<<

Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

Name index

Abell, George, 99, 101 Cappelluti, Nico, 729 Abraham, Robert, 733 Carter, Brandon, 434 Abramovitz, Milton, 206, 209 Caswell, James, 226 Adams, Fred, 353, 369 Cavaliere, Alfonso, 110 Amsler, Claude, 275 Cesarsky, Catherine, 187, 189 Anderson, Carl, 29, 30, 163 Challinor, Anthony, 115, 259 Arnaud, Monique, 110 Chandrasekhar, Subrahmanyan, 302, 429, 434, Arnett, David, 386 455 Arzoumanian, Zaven, 420 Charlot, Stephane,´ 729, 730, 747 Auger, Pierre, 29 Chwolson, O., 117 Cimatti, Andrea, 736, 748 Babbedge, T., 740 Clayton, Donald, 386 Backer, Donald, 417, 418 Clemmow, Phillip, 267 Bahcall, John, 55, 57, 58 Colless, Matthew, 108, 109 Bahcall, Neta, 105 Compton, Arthur, 231 Balbus, Steven, 455 Cordes, James, 420 Band, David, 264 Cowie, Lennox, 733, 736, 743, 745 Barger, Amy, 745 Cox, Donald, 357 Beckwith, Steven, 737, 744 Becquerel, Henri, 146 Damon, Paul, 297 Bekefi, George, 193 Davies, Rodney, 376 Bell(-Burnell), Jocelyn, 19, 406 Davis, Leverett, 373 Bennett, Charles, 16 Davis, Raymond, 32, 54, 55 Bethe, Hans, 57, 163, 166, 175 de Vaucouleurs, Gerard,´ 77, 78 Bignami, Giovanni, 197 Dermer, Charles, 505 Binney, James, 106, 153 Deubner, Franz-Ludwig, 51 Blaauw, Adriaan, 754 Diehl, Roland, 287 Blackett, Patrick, 29 Dirac, Adrian, 29 Blain, Andrew, 743 Djorgovski, George, 88 Bland-Hawthorn, Jonathan, 733 Dougherty, John, 267 Blandford, Roger, 251 Draine, Bruce, 351, 372, 373, 375, Blumenthal, George, 163, 175, 242 376 Bondi, Hermann, 443 Dressler, Alan, 84, 88 Bothe, Walter, 28 Dunlop, James, 720, 748 Boyle, Brian, 591, 724 Dunn, Andrew, 108, 109 Bracessi, Alessandro, 588 Dyakov, Sergei, 250 Brandt, W., 725, 726 Bruzual, Gustavo, 729, 730, 743, 744, Eastman, Ronald, 393 747 Efstathiou, George, 125 Butler, Clifford, 30 Einstein, Albert, 117, 171, 231, 246 Ellis, George, 433 Cotˆ e,´ Patrick, 94, 95 Ellis, Richard, 118, 731, 736 Calabretta, Mark, 754 Ellis, Simon, 733 Camenzind, Max, 403, 404 Emslie, Gordon, 322, 324 Cameron, Alistair, 60, 498 Ewen, Harold, 20 Cannon, Annie, 37 Ezer, D., 60 825

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

826 Name index

Faber, Sandra, 87, 88 Hoyle, Fred, 443 Fabian, Andrew, 113, 114 Hubble, Edwin, 77, 78, 757 Fan, Xiaohui, 725 Hulse, Russell, 415 Felten, James, 96, 97, 719 Harm,¨ Richard, 304 Ferland, Gary, 341, 343 Fermi, Enrico, 141 Jackson, John, 267 Feynman, Richard, 247, 249, 424 Jackson, John D., 137, 141 Field, George, 360, 361 Jackson, Robert, 87 Fisher, Richard, 87 Janka, Hans-Thomas, 384, 386, 388, 420 Fitzpatrick, Richard, 298, 299 Jansky, Karl, 17 Forbes, Terry, 324, 327, 329 Jokipii, Randy, 186, 187 Ford, Vincent, 374 Julian, William, 425, 426 Fort, Bernard, 120 Frank, Juhan, 451, 455, 456, 459, 460, 461, 462, 463, Karttunen, Hannu, 35 470, 476, 478, 481, 656, 657, 659 Karzas, William, 169, 229 Frolov, Valery, 429 Kauffmann, Guinevere, 85 Kennicutt, Robert, 87, 362, 750 Garcia-Munoz, M., 514 Kent, Stephen, 107 Gavazzi, Raphael,¨ 122 Kerr, Roy, 434 Gel’fand, Israil, 250 King, Andrew, 451, 456, 459, 460, 461, 462, 463, 470, Genzel, Reinhard, 622 476, 478, 481, 656, 659 Ghez, Andrea, 621 King, Ivan, 105 Gilli, R., 602, 728, 729 Kippenhahn, Rudolf, 35, 48, 60, 61, 63, 395, 398, Ginzburg, Vitali L., 193, 220 399 Glazebrook, Karl, 747 Kirshner, Robert, 393 Gold, Thomas, 406 Kneib, Jean-Pierre, 118 Goldreich, Peter, 425, 426 Koch, H. William, 163, 175 Goldsmith, Donald, 360, 361 Kochanek, Christopher, 118 Gough, Douglas, 51 Kolb, Rocky, 125 Gould, Robert, 154, 163, 175, 242 Kolhorster,¨ Werner, 27, 28, 29 Graham Smith, Francis, 406, 416, 418, 420, 422, 424, Kompaneets, Aleksander, 250 429 Koo, David, 590 Green, Richard, 589, 591, 724 Kormendy, John, 77 Greenstein, Jesse, 373 Kramer, Michael, 406 Greisen, Eric, 754 Krause, Oliver, 382 Greisen, Kenneth, 273 Kron, Richard, 590 Grindlay, Jonathan, 264 Kulsrud, Russell, 189, 298, 308, 310, 324, 329 Gunn, James, 107, 126, 420 Lacy, Mark, 748 Habing, Harm, 360, 361 Lagache, Guilaine, 740 Hall, John, 372 Landau, Lev, 250, 314, 316, 317, 452, 456 Hasinger, Gunther,¨ 484, 725, 726 Larmor, Joseph, 425 Hauser, Michael, 743 Lasenby, Anthony, 115, 259 Hawking, Stephen, 433, 434, 438 Lasota, Jean-Pierre, 481 Hawkins, Michael, 591 Latter, Richard, 169, 229 Hawley, John, 455 Lazarian, Alexander, 375 Haynes, Martha, 86, 87 Le Roux, Edouard, 206 Heitler, Wilhelm, 163, 166, 175 Leavitt, Henrietta, 757 Hess, Victor, 27, 28 Leger, Alain, 350, 351 Hewish, Antony, 19, 406 Leibundgut, Bruno, 380 Hewitt, Jacqueline, 123 Lequeuex, James, 88 Hildebrand, Roger, 352 Liedahl, Duane, 243, 245, 246, 250, 251, 253 Hillas, Michael, 502, 529, 530, 580 Lifshitz, Evgenii, 314, 316, 317, 452, 456 Hillebrandt, Wolfgang, 380, 383 Lightman, Alan, 193, 202, 209, 210, 243, 250 Hiltner, William, 372 Lilly, Simon, 743, 748 Holloway, Nigel, 429 Lingenfelter, Richard, 290

