<<

Neutrinos from Pre-

G. Wendell Misch Los Alamos National Lab

INT - Neutrinos from the Lab to the Cosmos

Collaborators: Kelly Patton, Matt Mumpower, George M. Fuller, Yang , Surja K. Ghorui

January 29, 2020

G. Wendell Misch Pre- (LA-UR-19-30458) January 29, 2020 1 / 38

R.N. Bailey, CC BY 4.0

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 2 / 38 Massive Stellar Evolution

Weaver & Woosley, Sci Am, 1987

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 3 / 38 Stellar Burning Shells

R. J. Hall, CC BY 2.5

Structure at end of ’s life. 8-12 M stars may have O-Ne-Mg cores.

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 4 / 38 Stellar Evolution Timescales

George Djorgovski, Caltech AY20 lecture notes

Evolution speeds dramatically at at carbon burning due to neutrinos

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 5 / 38 Nearby Pre-Supernova Candidates

VY Canis Majoris 2

1000 pc

119 Tauri 1.5 NS Puppis

S Canis Majoris G2 Velorum

8-12 Msun age P Puppis 13-17 Msun lifespan 200 pc 18-22 Msun 3 Ceti R Cassiopeiae 23-27 M 1 sun 28-32 M A Lupi sun E Pegasi Antares 33-37 M

sun eness =

38-40 Msun Rip 0.5

Deneb

0

Misch et al (in preparation) G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 6 / 38 Antares. Up next, neutrino production and detectability.

170 pc 12.6 M 15 Myr Ripeness 0.35-1.31 (0.72)

WISE false color VLTI reconstruction of surface of Antares

Processing by Judy Schmidt, CC BY 2.0 By ESO/K. Ohnaka, CC BY 4.0

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 7 / 38 Neutrino Production Mechanisms in Evolved Massive Stars

Thermal:

A,Z-1(E ) n A,Z-1(E ) e+ n Pair annihilation f e f e e− + e+ ν + ν → Bremsstrahlung W W e- e− ν + ν A,Z(Ei) A,Z(Ei) → A,Z+1(E ) n A,Z+1(E ) e- n Photo process f e f e e− + γ e− + ν + ν → Plasmon decay W W e+ γ ν + ν A,Z(Ei) A,Z(Ei) → Nuclear:

A,Z(E ) n n Beta processes f (electron/positron capture and emission) Z0 A,Z(E ) Neutral current de-excitation i

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 8 / 38 Pre-collapse Neutrino

Odrzywolek & Heger (2010)

Neutrino production in 15 M star At Si burning, nuclear component kicks in

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 9 / 38 Pair-annihilation vs Solar Neutrino Spectrum

Odrzywolek et al, Astroparticle Physics, 21, 303 (2004)

Dashed: Pair annihilation spectrum for 20 M star at 1 kpc during silicon burning Solid: Solar neutrino spectrum Already detect solar neutrinos, so expect to detect close pre-supernova.

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 10 / 38 Neutrino Mass Hierarchy

Qian, X. et al. Prog.Part.Nucl.Phys. 83 (2015)

Relative masses known, but order unknown

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 11 / 38 Collapse Mechanisms

Cores supported by electron degeneracy O-Ne-Mg Iron Fusion does not proceed to iron Heavier nuclei Instability from electron capture Instability from GR Produces mostly νe Produces ν and ν

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 12 / 38 Detection Events for Pre-Supernova

All progenitors at 200 pc Kato et al (2017)

DUNE sees νe , others see νe Comparing signals yields information about: collapse mechanism (O-Ne-Mg or Fe) and neutrino mass hierarchy

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 13 / 38 Betelgeuse. Up next, neutrino spectra.

222 pc 7.7-20 (11.6) M 8.0-8.5 Myr Ripeness 0.12-1.23 (0.32)

ALMA view of surface of Betelgeuse with Betelgeuse in top left

By ALMA, CC BY 4.0 By Rogelio Bernal Andreo, CC BY-SA 3.0

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 14 / 38 Detailed Pre-collapse Neutrino Spectra

Patton et al (2017) Nuclear neutrinos dominate in some energy regions Certain spectral features due to specific nuclei (the indicated peak is from positron capture on 32P) These nuclear spectra from single Q-value method of LMS (2001)

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 15 / 38 Single Q-value vs Full Structure

E n

E’ n Ei E 1

Q(T,ρY ) 0 E’ e 1 ΔM

Ef 0 Single Q-value Full structure Consult published rate tables Compute transition energies and (FFN, Oda et al, LMP, etc.) strengths for all allowed Choose effective Q-value and transitions reaction rate to match Construct spectra from Construct spectra from Q-value thermally populated initial states and rate

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 16 / 38 Rigel. Up next, CC nuclear neutrino spectra.

