineral resources ..................... 41 Intrusive rocks .................................. 23 Fluorspar ................................... 41 Tuffaceous rocks ................................ 23 Mica ....................................... 41 Basaltic rocks ................................... 24 Other nonmetals ............................. 41 Argillaceous rocks ............................... 24 Coal, oil, and gas resources ....................... 41 Unsaturated zone ................................ 24 Geothermal resources ............................ 41 References cited ................................. 24 References cited ................................. 42 ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map showing physiographic features of the Trans-Pecos region, Texas, and vicinity. 2. Map showing major tectonic elements, Trans-Pecos region, Texas, and vicinity. 3. Map showing potential host rocks and areas of thick unsaturated zones, Trans-Pecos region, Texas. 4. Map showing geothermal data and Quaternary fault scarps, Trans-Pecos region, Texas, and vicinity. 5. Map showing hydrogeologic units and relative velocities of ground water at the water table, Trans-Pecos region, Texas. 6. Map showing relative ground-water traveltimes and flow paths at the water table, and natural discharge areas, Trans- Pecos region, Texas. 7. Hydrogeologic sections showing ground-water flow paths and relative traveltime, Trans-Pecos region, Texas. Page FIGURE 1. Geographic index map of the Trans-Pecos region, Texas, and vicinity ........................................ B5 2. Generalized geologic section from Rio Grande to Sierra Diablo ............................................. 7 3. Generalized geologic section of Marathon area showing deformation associated with Ouachita-Marathon orogeny ... 8 4. Photograph of view from Texas into Mexico showing Cretaceous formations exposed in the gorge of Santa Elena Canyon 11 5. Photograph of tuffs of the Javelina Formation overlain by sediments of the Chisos Formation at Dogie Mountain . 12 6. Photograph of the Pen Formation in the Study Butte area ................................................. 13 7. Generalized geologic section from Rio Grande to Del Norte Mountains ...................................... 14 8. Photograph of the Chinati Mountains caldera ............................................................ 15 9. Photograph of the Sierra Vieja showing tuffaceous sediments and overlying volcanic flows and ash-flow tuffs ..... 16 10. Photograph of the dissected Wax Factory laccolith intruded into the Boquillas Formation in the Terlingua area ... 18 11. Map showing strain release, earthquakes of magnitude 5 or greater, and Quaternary faults ..................... 27 12. Photograph showing the trace of the Mayfield fault on the western side of Lobo Valley ........................ 28 v VI CONTENTS Page FIGURE 13. Map showing dissolved-solids concentration in ground water ............................................... B35 14. Distribution of chemical types of ground water near the water table ......................................... 36 15. Map showing mineral
Recommended publications
  • QUATERNARY GEOLOGIC MAP of AUSTIN 4° X 6° QUADRANGLE, UNITED STATES
    QUATERNARY GEOLOGIC MAP OF AUSTIN 4° x 6° QUADRANGLE, UNITED STATES QUATERNARY GEOLOGIC ATLAS OF THE UNITED STATES MAP I-1420 (NH-14) State compilations by David W. Moore and E.G. Wermund, Jr. Edited and integrated by David W. Moore, Gerald M. Richmond and Ann Coe Christiansen 1993 NOTE: This map is the product of collaboration of the Texas Bureau of Economic Geology and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, the map and map explanations were prepared by the State compiler. Second, information on the map was integrated with that of adjacent maps, locally supplemented, and related to a uniform map symbol classification by the editors. Map unit descriptions were edited, supplemented, and coordinated with those of other maps of this series so that individual unit descriptions are applicable throughout both this map and all other maps of the series. Problems of mapping or interpretation in different areas were resolved by correspondence to the extent possible; most simply reflect differences in available information or differences in philosophies of mapping and serve to encourage further investigation. Less than forty percent of the surficial deposits of the United States have been mapped and described. Traditionally, mapping of surficial deposits has focused on glacial, alluvial, eolian, lacustrine, marine, and landslide deposits. Slope and upland deposits have been mapped in detail only in restricted areas. However, an enormous amount of engineering construction and many important problems of land use and land management are associated with regions that have extensive slope and upland deposits (colluvium and residuum, for example).