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

827 Name index

Liu, Q.Z., 485 Palla, Francesco, 361 Lizano, Susana, 369 Panagia, Nino, 392 Lochner, James, 449 Parker, Eugene, 324 Longair, Malcolm, 743 Peacock, John, 267, 720 Lorimer, Duncan, 406 Pearce, W. P., 189 Lotz, Jennifer, 737 Peebles, James, 93 Lyne, Andrew, 406, 416, 418, 420, 422, 424, 429 Pengelly, R.M., 341 Lyttleton, Raymond, 443 Penrose, Roger, 433, 437 Penzias, Arno, 14 Mesz´ aros,´ Peter, 705, 709, 713 Petschek, Harry, 327 MacDonald, Douglas, 438 Pogson, Norman, 760 Madau, Piero, 743, 745 Pozdnyakov, L., 243, 253, 255, 256 Majewski, Steven, 591 Pratt, Gabriel, 110 Malin, David, 389 Price, Richard, 437 Manchester, Richard, 410 Priest, Eric, 322, 323, 324, 327, 329 Marsh, Thomas, 475 Pringle, James, 451 Mathewson, Donald, 374 Pryce, M.H.L, 429 Mayor, Michel, 66 Puget, Jean-Loup, 350, 351, 743 McCarthy, Patrick, 747 Purcell, Edward, 20 McCaughrean, Mark, 365 McClintock, Jeffrey, 487, 488, 490 Queloz, Didier, 66 McCray, Richard, 393 Mellier, Yannick, 120 Rontgen,¨ Wilhelm, 146 Mellinger, Axel, 7, 8, 755 Raine, Derek, 451, 456, 459, 460, 461, 462, 463, 470, Menjo, Hiroaki, 297 476, 478, 656, 659 Merritt, David, 107, 108 Raizer, Yuri, 314 Mestel, Leon, 424, 427 Ramaty, Reuven, 290 Metcalfe, Nigel, 732 Rees, Martin, 705 Mewaldt, Richard, 515 Reimer, Paula, 296 Meyer, Peter, 497 Remillard, Ronald, 487, 488, 490 Michell, John, 429, 431 Rest, Armin, 382 Millikan, Robert, 29 Reynolds, R.J., 341 Mirabel, Felix, 440 Richards, Gordon, 724 Misner, Charles, 434 Richer, John, 360 Motz, J., 163, 175 Rindler, Wolfgang, 433 Murray, Andrew, 753 Roberts, Morton, 86, 87 Mushotzky, Richard, 448, 449 Rochester, George, 30 Rodrigues, Juan, 440 Neddermeyer, Seth, 29, 30 Rossi, Bruno, 273 Neininger, N., 370 Rowan-Robinson, Michael, 720, 757, 758 Newman, Ted, 434 Rubin, Vera, 92 Niemeyer, Jens, 380, 383 Ruderman, Malvin, 428 Nikolic, Bojan, 349 Rybicki, George, 193, 202, 209, 210, 243, 250 Northrop, Theodore, 183 Novikov, Igor, 429 Sersic,´ JoseLuis,´ 82 Sajina, Anna, 739 Occhialini, Giuseppe, 29 Sandage, Allan, 77, 88 Oort, Jan, 20 Scheuer, Peter, 210 Orosz, Jerome, 441, 442 Schmidt, Brian, 393 Osmer, Patrick, 591 Schmidt, Maarten, 362, 589, 591, 720, 724, 725 Osterbrock, Donald, 341, 343 Schneider, Peter, 118, 122 Ostriker, Jeremiah, 93, 420 Schroeder, Daniel, 770 Schwarzschild, Karl, 430 Pacholczyk, Andrej, 193 Schwarzschild, Martin, 94 Pacini, Franco, 406, 424 Shakura, Nicolai, 454, 459 Pagel, Bernard, 497 Shapiro, Stuart, 399, 400, 403, 422, 433, 434

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

828 Name index

Shu, Frank, 352, 353, 360, 369 van de Hulst, Henk, 20 Silberberg, Rein, 283, 285, 286 van den Bergh, Sidney, 77, 736 Simpson, John, 497, 498, 511 van den Heuvel, Edward, 411, 473 Skobeltsyn, Dmitri, 28, 29 van der Klis, Michiel, 484 Smart, William, 753 VandenBerg, Donald, 39 Smith, Barham, 357 Velikhov, E.P., 455 Sobol, I., 243 Visvanathan, N., 88 Spinrad, Hyron, 748 Spitzer, Lyman, 298, 302, 304 Waddington, Ian, 724 Springel, Volker, 749 Wambsganss, Joachim, 118 Stahler, Steven, 361 Wandel, Amri, 448, 449 Starrfield, Sumner, 478, 479 Wang, Wei-Hao, 745 Stecker, Floyd, 504, 505, 534, 535 Warren, Stephen, 590 Stegun, Irene, 209 Wasson, John, 150 Steidel, Charles, 743 Wdowczyk, Jerzy, 503 Steigman, Gary, 123 Weaver, Thomas, 383 Strong, Andrew, 175, 504, 505 Webber, William, 283, 495, 515 Sunyaev, Rashid, 151, 243, 257, 454, Weber, Joseph, 33 459 Wefel, John, 515 Sutherland, Peter, 428 Weigert, Alfred, 35, 48, 60, 61, 395, 398, Sutherland, Ralph, 169 399 Sweet, Peter, 324 Weisskopf, Victor, 405 Syrovatskii, Sergei I., 193, 220 Wentzel, Donat, 187 Westfold, Kevin, 206 Tandberg-Hanssen, Einar, 322 Wheeler, John, 434 Tayler, Roger, 35, 47, 48, 496 White, Simon, 743 Taylor, Joseph, 415 Wilkinson, Peter, 123 Tesla, Nikola, 163 Willingale, Richard, 385 Teukolsky, Saul, 399, 400, 403, 422, 433, Wilson, Robert, 14 434 Wolfendale, Arnold, 503 Thomson, Joseph John (J.J.), 155, 156, 232 Woon, David, 335 Thorne, Kip, 434, 435, 437 Woosley, Stan, 383, 384, 386, 387, 388, 420, Tremaine, Scott, 106, 126, 153 478 Trodden, Mark, 126 Tsao, Chen-Hsiang, 283, 285, 286 Yukawa, Hideki, 29, 30 Tully, Brent, 87 Turner, Michael, 125 Zavlin, Vyacheslav, 421 Zeldovich, Yakov, 250, 257, 314 Ulrich, Roger, 55 Zwicky, Fritz, 101

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

Object index

14016+2610, 354 X–2 (Cyg X-2), 483, 484 1E1207.4–5209 (isolated neutron ), 197 Cygnus X–3 (Cyg X-3), 3, 24 3C 273, 19, 24, 26, 450, 587, 588, 638, 684 , 379 η-Carinae, 71, 72 47 Tucanae (47 Tuc), 39, 66, 69, 73, mass loss rate of, 71 418 EXO 033319–2554.2, 197 4C 21.53, 417, 418 4U 1700–37, 413 G1.9+0.3 ( remnant), 379 51 Peg, 66, 67 Galactic Centre, 7, 621 in, 11 A 0620–00, 487 ‘Geminga’, 421 A0535+262, 471, 472 Gliese 229B Abell 478, 112, 113 brown dwarf companion of Gliese 229, 66 Abell 1413, 110 spectrum similar to that of Jupiter, Abell 2218, 99, 100, 118 66 Antennae, 79, 80 GRB 030329, 706 GRO 1744–28, 483 B1937+21 (millisecond ), GRO J1655–40, 487 417 GRO J1744–28, 472 B2334+61, 421 GRS 1915+105, 440, 441 Becklin–Neugabauer (B–N) object, 364, mass function for, 440 365 Guitar , 420 Betelgeuse, 771 GX5–1, 483, 484

Cartwheel , 80 HD 209458, 67 (Cas A), 289, 335, 379, 385, 386, 553, HD 93131 (Wolf–Rayet star), 71 557, 559 Hercules X-1 (Her X-1), 197, 405, 412 as a Type IIb supernova, 385 discovery records of, 412 Centaurus X–3 (Cen X–3), 411 modulation of , 483 Coma Cluster of (Abell 1656), 24, precession of rotation axis of , 483 106–109 unpinning of crust and magentic field from neutron core radius of, 105 superfluid, 483 mass of, 107, 759 HH211, 365, 366 mass-luminosity ratio of, 108 HH30, 365, 366 X-ray image of, 108, 109 HH34, 365, 366 (M1, NGC1952), 23, 24, 26, 193, Homunculus Nebula (η-Carinae), 72 379 HT Cas, 478 continuous injection of energy into, total eclipse observed in, 478 410 energy requirements of, 409 Kepler’s supernova, 379 pulsar in, 406, 409, 417, 418, 422, 423, 424, 425, Kleinmann–Low Nebula, 364, 365 428 Cygnus A, 24, 261, 489, 774 Large Magellanic Cloud (LMC), 8, 11, 13, 26, 32, Cygnus X–1 (Cyg X-1), 24, 413, 438, 442, 448, 449, 379, 388, 389 487 LMC X–1, 442 hard X-ray spectrum of, 256 LMC X–3, 442, 487, 489 829

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

830 Object index

M1, see Crab Nebula (M1, NGC 1952) PSR B1509–58, 409 M3, 39 PSR B1913+16 (binary pulsar), 415, M31, Andromeda Nebula, 92, 97 416 M33, 439, 440 change of period due to emission of gravitational M33 X–7 (X-ray binary), 440 waves, 416 M49 (NGC 4472), 94, 95 tests of general relativity and, 415 M51 (NGC 5194), 79, 370, 371 PSR J0538+2817, 421 M67, 39 PSR J0737–3039, 416, 417 M81, 755 change of period due to emission of gravitational M87 (NGC 4486), 23, 78, 79, 94 waves, 416 non-thermal optical jet of, 78 PSR J1119–6127, 409 Magellanic Clouds, 339 MCG–6–30–15, 448, 449, 611, 626, 627, Sersic´ 159–03, 113 628 Sagittarius A, 753, 754 , 7, 8 Sagittarius A∗ (Sgr A∗), 621, 622, 623 MXB 1730-335 (rapid burster), 483 Sanduleak −69 202, 32, 389 Scorpius X–1 (Sco X–1), 24, 483 NGC 1300, 79 Small Magellanic Cloud (SMC), 8, 11, NGC 2362, 39 13 NGC 2787, 79 SN 1006, 297, 379 NGC 4258, 621 SN 1054, see Crab Nebula (M1, NGC 1952) NGC 4839, 108 SN 1181, 379 NGC 5195, 79 SN 1572, see ’s supernova NGC 5506, 448, 449 SN 1604, see Kepler’s supernova NGC 7023, 351 SN 1987A, 32, 73, 279, 288, 289, 379, 388–393 North Pole star, 7 SU Aur, 354