260 pc 21 M 8 Myr Ripeness 0.80-1.99 (1.30)

Rigel illuminating the Witch Head Nebula

By Robert Gendler, CC BY 4.0

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 17 / 38 Results: Charged Current Processes

A,Z-1(E ) n A,Z-1(E ) e+ n f e f e

W W

e- A,Z(Ei) A,Z(Ei)

A,Z+1(E ) n A,Z+1(E ) e- n f e f e

W W

e+ A,Z(Ei) A,Z(Ei)

Charged lepton can be electron or positron Produces electron flavored (anti-)neutrino Initial and final states can be excited states

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 18 / 38 Charged Current Neutrino Spectra

Impact of structure varies by nucleus.

10-5 10-3 A,Z=28,13 -4 A,Z=30,15 10-6 T=0.43 MeV 10 T=0.16964 MeV ρYe =1.03e+08 ρYe =2.15e+06 10-5 10-7 10-6 -8 10 -7 10 -9 -8 10 electron capture 10 positron decay -9 10-10 10 Ei =0.0 -10 -11 Ei =0.03064 10 10 electron capture E =1.37295 i -11 positron decay -12 10 Ei =1.62032 Ei=0.0 Spectral density 10 Spectral density -12 Ei =2.20146 10 Ei=0.67729 -13 E =3.105 10 i 10-13 Ei=0.70902 Ei =5.943 Ei=1.45467 (neutrinos/s/baryon/MeV) (neutrinos/s/baryon/MeV) 10-14 10-14 10-1 100 101 10-1 100 101 Neutrino energy (MeV) Neutrino energy (MeV)

Misch & Fuller (2016)

28Al neutrino spectrum. Effects of 30P neutrino spectrum. Single structure less apparent. states dominate different energies.

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 19 / 38 32P Anti-Neutrino Spectrum

Structure particularly important in 32P anti-neutrino spectrum.

1020 A,Z=32,15 X =9.00e-05 19 A,Z 10 T=0.17 MeV 3 ρYe =2.15e+06 g/cm µ =0.69 18 e Patton et al peak correctly /MeV) 10 3

located, but high by 2 orders 1017

of 1016 positron capture 15 Correct accounting of 10 electron decay Ei =0.0 Spectral density E =1.14939 nuclear structure moves 1014 i Ei =2.2297 (neutrinos/s/cm most capture neutrinos P&L peak 1013 down in energy 10-1 100 101 Neutrino energy (MeV)

adapted from Misch & Fuller (2016)

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 20 / 38 Charged Current Neutrino Spectra

21Na electron capture 23Ne positron emission We have created catalog of Low temperature, low density Low temperature, low density nuclear neutrino spectra. 10-4 10-3 A,Z=21,11 -4 -5 T=0.0009 MeV 10 10 3 log(ρYe)=1.0 g/cm -5 µe=0.509 MeV 10 Used experimental data 10-6 10-6 -7 supplemented with shell 10 10-7 -8 10-8 A,Z=23,10 10 T=0.0009 MeV 3 model 10-9 log(ρYe)=1.0 g/cm -9 10 µe=0.509 MeV -10

Spectral density Spectral density 10 10-10 high res peaks 10-11 high res 0.5 MeV neutrino energy tables tables [neutrinos/(s baryon MeV)] 10-11 [neutrinos/(s baryon MeV)] 10-12 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 resolution Neutrino energy [MeV] Neutrino energy [MeV]

Included additional energy Realistic in Si burning Si-burning temperature, low density points at low-temperature 10-2 10-3 A,Z=21,11 -4 T=0.17 MeV 10 3 log(ρYe)=7.0 g/cm -5 -3 10 capture peaks 10 µe=1.13 MeV 10-6

10-7 10-4 10-8 A,Z=23,10 T=0.17 MeV 3 Smooth spectra integrable 10-9 log(ρYe)=1.0 g/cm µ =1.4e-05 MeV -5 e 10 -10 with trapezoid method Spectral density Spectral density 10 high res peaks 10-11 high res tables tables [neutrinos/(s baryon MeV)] 10-6 [neutrinos/(s baryon MeV)] 10-12 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 Not all spectra integrable Neutrino energy [MeV] Neutrino energy [MeV] Misch, Sun, Fuller (2018)

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 21 / 38 21 Problematic Na e− Capture Spectra