    [Show full text]
  • Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life Author(S): J
    Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life Author(s): J. William Schopf Reviewed work(s): Source: Science, New Series, Vol. 260, No. 5108 (Apr. 30, 1993), pp. 640-646 Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/2881249 . Accessed: 07/04/2012 21:09 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and extend access to Science. http://www.jstor.org REFERENCESAND NOTES 9. Y. Hiwatari,in Molecular Dynamics Simulations, F. (World Scientific, Singapore, 1988), vol. 1, p. Yonezawa, Ed., vol. 113 of Springer Series in 247. 1. H. Takayama, News Letter No. 1 (Research Group Solid State Sciences (Springer-Verlag, Heidel- 23. F. Yonezawa, S. Sakamoto, M. Hori, J. Non-Ctyst. on a new project, "Computational Physics as a berg, 1992), p. 32. Solids 137, 135 (1991). New Frontier in Condensed Matter Research" 10. S. Fujiwara and F. Yonezawa, in preparation. 24. F. Yonezawa and S. Sakamoto, Optoelectronics- under the support of the Grant-in-Aidfor Scientific 11.
    [Show full text]
  • Oaks of the Chihuahuan Desert Region
    International Oaks by Michael Martin Melendrez Los Lunas, New Mexico resented below are 23 species of white oak, six of black • oak, and two intermediate or golden oaks, found in the southwestern United States (primarily New Mexico, Ari­ zona, and western Texas). These nutnbers tnay be disputed by some oaks students. Differences of opinion exist as to the true boundaries of the Chihuahuan Desert the potential hybrid sta­ tus of sotne of the oaks, and their delineation. Also new oaks not previously known to occur in the area are continually dis­ covered. Counting the additional oaks found in the adjacent Mexican State of Chihuahua, there are n1ore than 60 species. The Chihuahuan Desert Region is truly The Land o.fOaks. The production nursery industry of our area has started, on a small scale, the introduction of oaks with a limited species selec­ tion. Unfortunately the southern live oak (Quercus virginiana) usually is the first one to be grown and sold, and it is commonly promoted as the best oak for the desert cit­ ies of the Southwest. The species of oak na­ < Guy & Edith Sternberg tive to this arid part of Author ,\1/ichae/ i\1/elendrez standing below Q. ari zonica the country are 1nuch in Catwalk Can• l'0 /1, Gila National Forest. New Mexico. contd. on pg. 22 International Gales • • • contd. from pg. 21 better adapted here, and thus tnake bet­ ter choices for shade trees than the southern live oak. • At our nursery production progran1 in Los Lunas, New Mexico, at 4,900 feet el­ evation and USDA Zone 6b, the native oaks outperform the southern live oak in speed of growth, heat tolerance in a con­ tainer, and over-wintering success.
    [Show full text]
  • A Glimpse of Some of the Geology and Mineral Resources: Sierra Blanca
    THE EL.PAS0 GEOLOGICAL SOCIETY I I GUIDEBOOK i FIFTH ANNUAL FIELD TRIP I I I I A GLIMPSE OF SOME OF THE I GEOLOGY AND MINERAL RESOURCES I I SIERRA BLANCA-VAN HORN COUNTRY HUDSPETH AND CULBEWSON COUNTIES TEXAS > APRIL 3, 1971 iii TABLE OF CONTENTS F - The Texas Lineament in Eagle Flat, Texas ------------- 28 INTRODUCTION The Trans Pecos region of West Texas has attracted the attention I it deserves as a source of useful minerals both metallic and nsn- metallic. Because of the preoccupation of the people of Texas with petroleum production, many have overlooked the fact that them have been several important metal mines tn this province and that talc deposi ts are s ti1 l being worked here. Undoubtedly othep economic mineral deposits exist in the region awai ting discovery by intensive geological prospecting. The af'fi cers of the El Paso Geological Society and the field trip leadek hope that this trip will heighten inteest in the finding and developing of mineral deposi ts in Trans Pecos Texas. We welcome all our visitcs~sand know that they will wish to jodn us in thanking all those who made thds trip possible. We wish especially to acknowledge the kindness of the Pioneer Talc Company in showing us through the mill at Allamore and allowlng the group to visdt the Texsla- Talc mine. We also wish to thank Mr. Sandy Neal of Van Haon for per- mission to cross the Neal Ranch on the way to the Hazel Wne. John M. Hills, President El Paso Geological Society EL PAS0 GEOLOGICAL SOCIETY OFFICERS John M.