Ophiuchus molecular cloud, 354 molecular cloud, 354 Orion giant molecular clouds, 363, 364 Trapezium in Orion Nebula, 364, 365 Orion Molecular Cloud, 13 Tycho’s supernova, 379, 382 Orion Molecular Cloud A, 363, 364 remnant of, 382 Orion Nebula, 13, 17, 363, 364, 365 typing of by light echoes, 382 luminous far-infrared sources in, 364 Orion , 66, 69, 70 U Gem, 475, 476 Orion, constellation of, 363, 364 Vega (α-Lyrae), 760, 762 Perseus Cluster of galaxies, 24, 114 Vela , 26 Lyα and Lyβ emission lines of highly ionised iron, pulsar in, 406, 421, 422, 423, 424 Fe+25 in, 169 Vela X–1, 413 X-ray bremsstrahlung of hot intracluster gas in, 169 Virgo Cluster of galaxies, 24, 99, 100 X-ray spectrum of, 169 VSSG 23, 354 Plough or Great Bear, 7 PSR 1919+21 (CP 1919), 406, 407 X1822–371, 480 discovery records of, 407 XBT0748–676, 480 PSR B0540–69, 409 XTE J1650–500, 492 PSR B0656+14, 421 PSR B1055–52, 421 Z Cha, 475

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

Index

Abell Catalogues of rich clusters of galaxies, boundary layer at inner edge of, 456 99–102 energy flow in, 457 selection criteria of clusters in, 100 formation of, 444 space density of clusters in, 100 luminosities of, 457 spatial correlations with clusters and galaxies, 101 outward transfer of angular momentum, 444, 445 aberration formula, relativistic, 238 viscous dissipation of energy in, 445 , 763 accretion luminosity, 444 absorption coefficient χν , 170 Accretion Power in Astrophysics (Frank, King and for thermal bremsstrahlung, 170 Raine), 451 corrected for stimulated emission, 172 accretion power in astrophysics, 443–492 uncorrected for stimulated emission, 172 accreting binary systems, 473–486 absorption edges at X-ray energies, 228–230 accretion in binary systems, 464–473 K-edges, 229 black holes in X-ray binaries, 486–491 accelerated charged particles Eddington limiting luminosity, 445–447 polar diagram of radiation of, 156 efficiency of the accretion process, ξ, 443–444 acceleration four-vector A, 161 for neutron stars, 444 acceleration of an electron in the electrostatic field of for white dwarfs, 444 a proton or nucleus, 163 onto black holes, 444 acceleration of high energy particles, 561–582 general considerations, 443–450 beyond the standard model, 574–580 thick discs and advective flows, 461–463 diffusive shock acceleration in strong shock waves, thin accretion discs, 451–461 568–574 accretion radius, see capture, or accretion, radius energy spectrum of cosmic rays at and above the action integral in Lagrangian mechanics, 182, ‘knee’, 579–580 183 Fermi acceleration – original version, 564–568 active galactic nuclei general principles of acceleration, 561–562 ‘blue-bump’ component in spectra of, 450 highest energy cosmic rays, 580–582 ratio of black hole to spheroid masses, 748, 750 in solar flares, 562–563 Type 1, 602, 728 magnetic fields in supernova shock fronts, 574–576 unobscured, 602, 728 nonlinear diffuse shock acceleration, 576–579 active galaxies, 585–609 accretion adaptive optics, 7, 770 as an energy source for X-ray sources, 24 adiabatic changes in classical mechanics, 182 in X-ray binary systems, 412 adiabatic expansion maximum energy release for Schwarzschild black of a magnetic field, 307 hole, 413 adiabatic invariance, 184 accretion columns in magnetic cataclysmic variables, principle of, 182 477–478 adiabatic loss problem and the acceleration of high emission of far ultraviolet and soft X-ray emission energy particles, 556–560 from, 477 adiabatic motion of charged particle, 134 shock fronts in, 477 Adiabatic Motion of Charged Particles (Northrop), temperature of shocked gas in, 477 183 accretion disc, thick, 437 Advanced Camera for Surveys (ACS), 122, 732 accretion discs, see thin accretion discs advective transport of mass and energy, 462–463, 656, boundary layer 657, 659 emission from, in cataclysmic variables, 477 supermassive black holes and, 463 luminosity of, 457 through black hole horizon, 463 831

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

832 Index

Airy diffraction pattern, 768 Ariel-V satellite, 725 Airy disc, 768 ASCA Large Sky Survey, 725 Aitoff projection, 755 associated Legendre functions, 51 Alfven´ and hydromagnetic waves in interstellar asteroids medium, 187–189 asteroid belt and, 148 damping by neutral particles, 189 parent bodies of meteorites, 148 damping rate of, 189 astronomical seeing, 770, 771 energy density of, 188 astronomical unit (AU), 756 growth rate of, 188 astronomical units, 757 momentum density of, 188 astroparticle physics, 127 Alfven´ radius, 469, 470 Astrophysical Flows (Pringle and King), 451 for white dwarfs, 470 Astrophysics of Gaseous Nebulae and Active Galactic Alfven´ speed, 188, 189, 321, 323, 325, 326, 327 Nuclei (Osterbrock and Ferland), 341 alignment effect in radio galaxies, 654, 655 asymptotic giant branch stars, 288 alignment of interstellar grains, 372–374 Atacama Large Millimetre Array (ALMA), 14 magnetic field parallel to optical polarisation, atmosphere as convertor for cosmic rays, 502 374 atmospheric turbulence and astronomical seeing, 769, physical mechanisms for, 373 771 Barnett effect, 373 atomic binding energy, 135 paramagnetic dissipation, 373 Auger air-shower array, 31 Rowland effect, 373 Auger ultra-high energy cosmic ray observatory, suprathermal processes, 373 275 α-discs, 455, 459, 461 aurorae, 320 AM Herculis binaries, 197 green and red lines of oxygen in, 320 ambipolar diffusion, 311 auroral zone, 320 Ampere’s` theorem, 324 Australia Telescope Compact Array, 393 Anglo-Australian telescope, 589 Australia Telescope National Facility (ATNF), 21 Anglo-Australian Telescope 2dF survey (AAT 2dF), 4, Avogadro’s number, 175, 271 77, 80, 95, 96, 97, 101 angular cyclotron frequency, 179 angular diameter distance, 118 Baade–Wesselink method, 392, 758 in general relativity, 430, 431, 432 background intensities in ground-based observations, angular frequency ω0 of electron in atom, 135 761, 775 angular gyrofrequency, 179, 183, 189 background radiation non-relativistic, 201 submillimetre and far-infrared relativistic, 201, 211 contribution of active galactic nuclei, 745 angular momentum transport by viscosity, 455, main contributors to, 745, 746 456 ultraviolet angular plasma frequency, 446 decrease at large , 744, 745 angular resolving power, 764 decrease in intensity from z = 1 to present anomalous resistivity of a plasma, 328 , 745 anomalous X-ray , 418–419 Baksan Observatory in the northern location on P−P˙ diagram, 419 Caucasus mountains, 57 antenna temperature, 779 Balmer absorption line index HδA as age indicator, minimum detectable, 779 85, 86 aperture grading, 768 Balmer break, or discontinuity, Dn(4000) as age aperture synthesis, 771–774 indicator, 85, 86 Earth-rotation, 774 Balmer continuum absorption, 764 principles of, 21 Balmer decrement, 341 apodisation, 768 Balmer series of hydrogen, 450, 587, 594, 642, 646, Apollo 12 and the Surveyor satellite, 147 647 Apollo 14, 149 BATSE instrument of the Compton Gamma-Ray Apollo 17, 147 Observatory, 472 BeppoSAX gamma-ray telescope, 289 bolometric, 762 Bernoulli’s equation, 315 definition of, 760 Bessel functions J0(z), J1(z), 767, 768 Archimedean spiral, 313 betatron, 193