10-2 A,Z=21,11 -3 T=0.0009 MeV 3 10 log(ρYe)=6.0 g/cm µe=0.726 MeV Misch, Sun, Fuller (2018) 10-4 10-3 10-5 A,Z=21,11 -4 T=0.086 MeV 10 3 log(ρYe)=6.0 g/cm -6 µe=0.672 MeV 10 10-5 Spectral density 10-7 10-6 high res

tables -7 [neutrinos/(s baryon MeV)] 10-8 10 0 1 2 3 4 5 6 Neutrino energy [MeV] 10-8 Spectral density -9 Low temperature, modest density 10 high res peaks tables Integrates poorly, misses bulk [neutrinos/(s baryon MeV)] 10-10 0 1 2 3 4 5 6 Neutrino energy [MeV] 10-5 Modest temperature, modest density A,Z=21,11 -6 T=0.086 MeV 10 3 log(ρYe)=1.0 g/cm Integrates imprecisely, misses tops of µe=0.000477 MeV 10-7 peaks 10-8

10-9

10-10 High resolution would make all Spectral density -11 10 high res peaks tables spectra integrable and update [neutrinos/(s baryon MeV)] 10-12 0 1 2 3 4 5 6 Neutrino energy [MeV] rate tables Modest temperature, low density Misses peak from excited state

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 22 / 38 VY Canis Majoris. Up next, NC nuclear neutrino spectra.

1170 pc 17 M 8.2 Myr Ripeness 0.17-1.98 (0.81)

Nebula surrounding VY Canis Majoris

HST data, processing by Judy Schmidt, CC BY 2.0

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 23 / 38 Results: Neutral Current Neutrino Pairs

A,Z(Ef) n n

Z0

A,Z(Ei)

Nucleus relaxes from excited state. Final state may be excited. Can produce any flavor (anti)neutrinos Nuclear structure, strength, and thermal averages computed similarly to the beta processes

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 24 / 38 Neutral Current Neutrino Spectra

0.1 MeV neutrino energy resolution (adequate for 10-6 10-14 integration) 10-22 10-30 10-38 27 28 10-46 Al (solid) and Si (dashed) 10-54 10-62 -70 Little contribution at low 10 27Al 10-78 28Si temperature -86 T = 0.0862 MeV

Spectral density 10 T = 0.1723 MeV 10-94 Rises very rapidly with -102 T = 0.4309 MeV 10 T = 0.8617 MeV [neutrinos/(s baryon MeV)] 10-110 increasing temperature 0 5 10 15 20 Neutrino energy [MeV] Structure important below 10 MeV neutrino energy, but Misch, Sun, Fuller (2018) spectra nearly identical above

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 25 / 38 NC Neutrino Spectra

Misch et al, in preparation

A Avg Even-even symmetric Even-even asymmetric 2

10 5 21 22 10 7 23 9 10 24 10 11 25 10 13 26 / (s baryon MeV) 10 15 27 Odd-odd symmetric Odd-odd asymmetric 28

10 5 29 30 10 7 31 9 10 32 10 11 33 10 13 34 / (s baryon MeV) 10 15 35 Odd-even All

10 5

10 7

10 9

10 11

10 13 / (s baryon MeV) 10 15 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 E [MeV] E [MeV]

Neutral current de-excitation spectra at T = 0.8617 MeV

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 26 / 38 Average NC Neutrino Spectra

Misch et al, in preparation 10 4 1.0 0.9 0.8 10 7 0.7 0.6 0.5 10 10 0.4

10 13 0.3 T [MeV]

10 16

/ (s baryon MeV) 0.2

10 19

10 22 0.1 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 E [MeV] Spectra averaged over all computed sd-shell nuclei

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 27 / 38 Oxygen Burning Nuclear ν Spectra

Kelly Patton (preliminary)

1 1022 × 1 1020 s) × 3 1 1018 × 1 1016 × 1 1014 × (1/MeV cm 1 1012 × original ν 1 1010 originalν ¯ × 8 Misch ν dR/dE 1 10 × Mischν ¯ 1 106 Misch NC ν × 1.00 10.00 Energy (MeV) NC de-excitation dominates antineutrino production Could push detectability threshold out to 2-10 kpc!