    [Show full text]
  • Nonexplosive and Explosive Magma/Wet-Sediment Interaction
    Journal of Volcanology and Geothermal Research 181 (2009) 155–172 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Nonexplosive and explosive magma/wet-sediment interaction during emplacement of Eocene intrusions into Cretaceous to Eocene strata, Trans-Pecos igneous province, West Texas Kenneth S. Befus a,⁎, Richard E. Hanson a, Daniel P. Miggins b, John A. Breyer a, Arthur B. Busbey a a Department of Geology, Texas Christian University, Box 298830, Fort Worth, TX 76129, USA b U.S. Geological Survey, Denver Federal Center, Box 25046, Denver, CO 80225, USA article info abstract Article history: Eocene intrusion of alkaline basaltic to trachyandesitic magmas into unlithified, Upper Cretaceous Received 16 June 2008 (Maastrichtian) to Eocene fluvial strata in part of the Trans-Pecos igneous province in West Texas produced Accepted 22 December 2008 an array of features recording both nonexplosive and explosive magma/wet-sediment interaction. Intrusive Available online 13 January 2009 complexes with 40Ar/39Ar dates of ~47–46 Ma consist of coherent basalt, peperite, and disrupted sediment. Two of the complexes cutting Cretaceous strata contain masses of conglomerate derived from Eocene fluvial Keywords: deposits that, at the onset of intrusive activity, would have been N400–500 m above the present level of phreatomagmatism peperite exposure. These intrusive complexes are inferred to be remnants of diatremes that fed maar volcanoes during diatreme an early stage of magmatism in this part of the Trans-Pecos province. Disrupted Cretaceous strata along Trans-Pecos Texas diatreme margins record collapse of conduit walls during and after subsurface phreatomagmatic explosions.
    [Show full text]
  • An Alluvial Fan Model for Mineral Exploration, Report of Investigations No
    Waste Isolation Pilot Plant Compliance Certification Application Reference 428 McGowen, J.H., and Groat, C. G. 1971. Van Horn Sandstone, West Texas: An Alluvial Fan Model for Mineral Exploration, Report of Investigations No. 72. Bureau of Economic Geology, Austin, TX. Submitted in accordance with 40 CFR 5194.13, Submission of Reference Materials. - t*- An Allurjial Fan kdel for Mineral Exploration J. H. McGowen and C. G. Groat BUREAU OF ECONOMIC GEOLOGY The University of Texas at Austin Austin, Texas 78712 W. L. Fisher. Director Report of Investigations-No. 72 Van Horn Sandstone, West Texas: An Alluvial Fan Model for Mineral Exploration BY J. H. McGowen and C. G. Groat 1971 Second Printing, December 1975 Third Printing, October 1982 Abstract . .......... Proximal fan ........ Introduction ........... Mid-fan .......... General description .......... Distal fan ......... Geologic setting ........... Main braided channels .... Van Horn Sandstone: a large alluvial fan system Braided distributaries ..... Sedimrntology ........... Braided interlobe area .... Facies ............. Summary ........... Proximal f'acies......... Compositionandmineralogy ...... Massive l~oulder1. cds ....... Gravel composition ........ iilterriating gravel and thin sand beds . Sandstone petrography ....... Thick sand and muddy sand of the proxi- Quartz ........... mal facics .......... Feldspar ........... Other feat.urcs of the proximal facies . Rock fragments ........ Mid-fan l'acies .......... Hematite .......... F:tcies dcscrlptioli ........ Cement and matrix
    [Show full text]
  • Stratigraphic and Hydrogeologic Framework of Part of the Coastal Plain of Texas
    Report 2361 I STRAT~ RAPHIC AND HYDROGEOLOGIC FRAMEr ORK OF PART OF THE COAST, L PLAIN ·OF TEXAS TEXAS DE RTMENT OF WATER RESOURCE~S July 1979 TEXAS DEPARTMENT OF WATER RESOURCES REPORT 236 STRATIGRAPHIC AND HYDROGEOLOGIC FRAMEWORK OF PART OF THE COASTAL PLAIN OF TEXAS By E. T. Baker, Jr. United States Geological Survey This report was prepared by the U.S. Geological Survey under cooperative agreement with the Texas Department of Water Resources. July 1979 TEXAS DEPARTMENT OF WATER RESOURCES Harvey Davis, Executive Director TEXAS WATER DEVELOPMENT BOARD A. L. Black, Chairman John H. Garrett, Vice Chairman Milton Potts Glen E. Roney George W. McCleskey W. O. Bankston TEXAS WATER COMMISSION Felix McDonald, Chairman Dorsey B. Hardeman, Commissioner Joe R. Carroll, Commissioner Authorization for use or reproduction of any original material contained in this publicatiun, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement. Published and distributed by the Texas Department of Water Resources Post Office Box 13087 Austin, Texas 78711 ii TABLE OF CONTENTS Page ABSTRACT .. INTRODUCTION 3 Acknowledgements 3 Metric Conversions 35 STRATIGRAPHIC FRAMEWORK. 