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

833 Index

Bethe–Bloch formula, 140–141, 163, 167 in X-ray binaries, 25, 486–491 bias parameter, 122 different active states of, 487, 488 BIMA Millimetre Array, 115, 116 disc fraction f , 487 binary pulsars, 415–417 hard state, 487, 489–490 systems, 464–467 hard state and presence of radio jets, 489 close, 464 hot corona in, 490, 491 contact binaries, 464 iron fluorescence lines, 487, 491, 492 common envelope of, 464 luminosity of accretion disc, 488, 489 mass–luminosity relation for, 465 power density spectrum of the variability, 488 equipotential surfaces in the rotating system, 464, quasi-periodic oscillations (QPOs), 490 465 steep power-law, 487 evolution of stars in, 465, 466 steep power-law state, 490 feeding the accretion disc, 467 temperature distribution in accretion disc about, Roche lobe overflow, 467, 468 488 loss and, 468 thermal state, 487, 488–489 stellar mass loss and winds, 467 last stable orbit, 445, 448, 449, 458, 463, 490, 491, mass transfer in, 465, 466 611, 629, 630, 631, 633, 656 non-contact close binaries, 465 evidence for, 489 periods of, 464 light-travel time across the last stable orbit, 448 role of magnetic fields, 469–473 magnetic fields threading, 437 accretion columns and, 469 mass estimates for, in binary X-ray systems, 438, magnetic pressure of, 469 439 mass flow onto magnetic poles, 469, 470 mass from kinematics of nuclear gas clouds, 448, ram pressure and, 469 450 spectroscopic binaries, 464 masses from time variability, 448, 450 statistics of, 464 maximally rotating, 436 symbiotic stars and, 467, 474 maximum angular momenta of, 435 visual binaries, 464 maximum energy release of Schwarzschild, 436, binary X-ray sources, 438 445 bipolar outflows, 353, 355, 364–367 observational evidence for, 438–442 magnetic fields in, 367 primordial, 438 model for, 367 resistivity of, 437, 438 molecular beams in, 364 Schwarzschild, 436 origin of, 369 sketches of, in binary X-ray systems, 441, 442 magnetic fields and, 369 specific angular momentum of, 458 polarisation observations of, 367 static radius about rotating, 435 similarity to extragalactic radio sources, 367, supermassive, 123, 715 369 epoch of maximum activity, 723 BL-Lacertae objects (BL-Lac objects), 19 non-thermal radiation processes and, 715 Black Hole Physics: Basic Concepts and New temperature of, 438 Developments (Frolov and Novikov), 429 temperature of gas at last stable orbit, 449 black hole X-ray binaries, 488 Black Holes – The Membrane Paradigm, 437 quasi-periodic oscillations (QPOs), 488, 490, 491 black holes in the nuclei of galaxies, 610–636 increase in frequency with luminosity, 490 black holes in X-ray binaries and active galactic black holes, 76, 123, 378, 429–442 nuclei, 448–450 accretion luminosity of, 458 black-body radiation angular momentum on last stable orbit, 458 intensity of, 218, 778 condition of matter to fall into, 458 Rayleigh–Jeans limit of, 218 dragging of inertial frames, 435 spectrum of, 5 electrodynamics of, 437, 438 blue sequence or blue cloud, 80 ergospheres of rotating, 437 avoid regions of rich clustering, 85 evaporation of, 438 properties of galaxies of, 81 extraction of rotational energy from rotating, 437 Bohr model of the atom, 135 ‘flickering’ of the X-ray intensity and, 448, 449 Bohr radius of the hydrogen atom, 174 general case in general relativity, 434–438 bolometric absolute magnitude, 763 Hawking radiation from very low mass, 438 of , 763 horizon of rotating black hole, 435 bolometric flux density, 763

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

834 Index

Boltzmann distribution, 171, 299, 333 brightness temperature Tb, 217, 219, 778, 779 Boltzmann equation, 250, 259 Rayleigh–Jeans approximation for, 778 evolution of photon occupation number and, brown dwarfs, 66, 123, 124 250 discovered in 2MASS survey, 66 Boltzmann relation, 247 discovered in Pleiades, Orion and ρ Ophiuchus Bose–Einstein distribution clusters, 66 as a solution of Kompaneets equation, 253 discovered in , 66 Bose–Einstein spectrum, 257 BUGS experiment of Ariel-VI mission, 499, Bose–Einstein statistics, 404 500 bound–free absorption, see photoelectric absorption bound–free absorption in stars, 47 CalTech Submillimetre Observatory (CSO), 14, 115, bow shock, 320 259 density enhancement across, 320 Canada-France Survey, 743 Boyer–Lindquist coordinates, 434 canonical coordinates, 182 braking index, 407, 408, 409 canonical momentum, 182 energy loss from pulsars and, 407 of particle in a magnetic field, 182 for magnetic dipole radiation, 408 capture, or accretion, radius, 485, 486 magnetic breaking and, 407 carbon burning, 64 ‘braking radiation’, see bremsstrahlung carbon monoxide (CO) map of Galaxy, 17 bremsstrahlung, 99, 109, 115, 133, 154, 163–177, carbon recombination lines in gaseous nebulae 301, 759 very high order transitions, 342 collision parameters bmax and bmin for, 163, 166 carbon-nitrogen-oxygen (CNO) cycle, 44, 45, 48, 50, cooling rate, 111 62, 72, 478, 479 emissivity of, 115 Cassegrain telescope, 770, 771 low frequency spectrum of, 165, 166 cataclysmic variables, 383, 443, 447, 467, 473–478, non-relativistic energy loss rate, 166–167 479 non-thermal, 290 accretion columns in magnetic, 477–478 relativistic, 173–177 AM Herculis stars, 474 average energy of photons emitted in, 177 classical novae, 473, 478, 479 catastrophic losses in the atmosphere, 176 event rate in our Galaxy and M31, 478 collision parameters bmax and bmin for, 173–175 thermonuclear runaway and, 473, 478, 479 correction for electron–electron interactions, dwarf novae, 473, 474, 475, 476, 478 175 eclipse mapping of, 475 critical energy, 175 temperature mapping, 475 in terms of the photon number flux density, 175, intermediate polars, 474 176 magnetic, 474 radiation length X0 for, 175 novae-like stars, 474 the low energy γ -ray emission of the interstellar polars, 474 medium and, 177 recurrent novae, 474 total energy loss rate, 174 strong emitters in the 1−10 keV X-ray wavebands, total stopping power for different materials, 477 175 strong emitters in the EUV and soft X-ray total stopping power in different materials, 175 wavebands, 477 spectral emissivity of, 109 strong winds from, 478 spectrum of, 110, 115 symbiotic stars, 474 thermal, 167–173 celestial equator, 753, 755 absorption, 170–173 celestial hemisphere Gaunt factors for radio and X-ray wavelengths, north, 755 168 south, 755 mass of gas and dark matter in clusters of celestial sphere, 755 galaxies and, 169 central limit theorem, 719, 774 spectral emissivity of, 167–169 Gaussian statistics and, 775 spectral emissivity of, in terms of photon number Cepheid variables, 757 per unit energy interval, 169 luminosity–period relation for, 757 total energy loss rate of, 168 Cerro Tololo InterAmerican Observatory, 11 bremsstrahlung absorption in stars, 47 ChaMP study, 725 bremsstrahlung, X-ray, 394 Chandra Deep Fields, 725, 727

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

835 Index

Chandra X-ray Observatory, 25, 114, 379, 385, 393, collision parameters 546, 663, 669, 714, 725, 727 maximum and minimum for electrostatic scattering, , 383, 397–406 302 Chandrasekhar mass, 382, 383, 384, 400, 466 collision time of particles in a plasma, 301 for neutron stars, 399, 400 collisionless plasma, 305 for white dwarfs, 399 colour index charge-coupled devices (CCD), 7, 776 definition of, 763 charged particles in magnetic fields colour–colour diagram for stars, 763, 764 dynamics in time-varying field, 180–184 colour–magnitude diagram for stars, see adiabatic invariant approach to, Hertzsprung–Russell diagram 182–184 colours physical approach to, 181–182 definition of, 763 dynamics of, 178–189 comoving radial distance coordinate, 718 in static uniform field, 178–180, 193 comoving volume scattering by Alfven´ and hydromagnetic waves, variation with redshift, 716 187–189 compact extragalactic sources and superluminal scattering by irregularities in the field, motions, 681–713 184–187 compact H ii region spiral motion in uniform field, 179 spectrum at radio wavelengths of, 172, chemical potential µ, 246, 247, 257 173 Cherenkov radiation, 264–270 compact radio sources ‘shock wave’ interpretation of, 266 relativistic bulk motion in, 264 Cherenkov cone, 269 variability of, 263 condition for, 266 Compton effect, 236 energy loss rate per unit bandwidth, 270 Compton Gamma-Ray Observatory (CGRO), 288, circumstellar disc, 353 289, 292 Classical Electrodynamics (Jackson), 129 EGRET instrument of, 26, 504 classical electron radius, 233 Compton optical depth, 115, 245, 246, 251, 255, 257, classical novae, see cataclysmic variables, classical 258 novae Compton scattering, 114, 235–237 clusters of galaxies, 99–127 average energy change of photon in, 244 Bautz–Morgan classification, 102 average energy gain of photons by, 244 central concentration of galaxies and central profile, derivation of formulae for, 235–237 102 exchange of energy between electrons and radiation central mass density of, 105 field, 236 core radius, 102, 104 inverse, 715 crossing time, 107 Klein–Nishina cross-section, 237 dark matter in, 123–127 probability distribution for a single scattering, galaxy content, 102 260 isothermal gas spheres and, 102–106 recoil effect, 236 mass segregation, 102 Comptonisation, 243–257, 490 morphologies of, 99–102 basic physics of, 243–246 most massive galaxies in, 153 Bose–Einstein distribution regular, intermediate and irregular, 102 formation of, 246, 247 symmetry, 102 with finite chemical potential µ, 246 X-ray emission of, 25 Compton optical depth, 245, 246 clusters of stars, 39 condition for significant distortions of photon coincidence counting, 28 spectrum, 245 collision of high energy particle with stationary examples of astrophysical applications, 243 electron interchange of energy between matter and radiation duration of, 134 and, 243–246 limits to collision parameters, 133–136 differential equation for, 245 relativistic case, 139–140 Kompaneets equation, 250–257 non-relativistic treatment, 131–133 number of scatterings to approach saturation, 245, maximum energy loss, 132 246 relativistic treatment, 139–140 occupation number, 246–250 collision parameter, 132 recoil effect in, 244