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 28 / 38 Onset of Collapse Nuclear ν Spectra

25Na antineutrino spectrum in early collapse conditions. Low-mass nucleus, but 10-4 correct electron fraction 10-6 -8 Above Eν 15 MeV 10 ∼ uncertain due to 10-10 exclusion of initial 10-12 nuclear states above -14 A,Z=25,11 10 T = 0.8617 MeV 3 20 MeV log(ρYe) = 10.0 g/cm 10-16 ∼ Spectral density Neutral current de-excitation -18 Up to 17 MeV neutrino 10 Electron decay Positron capture

energy, neutral current [neutrinos/(s baryon MeV)] 10-20 dominates 0 5 10 15 20 25 Neutrino energy [MeV] This process omitted from models Misch, Sun, Fuller (2018)

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 29 / 38 (Almost) Full Spectra at Onset of Collapse

Patton et al (2017)

Nuclei (blue) dominate ν (thin) production at onset of collapse These do not include NC de-excitation This is just the core

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 30 / 38 Neutrino

Patton et al (2017)

Integrated over entire star Main contributors sensitive to mass

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 31 / 38 WR 104

2300 pc 10-25 M Age ??? Ripeness ???

Highly evolved Wolf-Rayet star WR 104 and tidal tails. Imminent GRB? Aimed at us?!

By Keck Telescope - APOD NASA, Public Domain

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 32 / 38 Sher 25

7600 pc 40 M 4 Myr Ripeness 2.0-3.47

Sher 25 at 1 o’clock relative to NGC 3603

By NASA, ESA, Public Domain

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 33 / 38 WR 124

9000 pc 33 M 8.6 Myr Ripeness 3.8

Nebula M1-67 surrounding WR 124

Hubble Legacy Archive, processing by Judy Schmidt, CC0

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 34 / 38 η Carinae. Up next, summary and conclusions.

2300 pc 30-80 M , 100-200 M < 3 Myr Ripeness ???

Homunculus Nebula surrounding η Carinae

By Jon Morse (University of Colorado) & NASA Hubble Space Telescope, Public Domain

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 35 / 38 Ongoing and Future Work

Currently working to incorporate neutral current de-excitation spectra into a realistic calculation.

Expanding nuclear neutrino spectrum catalogs. Higher nuclear mass Higher neutrino energy resolution Higher temperature/density resolution

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 36 / 38 Summary

Motivation We may soon detect pre- Need nuclear structure to get correct neutrino spectra Neutral current de-excitation is likely important at late times Completed We have computed charged current neutrino spectra at 0.5 MeV resolution for 70 sd-shell nuclei on the FFN temperature-density grid We include for the first time in any catalog neutral current de-excitation at 0.1 MeV resolution Data currently available on the JINA-CEE website at http://www.jinaweb.org/html/mischnuspectra.html Ongoing Checking impact of neutral current in stellar model Expanding catalog to fp-shell and enhancing resolution

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 37 / 38 Supernova Remnants. Questions?

Cassiopeia A (visible); HST ; Rogelio Bernal Andreo SN 1987A; HST

SN 1572 (’s ); Chandra SN 1054 (); HST W49B; Chandra, Palomar, & VLA

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 38 / 38 Nearby Supernova Candidates

Star D [pc] Mass [M ] Age [Myr] Ripeness Spica 77 10.3-12.6, 11.4 12.5 0.37-0.60, 0.47 α Lupi 142 9.1-11.1, 10.1 16-20, 18 0.35-0.71, 0.51 Antares 170 11-14.3, 12.6 10-20, 15 0.35-1.31, 0.72  Pegasi 211 10.9-12.5, 11.7 15.5-24.5, 20.0 0.52-1.16, 0.80 Betelgeuse 222 7.7-20, 11.6 8.0-8.5, 8.25 0.12-1.23, 0.32 π Puppis 250 11.5-11.9, 11.7 16.1-23.9, 20.0 0.62-1.00, 0.80 Rigel 260 18-24, 21 7-9, 8 0.80-1.99, 1.30 γ2 Velorum 336 27.4-29.6, 28.5 3.5-5.5, 4.5 1.03-1.92, 1.45 σ Canis Majoris 340 12.2-12.4, 12.3 15.9-16.9, 16.4 0.71-0.78, 0.74 NS Puppis 520 9.7 25.1 0.64 119 Tauri 550 11.6-16.37, 14.37 11.4-14.9, 13.9 0.45-1.35, 0.92 3 Ceti 600 8.4-9.6, 9.0 26.1-33.3, 29.7 0.47-0.83, 0.63 Deneb 802 15-23, 19 10? 0.74-2.01, 1.29 ρ Cassiopeiae 1100 40 4-6, 5 2.67-4.01, 3.34 VY Canis Majoris 1170 9-25, 17 8.2 0.17-1.98, 0.81

G. Wendell Misch Pre-supernovas (LA-UR-19-30458) January 29, 2020 38 / 38