35 General Features of Deposition and Correlation Problems 35 Stratigraphic Units 35 Pre-Miocene 35 Miocene. 36 Post-Miocene 38 HYDROGEOLOGIC FRAMEWORK 38 Catahoula Confining System (Restricted) . 38 Jasper Aquifer ..... 39 Burkeville Confining System 40 Evangeline Aquifer 40 Chicot Aquifer 40 SELECTED REFERENCES 42 TABLE 1. Stratigraphic and Hydrogeologic Framework of Part of the Coastal Plain of Texas ........... 4 FIGURES 1. Index Map Showing Location of Sections. 5 iii TABLE OF CONTENTS-Continued Page 2-15.
    [Show full text]
  • Marfa Vista Ranch 710+/- Acres, Including Premier Residence Plans and Sitework
    Marfa Vista Ranch 710+/- acres, including premier residence plans and sitework Marfa Vista Ranch 710+/- acres with premier residence plans Marfa, Presidio County, Texas Marfa Vista Ranch has a private entrance off US Highway 90 just 5 miles west of Marfa. A winding, all-weather entrance road leads to a broad hill and building site with commanding 360 degree views of the Marfa Grassland and the surrounding mountains. It is just minutes into town, but with the privacy of being on your own ranch. 710+/- acres in Presidio County, outside of Marfa, Texas Description Marfa Vista Ranch is West Texas grassland at its finest and represents some of the most ecologically diverse landscapes in the Southwest. It is part of the Marfa Plateau, a mile-high desert grassland of basin range topography between the Davis Mountains to the north and the Chinati Mountains and the Rio Grande River to the south and southwest. The views are stunning and the ranch overlooks the landscapes of the Davis Mountains, Chinati, and Sierra Vieja Mountains, as well as the great expanse of grasslands in between. The ranch is part of a protected 27,000 acre conservation ranch neighborhood with a series of conservation easements held by The Nature Conservancy protecting the views and conservation values forever. This ranch contains a building envelope, allowing for a diversity of building options in the future. Lake Flato has designed a unique compound in harmony with the natural settings and capturing the views of the region while creating an amazing series of buildings tied together with porches and native landscaping.
    [Show full text]
  • Economic Geology Resources of the Llano Uplift Region
    Economic Geology Resources of the Llano Uplift Region and the Historical Impacts to the Region’s Growth Guidebook to the Texas Section- American Institute of Professional Geologists Spring Field Trip, Llano Uplift Region, Central Texas: May 14-15, 2016 Rima Petrossian, Ph.D., P.G., C.P.G.: Author and Field-Trip Organizer Renee Ryan, P.G., C.P.G.: Author and Field-Trip Leader Chris Caran, P.G.: Author and Field Guide, Los Almagres Mine Michael Jacobs, P.G., Field Trip Organizer Michael D. Campbell, P.G., P.H., C.P.G.: Author and Field-Trip Organizer Martin Meinshausen: Field Guide, Voca Sand Mine Neyda Maymi: Field Guide, Voca Sand Mine © 2016 Version 2.2 Acknowledgements A big thank you goes to the Stotts Family for allowing us exclusive access to Los Almagres mine site at Packsaddle Mountain. Also, a special thanks to Premier Silica for access to the Hickory Sands Mine and for sponsoring lunch. 2 | Page Field Trip Schedule, May 14-15, 2016 Friday Evening: Optional Friday happy hour/no-host dinner: 6 PM Evening at River City Grille, Marble Falls, Texas. Saturday Morning: 0730 hrs. Stop 1: Meet at Historical Marker Roadside Park, FM1431 westbound about 1.85 miles from Hwy 281 across from Town Mountain Granite Mine on the north side of the road for breakfast tacos (provided). Distribute for signature and return the AIPG Indemnification Document, and hand out field-trip guide; discuss geology and historical importance of groundwater and granite to Llano Uplift area (Ryan, Wise, Jacobs, etc., 30 minutes) Depart first stop in caravan east 1.85 miles to Hwy 281 and FM 1431 west intersection, turn south or right.