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

836 Index

computer simulations cosmic ray clocks, 501 hydrodynamical simulations of galaxy collisions, cosmic ray electrons 750 spectrum of, 212, 225, 226 origin and evolution of cosmic structures and, 749 cosmic ray protons and nuclei concentration index C = (R90/R50), 85, 86 solar modulation of, 185, 187 conductivity of a plasma, 133, 425 cosmic rays, 493–535 cone diagram of the distribution of galaxies, 101 abundances of the elements in the cosmic rays, conservation of angular momentum, 431, 444 496–502 conservation of energy for Newtonian gravity, 431, air-shower technique at energies E  1015 eV, 493, 432, 444 494 conservation of energy in general relativity, 432, antiparticles in the flux of, 30, 496 444 chemical abundances of, 497–500 conservation of mass, 47 features of, 497–499 convective transport of energy in stars, 45, 48 confinement time in the Galaxy and cosmic ray condition for, 45, 60 clocks, 515–517 in main sequence stars, 61 confinement volume for, 517–520 in pre-main sequence stars, 61 differential energy spectra for different species, in red giant stars, 61 493–495 of different masses on the main sequence, 61 differential energy spectra for electrons, 495–496 convective transport of mass and energy, 463 differential energy spectrum of cooling flows in clusters of galaxies, 110–114 ‘ankle’ in, 493, 494 Cooper pairs, 404 ‘knee’ in, 493, 494 coordinate systems and projections used in astronomy, overall, 493, 494 7, 753–755 energy density of, 358 coordinate time in general relativity, 431 energy spectra of cosmic ray protons and nuclei, 30, coordinate-space diagram for diffusion-loss equation, 31, 493–496 191 solar modulation and, 493 Copernicus satellite, 337, 338 and, 520–522 coronal loops, 308, 309, 312, 322 Greisen–Kuzmin–Zatsepin (GKZ) cut-off, 531–535 coronal mass ejection events, 314 highest energy cosmic rays and extensive coronene, 351 air-showers, 522–524 COS-B satellite, 26 isotopic abundance anomalies in Cosmic Background Explorer (COBE), 15, 16, origin of, 515 376 isotopic abundances of, 500–502 DIRBE instrument of, 11, 12, 13 differences from cosmic abundances, 501 The Cosmic Century: A History of Astrophysics and isotropy and energy density of, 502–503 Cosmology (Longair), xiii, xiv, 3, 5, 48, 193 isotropy of Cosmic Microwave Background Radiation, 14–16, 17, as a function of energy, 502 99, 114, 115, 376, 759 net stream of cosmic rays and, cosmological fluctuations in, 16 503 dipole component of, 15, 16 underground muons and, 502 distortions from a perfect black-body spectrum, 257 isotropy of ultra-high energy cosmic rays, due to energy injection after the recombination 529–531 era, 257 local energy density of, 503 due to energy injection prior to the compared with other local energy densities, 503 recombination era, 257 observation of the highest energy, 524–529 limits to, 259 origin of the light elements in, 507–515 motion of the Solar System relative to, 15, 16 abundance differences compared with cosmic radiation temperature of, 15 abundances, 507 Sunyaev–Zeldovich distortions of, 114, 115, 259 overall statistics for, 493 cosmic ray astrophysics, 27–32 particle detectors in space observatories, extensive air-showers, 29 493 from space and from the ground, 30–32 Solar System abundances of the elements, 496–497, history of, 27–30 499 ionisation of the atmosphere with increasing source abundances compared with the local altitude, 28, 29 Galactic abundances, 511, 512

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

837 Index

correlation with first ionisation potential, 513 fluctuations in, due to large-scale clustering, 732, first ionisation potential and, 511 733, 736 spectrum of, 212 for irregular/peculiar/merger systems, 733, 736 transfer equation for light nuclei, 507–512 for spheroidal and spiral galaxies, 733, 736 ultra-high energy, 31 in infrared K-band, 733, 736 anisotropies in distribution of, 31 in U, B, R, I and K wavebands, 736 cut-off at very high energies, 32 problems of determining, 731 variations in the chemical composition of cosmic counts of galaxies and active galaxies, predicted, rays with energy, 513–515 715 boron-to-carbon ratio, 513, 514 at submillimetre wavelengths, 740–742 chromium-to-iron ratio, 513, 514 normalised differential counts, 741, 742 cosmic rays and the discovery of new particles, 29–30 Euclidean, 715–716 charged and neutral kaons, 30 differential, 716 mesotron, 29 integral, 715 muon, 30 for standard world models, 716–731 pion, 30 for sources with power-law spectra, 718 positron, 29 infrared counts for galaxies, 730 strange particles, 30 normalised, differential, 718 cosmic rays in the atmosphere, 292–297 optical counts for galaxies, 729–731 electromagnetic cascades, 292–294 slopes of integral and differential, 718 formation rate and half-life of 14C, 295 counts of infrared and submillimetre sources, formation rate and half-life of 3H, 295 737 nucleonic cascades, 292–294 convergence of, at mid-infrared wavelengths, 740 path-length for nuclear interaction, 293 IRAS galaxies pion production, 292–293 excess of faint sources, 737 radioactive nuclei produced by cosmic rays in the Spitzer Survey atmosphere, 294–297 excess of faint sources, 737 formation of carbon-14 14C, 294 submillimetre wavelengths, 742 formation of tritium 3H, 294 excess of faint sources, 743 residence time in atmosphere, 295 counts of mid and far-infrared sources, 740 secondary fluxes of relativistic electrons, 294 counts of radio quiet , 591, 592, 724 vertical fluxes of, 295 counts of submillimetre sources, 740–743 vertical fluxes of at different heights, 293 counts of X-ray sources, 725–729 cosmic rays, solar evidence for evolution of the source populations, underabundances correlated with first ionisation 727 potential, 511 hard X-ray energies, 2−10 keV, 602, 727, 729 cosmic star formation rate history of, 725 maximum at redshifts z ∼ 1−2, 748 problems of interpretation, 727 problem of dust extinction, 745 soft X-ray energies, 0.5−2 keV, 727 submillimetre determinations of and the integrated X-ray background emission, as a function of redshift, 745 728 cosmic web, 101 soft X-ray energies, 0.5–2 keV,727 cosmological aspects of high energy astrophysics, Crab Nebula (M1, NGC1952), 409, 549, 586, 644, 704 714–752 pulsar in, 379 cosmological distance ladder, 758, 759 critical density for degenerate gas, 396 Coulomb’s law of electrostatics, 157 critical angular frequency for synchrotron radiation, relativistic transformation of, 136–139 207, 208 counts of active galaxies critical brightness temperature, 263, 264 evolution in infrared waveband, 740 critical cosmological density, 127 counts of extragalactic radio sources, 720 in with finite mass, 125 excess of faint radio sources, 720 critical density evidence for strong cosmological evolution, 720 for common ions, 342 counts of galaxies, 731–737 critical density for stabilisation in degenerate neutron excess of faint blue galaxies, 732, 733 gas, 402 and starburst galaxies, 733, 737 critical density for star formation, 750 of, 733–737 critical Fermi momentum pF, 402

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

838 Index

critical frequency for synchrotron radiation, 201, 211, dead stars, 378–442 212, 218, 223 Debye length, 298–300, 302, 446 crossing time, 107 as shielding distance in plasma, 299, 300 crossing time τcr of star or galaxy in a cluster, 153 decay of binary orbits and gravitational waves, Cryogenic Dark Matter Search (CDMS II), 127 32 current sheets, 323 declination (Dec or δ), 753 curvature of space-time in general relativity, deflagrations, 383 430 degeneracy pressure, 394 curvature radiation, 201, 428 condition for use of relativistic equation of state, cusp catastrophe, 120 396 cyclotron absorption features in accreting X-ray conditions under which important, 395, 396 sources, 197, 198, 405 degenerate gas magnetic field estimates from, 197 non-relativistic equation of state for, 395, cyclotron absorption features in isolated neutron star, 396 197 relativistic equation of state for, 397 magnetic field estimates from, 198 of electrons, 397 cyclotron radiation, 195–198 of neutrons, 397 broadening of spectral lines of, 196 degenerate stars circular polarisation of, 197 internal structure of, 394–397 geometry of magnetic field configuration and, dendrochronology, see tree-ring-dating 197 density parameter magentic field estimates from, 197 for stars in the Universe, 98 harmonics of gyrofrequency, 196, 197 in baryons, 98 mildly relativistic, 196 density wave theory of spiral structure, 357, cyclotron radius of charged particle in magnetic field, 462 179 forcing mechanisms and, 357 depolarisation of polarised radio signals, see Faraday dark energy, 381 depolarisation dark matter, 123–127 detection of ultra-high energy γ -rays, 265 astrophysical and experimental limits, 126–127 detonations, 383 axions and, 125 deuterium formation in stars, 44, 54 baryonic, 123–125 neutrinos from, 44 black holes and, 123 differential rotation of , 353 limits to mass density from gravitational lensing, diffraction optics, 764 123 diffraction-limited telescopes, 764–770 brown dwarfs and baryonic, 123 diffusion coefficient D, scalar, 189 clusters of galaxies and, 99, 108, 109 diffusion coefficients for high energy particles in forms of, 123–127 fluctuations in magnetic field, 186 in clusters of galaxies, 108, 110 physical model for, 186–187 in early type galaxies, 122 diffusion of charged particles, 301–303 in galaxies, 77, 93 mean free path and, 301 and stability of disc galaxies, 93 diffusion time for magnetic field in a plasma, 310, MACHOs and, 125 311, 324 gravitational microlensing and, 124 diffusion-loss equation for high energy electrons, masses of dark matter particles, 126, 127 540–544 neutrinos with finite rest mass and, 125 distortions of the injection energy spectrum, non-baryonic, 125–126 540–543 searches for dark matter particles, 127 diffusion-loss equation for high energy particles, structure of, 122 189–192, 253 WIMPs and, 125 coordinate-space approach, 191–192 dark matter haloes of galaxies and clusters, elementary approach, 190 122 escape time, 253 Davis–Greenstein alignment mechanism, 374 including spallation gains and losses, catastrophic de Broglie wavelength, 279 loss of particles, radioactive decay, 192 de Vaucouleurs r 1/4 law for surface brightness, 82, source term, 253 105 statistical acceleration and, 252

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

839 Index

diffusive velocity, 326 Einstein coefficients for absorption and spontaneous dipole radiation, 158, 198, 199 and induced emission, 171, 220, 249 Dirac delta function, 160, 165, 300 Einstein radius, 117, 120 Fourier transform of, 165 Einstein ring, 117, 118 dispersion measure, 419 Einstein X-ray Observatory, 25, 70, 113 of pulsars, 344–345, 346 Einstein–de Sitter world model, 731 displacement four-vector, 136, 154, 781 electric dipole moment, 157 dissipation time-scale, 324 electrical conductivity of a fully ionised plasma, distance indicators, 757 303–304, 308, 323, 324 problems of using, 757 dissipation of energy and, 323 distance measure D, 716 Drude model for, 300, 303, 304 distances in astronomy, 9, 755–759 including effect of electron–electron collisions, astrophysical methods, 757, 759 304 Baade–Wesselink method, 758 Lorentz approximation for, 303 gravitational lenses, 759 electrical conductivity of metals Sunyaev–Zeldovich effect, 758 typical values for, 304 using distance indicators, 757 electromagnetic field Doppler shift formula, relativistic, energy density of, in a medium, 267 238 Electromagnetic Processes (Gould), 129 ‘drop-out’ galaxies, 736, 737, 744 electromagnetic showers, 265, 272–275 Drude model, see electrical conductivity of a fully critical energy Ec for, 273, 274 ionised plasma, Drude model for degradation of energy by ionisation losses at low dust, see interstellar dust energies, 273 dust emission in millimetre and submillimetre degradation of energy through the atmosphere, waveband, 16 273 dust extinction of galaxy spectral energy distribution, properties of, 275 739 simple model for, 272, 273 dust shells about giant stars, 74 total number of particles with depth through a dwarf novae, see cataclysmic variables, dwarf novae medium, 274 dynamical friction, 131, 151–153 electromotive force, 181, 305, 306 clusters of galaxies and, 153 electron cyclotron radiation features in the X-ray galaxies and, 153 spectra, 469 globular clusters and, 153 electron degeneracy pressure, 68, 76, 378 limits to collision parameters and, electron scattering, see Thomson scattering, 460, 461, 152 462, 659 regular clusters of galaxies and, 153 electron–photon cascades, see electromagnetic dynamical time-scale of a star, 41 showers dynamics of a charged particle in a magnetic field electron–positron annihilation line from the direction with small scale fluctuations, 186 of the Galactic Centre, 278 electron–positron pair production, 270–272 early-type galaxies, 78, 80 cross-section at intermediate photon energies, mass distribution in, 122 271 Earth’s magnetosphere, see magnetosphere of Earth cross-section in the ultrarelativistic limit, 271 eclipsing X-ray binary with stellar mass black hole, impossibility in free space, 271 439 radiation length for, 271 eddies, turbulent, 454 similarity of radiation length for bremsstrahlung Eddington limiting luminosity, 71, 413, 445–447, 449, and for, 271, 272 450, 454, 461, 462, 469, 470, 473, 478, 483, electron–positron annihilation, 275–278 490, 612, 634, 636, 656, 657, 658, 671 annihilation at rest or in flight, 277 effective aperture of an antenna, 775, broadening of γ -ray lines, 277 779 cross-section for Teff , 35, 48 in extreme relativistic limit, 277 of relativistic gas, 218 thermal electrons and positrons, 278 Effelsberg 100 m radio telescope, 371 maximum and minimum energies of photons, 277 8–10 metre optical-infrared telescopes, 7 of positronium atoms, 277 Einstein angle, 118, 120 electron–positron annihilation line, 290, 291

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

840 Index

elliptical galaxies luminosity-dependent density evolution, 723, 724 as triaxial systems, 93, 94 radio-quiet quasars, 724–725 stability of, 94 evolution of galaxies and active galaxies with cosmic constancy of velocity dispersion with radius, 95 epoch, 714–743 dark matter in, 94, 95 mid and far-infrared number counts, 737–740 flattening not due to rotation, 93, 94 active galaxies, 715, 720–729 mass-to-luminosity ratios for, 93 extragalactic radio sources, 720–724 rotation along minor axis, 93 radio-quiet quasars, 724–725 rotation of, 94 X-ray clusters of galaxies, 729 variation of ellipticity with radius, 93 X-ray sources, 725–729 emission from the Earth’s atmosphere Tatm, 779 brief history of evidence for, 714–715 emissivity κν , 170 co-evolution of stellar and black hole properties of in terms of elementary atomic processes, 171 galaxies, 715 emissivity of telescope in infrared waveband, 775 counts of galaxies, 731–737 encircled energy fraction, 768, 769 counts of galaxies and active galaxies, 715 for circular mirror with central hole, 772 Euclidean source counts, 715–716 with varying wavefront errors, 770 for standard world models, 731 end-points of , 76 submillimetre counts of dusty galaxies, 740–742 energies counts of galaxies and active galaxies, predicted useful conversion formulae, 780 for standard world models, 716 useful conversion formulae for hot bodies, 781 submillimetre number counts, 740 useful conversion formulae for photons, 781 stellar and gaseous components of galaxies, 714 energy dissipation rate by viscous forces, 456, 457 submillimetre number counts, 743 energy generation, 47 V/Vmax or luminosity–volume test, 718–719 energy loss processes for high energy electrons, excess of faint blue galaxies 536–540 irregular nature of, 737 adiabatic losses, 538–539 , 66, 68 bremsstrahlung, 537 Doppler technique for discovering, 66 inverse Compton scattering, 539–540 highly elliptical orbits of, 68 ionisation losses, 537 Jupiter mass planets very close to parent stars, 68 synchrotron radiation, 496, 539 occultation technique for discovering, 67 energy transport in stars, 45–47 problems of accounting for orbits of, 68 enthalpy per unit mass, 315 EXOSAT X-ray telescope, 449, 480, 483 for perfect gas, 316 explosive nucleosynthesis, 65 entropy of plasma extensive air-showers, 293 conservation of, 308 extinction equation of hydrostatic support, 103, 451 role of absorption and scattering, 347–350 equation of mass conservation, 103 extinction by interstellar dust grains, 9, 11 equation of state of stellar material, 40, 47, 52 extinction coefficient, 9 equations of stellar structure, 47–50, 397 extinction curves, 347 equidistant azimuthal polar projection, 7, 755, extinction efficiency Q, 348, 349 756 extragalactic radio sources, 661–680 equivalent current loop for particle gyrating in luminosity function of magnetic field, 181 evolution with cosmic epoch, 720–724 equivalent noise temperature Tn, 777 Extreme Ultraviolet Explorer (EUVE), 22, 23 EROS project, 125 ESO-SERC Southern Sky Survey, 99 Euler’s constant, 168 Faber–Jackson relation and fundamental plane, 87–88 evolution of active galaxies with cosmic epoch, and the distances of galaxies, 88 720–729 Faraday depolarisation, 346–347 extragalactic radio sources, 720–724 Faraday rotation of linearly polarised radio signals, ‘luminosity evolution’, 720 345–347, 369–371 cut-off of strong evolution beyond redshift direction of magnetic field and, 346 z ∼ 2−3, 723 estimates of the Galactic magnetic field and, 346 for sources with steep and flat radio spectra, 720, refractive indices of elliptically polarised waves, 722 345