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]
  • West Texas Geological Society Publications and Contents Purchase from West Texas Geological Society
    West Texas Geological Society Publications and Contents Purchase from West Texas Geological Society: http://www.wtgs.org/ 77-68 Geology of the Sacramento Mountains Otero County, New Mexico Regional Distribution of Phylloid Algal Mounds in Late Pennsylvanian and Wolfcampian Strata of Southern New Mexico James Lee Wilson Growth History of a Late Pennsylvanian Phylloid Algal Organic Buildup, Northern Sacramento Mains, New Mexico D.F. Toomey, J.L. Wilson, R. Rezak Paleoecological Evidence on the Origin of the Dry Canyon Pennsylvanian Bioherms James M. Parks Biohermal Submarine Cements, Laborcita Formation (Permian), Northern Sacramento Mountains, New Mexico John M. Cys and S.J. Mazzullo Carbonate and Siliciclastic Facies of the Gobbler Formation John C. Van Wagoner The Rancheria Formation: Mississippian Intracratonic Basinal Limestones Donald A. Yurewicz Stratigraphic and Structural Features of the Sacramento Mountain Escarpment, New Mexico Lloyd C. Pray Conglomeratic Lithofacies of the Laborcita and Abo Formations ( Wolfcampian), North Central Sacramento Mountains: Sedimentology and Tectonic Importance David J. Delgado Paleocaliche Textures from Wolfcampian Strata of the Sacramento Mountains, New Mexico David J. Delgado Introduction to Road Logs Lloyd C. Pray Alamogordo to Alamo Canyon and the Western Sacramento Mountains Escarpment Field Guide and Road Log “A” Lloyd C. Pray Supplemental Field Guide to Southernmost Sacramento Mountains Escarpment – Agua Chiquita and Nigger Ed Canyons Lloyd C. Pray Alamogordo to Indian Wells Reentrant Field Guide and Road Log “B” Lloyd C. Pray Guide Locality B-1-West End of Horse Ridge John C. Van Wagoner 1 Field Guide and Road Log “C” Lloyd C. Pray Plate Shaped Calcareous Algae in Late Paleozoic Rocks of Midcontinent (abstract): James M.
    [Show full text]
  • 1-Pb-701 Mukund Sargeev1
    The Palaeobotanist 57(2008) : 323-358 0031-0174/2008 $2.00 Mesoproterozoic silicified microbiotas of Russia and India—Characteristics and Contrasts VLADIMIR N. SERGEEV1, MUKUND SHARMA2 AND YOGMAYA SHUKLA2 1Geological Institute, Russian Academy of Sciences, Moscow, 109017, Russia. 2Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India. (Received 11 July, 2007; revised version accepted 08 May, 2008) ABSTRACT Sergeev VN, Sharma M & Shukla Y 2008. Mesoproterozoic silicified microbiotas of Russia and India—Characteristics and Contrasts. The Palaeobotanist 57(3): 323-358. The paper analyses eight silicified Mesoproterozoic microbiotas of peritidal and shallow subtidal settings from Siberia, Ural and India. These microbiotas, subdivided into three main types - Kotuikan, Satka and Kataskin-are characterized by different taxonomic composition of microfossils. Mat-building entophysalidacean algae Eoentophysalis, ellipsoidal akinetes of nostocalean cyanobacteria genus Archaeoellipsoides and spherical large planktic microfossils Myxococcoides grandis of uncertain affinities dominate the Kotuikan-type microbiotas, the short trichomes are a rare but a distinctive element of these assemblages. The Satka type microbiotas are dominated by mat-building hormogonian cyanobacteria of genus Siphonophycus and chroococcacean dwellers genera Gloeodiniopsis, Eosynechococcus, Sphaerophycus, whereas entophysalidacean cyanobacteria are conspicuously missing and akinetes of genus Archaeoellipsoides occur but never abundant. Besides, microbiotas
    [Show full text]