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

841 Index

right- and left-handed elliptically polarised waves, stability criterion for, 59 345 fundamental plane, 87–88 rotation measure, 346 Fermi energy, 402 (Binney and Merrifield), 77 Fermi momentum of a degenerate Fermi gas, 397 Galactic centre, 753, 754, 755 Fermi–Dirac distribution, 397 Galactic coordinates, 753, 754, 755 Fermi–Thomas model of the atom, 174 Galactic Dynamics (Binney and Tremaine), 77 filling factor, 341 Galactic equator, 754 fine structure constant, 135, 167, 229, 400 Galactic latitude (b), 754 Finkelstein coordinates, 433 Galactic longitude (l), 754, 755 FIRAS instrument of the Cosmic Background Galactic magnetic field, 225, 369–377 Explorer, 259 aligned with local spiral arm, 374 first adiabatic invariant, 182 Faraday rotation in the , first point in Aries, 753 369–371 fluctuations in black-body radiation, 777 large fluctuations in, 369, 370 fluctuations in the Cosmic Microwave Background large-scale order in, 369, 370, 374 Radiation, 749 magnetic flux density from pulsar rotation fluctuations per mode in black-body radiation, measures, 226 778 mean magnetic flux density, 377 Fluid Mechanics (Landau and Lifshitz), 314 North Polar Spur and, 374 flux densities, luminosity, magnitudes and colours in optical polarisation of starlight, 371–374 astronomy, 760–764 radio emission of spinning dust grains and, 374–376 flux density, 762 radio emission of the Galaxy and, 377 bolometric, 762, 763 summary of the information on, 377 definition of, 760 Zeeman splitting of 21-cm line radiation and, 377 Fokker–Planck equation for stars in clusters, 105 Galactic north pole, 754, 755 fold catastrophe, 120 Galactic south pole, 754, 755 forbidden transitions in spectra of gaseous nebulae, galaxies, 77–98 342–343 barred spiral SB, 78 critical density for, 342 collisions between, 79 metastable energy levels and, 342 colour–luminosity relation for elliptical galaxies, 88 radiative de-excitation and, 342 elliptical E, 78 Formation of Stars (Stahler and Palla), 361 ellipticities of, 78 48-inch Schmidt Telescope Palomar Sky Survey further correlations among the properties of (POSS), 99 galaxies, 86–89 four-dimensional momentum space Faber–Jackson relation and fundamental plane, volume element of as a Lorentz invariant, 250 87–88 four-frequency K, 782 mass– relation for galaxies, 88–89 four-momentum P, 782 Tully–Fisher relation for spiral galaxies, 87 four-velocity U, 782 gas phase metallicity–luminosity relation for Fourier analysis, 771–774 late-type galaxies, 88 addition theorem, 771 Hubble sequence, 78–80 convolution theorem, 771, 772 interactions between, 99 Fourier transformation, 162, 163, 184, 200, 201, 202, irregular, 78 211 large-scale distribution of Fraunhofer diffraction, 766 holes and voids in, 101 for circular aperture, 767, 768, 769 sheets and filaments in, 101 encircled energy fraction, 768 lenticular or S0, 79 for circular mirror or lens, 767 luminosity density of the Universe due to, 97 for rectangular slit, 766 luminosity function of, 95–98 for single slit, 766 mass–metallicity relation for galaxies, 88, 89 free-fall velocity in general relativity, 431 mass-to-luminosity ratios for spiral galaxies, 92, 93 free–free emission, see bremsstrahlung masses of, 89–95 frequencies of galaxies of different types, 736 mean number density in the Universe, 97 in different galactic environments, 732 mean separation in the Universe, 97 fully convective stars normal spiral S, 78

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

842 Index

galaxies, (cont.) γ -ray line emission, 27 passive evolution of, 730 Cherenkov detection technique, 27 importance of red giant branch, 730 detectors for, 26 peculiar, 79 gauge selection in electrodynamics, 160 red and blue sequences, 80–85 Gaunt factor, 110, 111, 168, 302, 304 ring, 80 for diffusion of particles in a plasma, statistics of galaxies belonging to red and blue 302 sequences, 85 for electrical conductivity of plasma, surface brightness distributions of, 81, 85 302 discs, 82, 84 frequency averaged, 168 spheroids or bulges, 82, 84 Gauss’s theorem for Newtonian gravity, 92, ‘tuning fork’ diagram for, 78 119 Galaxies in the Universe: An Introduction (Sparke and Gaussian point-spread function, 768 Gallagher), 77 Gemini Deep Deep Survey, 747 galaxies, old red, 736 Gemini North telescope, 440 Galaxy general relativity, 430–433 dark matter in, 356 dynamics of particles about point mass, mass of, 759 431 radio emission of, 224–227 GEO600 experiment, radio disc, 224 33 thickness of radio disc, 225 geodesic distance, 430 rotation curve of, 353, 355 giant branch, 37, 39, 49, 61, 69, 73, 74 Galaxy Formation (Longair), xiii, xiv, 78, 100, 118, giant molecular clouds, 311, 362–364 127, 759 formation of, 356 galaxy formation in spiral density waves, 357 collisions between galaxies and, 749 percolation processes and, 357 ‘down-sizing’, 749 supernova explosions and, 357 feedback mechanisms and, 749 globular clusters, 39, 69 growth of supermassive black holes and, in M49, 94, 95 749 in M49 and M87, 94 Lyman-break galaxies oldest, 70 multicolour technique for discovering, typical parameters for, 153 744 Goldstake solar neutrino experiment, 32 observed global star formation rate, 743 GOLF experiment of the ESA SOHO mission, star-forming galaxies and, 743 52, 53 starburst galaxies at large redshift, 743 Gran Sasso Laboratory, in Central Italy, 57 star and element formation and, 746 grating telescope, 773 star formation and, 749 gravitational deflection of light rays, 120 GALLEX solar neutrino experiment, 32, 57 by the Sun, 117 γ -ray background emission collision parameter for, 117 Comptonisation and, 729 gravitational fine structure constant, 400 spectrum of, 728 gravitational lensing by galaxies and clusters of γ -ray bursts, 27, 384 galaxies, 99, 116–122, 759 γ -ray luminosity of the Galaxy, 504 caustics and cusps in, 120 γ -ray observations of the Galaxy, 493, 503–506 cluster masses from, 120 distribution of cosmic rays in the Galaxy and, critical surface density for, 119 503–506 distortion of background images by, 120 pion production and, 503 galaxy–galaxy imaging and, 122 cross-section for, 504 necessary conditions for, 119 relativistic bremsstrahlung of ultra-relativistic gravitational lensing, strong, 122 electrons, 504, 506 gravitational lensing, weak, 122 spectrum of γ -rays produced by inverse Compton Gravitational Lensing: Strong, Weak and Micro scattering of starlight, 504, 506 (Schneider, Kochanek and Wambsganss), spectrum of γ -rays produced from neutral pion 118 decay, 504, 505 gravitational relaxation time τr, 152–153 γ -ray waveband, 25–27, 504 grazing incidence optics, 22, 23

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

843 Index

Great Observatories Origins Deep Survey (GOODS), hierarchical models of galaxy formation 733, 734, 745 old red galaxies and, 747 grey-body spectrum, 739 High Energy Astrophysics (Longair), xiii Grotrian diagram, 342 high energy astrophysics group velocity, 344 definition of, 3 guiding centre, 193, 208 high energy astrophysics and modern physics and guiding centre motion, 179, 182, 184, astronomy, 3–4 186 high energy electron energy spectrum in the local gyration radius of cosmic ray protons in magnetic interstellar medium, 543–544 field, 502 high mass X-ray binaries, 485–486 gyrofrequency, 179, 344, 345 capture, or accretion, radius for stellar wind, 485, non-relativistic, 179, 195, 201, 202, 208, 486 209 O and B stars in, 485 relativistic, 193, 196, 201, 211, 214 properties of, 485 gyroradius, 179, 184 X-ray luminosity due to accretion, 486 and rigidity R, 185 Hipparcos astrometric satellite, 36, 757 gyroscopic precession about rotating black holes, Homestake gold-mine, South Dakota, 55 435 homologous stellar models, 47–48, 68 energy generation rates, 47 Hammer–Aitoff projection, 8, 9, 12, 13, 15, 18, 23, inadequacies of, 48 26, 755, 756 horizontal branch, 39, 40, 69, 73 Handbook of Space Astronomy and Astrophysics evolution of stars on, 73 (Zombeck), 129 mass loss and, 39 hard low mass X-ray binary stars, 278 hot gas in clusters of galaxies Harvard spectral classification system, 37 absence of cool gas in, 113 spectra of main sequence stars in, 37, associated with heating by radio lobes, 38 114 Hawking radiation, 438 models to explain the, 114 Hayashi tracks, 59–61, 64 abundance of iron, 110 for fully convective stars, 60 characteristic cooling time for, 111 HEAO-1 X-ray Observatory, 725 cooling flows and, 110–114 HEAO-A2 experiment, 169 cooling flows in, 112 HEAO-C satellite, 27 mass inflow rates of, 113 HEAO-C2 cosmic ray experiment, 497 cooling time of, 112 HEAO-C3 cosmic ray experiment, 499, 500 distribution of, 109–114 heat diffusion equation, 45 iron line Fe xxvi from, 109 Heisenberg’s uncertainty principle, 135, 139, 279, sound waves in, 114 339, 394, 395, 396 HR diagram for stars, see Hertzsprung–Russell helioseismology, 51–54 diagram acoustic or p-modes, 51 Hubble Deep Field, 714, 732, 736, 743, 744 gravity or g-modes, 51 Hubble sequence of galaxies, 77, 78–80, 86 probing the structure of the Sun and, 51–54 correlations along, 86–89 helium luminosity function of H ii regions, 87 primordial nucleosynthesis of, 54 neutral hydrogen, 86 cosmic abundance of, 40 star formation rates and, 87 helium burning, 64, 72 total surface density and surface density of helium flash, 73, 401 neutral hydrogen, 87 helium shell burning, 64 Hubble Space Telescope, 19, 71, 74, 78, 118, 122, Herbig–Haro (HH) objects, 364, 366 365, 379, 385, 392, 393, 578, 600, 603, 615, Hertzsprung–Russell diagram, 35, 36, 37, 38, 39, 49, 618, 654, 663, 692, 693, 706, 714, 732, 733, 59, 63, 64, 66, 68, 69, 70, 73, 74 770, 771, 772, 777 for clusters of stars, 39 Hubble Ultra Deep Field (HUDF), 714, 732, 733, 734, for white dwarfs, 402 736, 737, 744, 745, 762 theorist’s, 68, 69 Hubble’s constant, 759 HESS Cherenkov γ -ray array, 27 from Sunyaev–Zeldovich effect, 115 Hess ultra γ -radiation, 28 Hubble Space Telescope Key project, 759

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

844 Index

Hubble’s constant, (cont.) two-element, 771 measured from power spectrum of fluctuations in power polar diagram of, 773 Cosmic Microwave Background Radiation, interferometry and synthesis imaging, 771–774 759 internal energy per unit mass, 315 Huygens’ principle, 765 International Linear Collider (ILC), 125 Huygens’ construction, 266, 269 International Ultraviolet Explorer (IUE), 22, 71, 338, Hydrodynamics (Lamb), 51 392, 638, 647, 651 hydrogen interplanetary magnetic field, 303 ionisation potential of, 42 interstellar chemistry, 21, 145, 338 hydrogen recombination lines from warm component interstellar dust, 347–353 of the interstellar gas, 341 217.5 nm absorption feature, 350 hydrogen recombination lines in gaseous nebulae, associated with π → π ∗ transitions, 350 341–342 condensed matter physics of, 373 Hβ line of the Balmer series, 341 cross-section for scattering and absorption, 348 very high order transitions, 342 diffuse interstellar bands and, 348, 350 hydrogen shell burning, 64 electric charging of, 372–373 hydromagnetic waves, circularly polarised, 188 coupling of grains and neutral particles through, hydrostatic equilibrium, 39, 47, 109 373 hydrostatic support, equation of, 40 electric dipole moments of, 375 emissivity of heated, 351 IMB solar neutrino experiment, 32 extinction law for, 347–348 impedance of free space Z0, 157 formation of interstellar molecules and, 350 Infrared Astronomical Satellite (IRAS), 10, 13, graphite grains and, 350 74 heavy elements in the interstellar medium and, 347 infrared cirrus, 13 Mie theory of scattering and absorption, 348, 349 infrared luminosity function of galaxies obscuration in our Galaxy and, 347 evolution of, 739, 740 optical depth for, 347 Infrared Space Observatory (ISO), 737 ratio of total to selective absorption RV , 347 infrared waveband, 9–14 reddening, 347, 348 all-sky images in, 11–14 reradiation of heated, 351 emission by dust grains at thermal infrared star formation and, 351 wavelengths, 12, 13 rotation frequency–grain radius relation near-infrared wavelengths in, 10 for different phases of the interstellar medium, observing it, 9–11 375 thermal infrared wavelengths in, 10 rotation speed of dust grains, 372–373, 375 wavelength windows in, 10 rotation speed of PAH molecules, 375 initial mass function for stars, 361–362 selective absorption, 347 Miller and Scalo, 361 shielding of molecules by, 359, 363 Salpeter, 361 silicate absorption features at 9.7 and 18 µm, 348, inner Lagrangian point, 465, 467, 468, 475, 481, 350 486 size parameter, 348, 349 instability strip, 73 small grains in, 350 instantaneous rest frame, 158 transient heating of, 350 INTEGRAL γ -ray observatory, 27, 197, 257, 278, sublimation temperature of, 347, 352 288, 289, 292 water ice feature at 3.1 µm, 350 intensity of radiation Iν , 170 wide range of grain sizes present in, 350 definition of, 760 interstellar gas interactions of high energy photons, 228–278 average properties of, 333 intercloud medium, 342 cooling mechanisms, 358–359 intercombination lines, 342 bound–bound or bound–free emission, 359 interferometer bremsstrahlung, 359 eight-element in gaseous nebulae, 359 power polar diagram of, 773 interstellar dust emission, 359 four-element low lying energy levels of common elements, power polar diagram of, 773 359 grating telescope, 773 molecular line emission, 359

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

845 Index

diagnostic tools of radio, infrared and optical photons, 243 21-cm line emission and absorption, 333–335 similarity of loss rate to synchrotron loss-rate, 241, column depth from X-ray absorption, 340 261 dispersion measure of pulsars, 344–345 spectral index of radiation of a power-law Faraday rotation of linearly polarised radio distribution of electron energies, 241 signals, 345–347 spectrum of scattered radiation by a single electron, ionised interstellar gas, 340–347 241, 242 molecular radio lines, 335–338 total energy loss rate of, 241 neutral interstellar gas, 333–340 inverse square laws of electrostatics and gravitation, optical and ultraviolet absorption lines, 338–339 151 permitted and forbidden transitions in gaseous ion-acoustic instability, 328 nebula, 340–343 ionisation loss formula thermal bremsstrahlung, 340 adapted for radiation damage density, 147 X-ray absorption, 339–340 ionisation losses, 292, 301, 358 heating mechanisms, 357–358 ionisation losses of electrons, 145, 146 collisions of old supernova shells, 357 maximum energy transfer per interaction, 146 cosmic rays and, 358 ionisation losses of protons and nuclei, 131–153 ionisation rate by ionisation losses, 358 average energy loss per unit path length, 133 other types of, 358 Bethe–Bloch formula, 140–141 supernova explosions, 357 cancer therapy and, 145 ultraviolet radiation of hot stars, 358 density effect, 141 hot component of, 357, 358 effects of polarisation of medium, 141 overall picture of, 353–361 energy spectrum of ejected electrons, 135 large scale dynamics, 353–357 heating of giant molecular clouds and, 131, 145 thermal instabilities, 361 lower limit bmin to collision parameters condition for, 360–361 classical limit, 134 interstellar gas and magnetic fields, 331–377 quantum limit, 134 interstellar medium mean energy loss rates in different materials, 142, phases of, 359, 360 143 cold neutral medium, 360 minimum loss rate, 141, 142 coronal gas, 360, 361 non-relativistic treatment, 131–136 diffuse clouds, 360 nuclear emulsions and, 146 giant molecular clouds, 360 number of ion–electron pairs produced, 145 H i clouds, 360 particle detectors and, 131 intercloud medium, 360 practical forms of the ionisation loss formulae, two-phase model for, 361 141–145 interstellar medium and the life cycle of stars, range R and, 143, 144 333 relativistic treatment, 136–141 interstellar molecules, 20 stopping power, 142 hydroxyl molecule OH, 20 straggling, 144 line emission of, 16 upper limit bmax to collision parameters, An Introduction to the Ionosphere and Magnetosphere 133 (Ratcliffe), 305 ionisation potential I , 135, 142 invariant four-volume, 240 IRAM millimetre interferometer, Plateau de Bure, invariant four-volume in four-momentum space, 240, 365 250 IRAS galaxies, 741, 742 inverse β-decay, 385, 401, 404 IRAS infrared observatory, 353, 714, 737 inverse Compton scattering, 237–243, 244, 260, Irvine–Michigan–Brookhaven (IMB) neutrino 490 experiment, 389 average energy of scattered photons, 242 ISAAC infrared spectrograph of the ESO VLT, 441 derivation of formulae for, 237–243 isothermal carbon core, 64 energy density of radiation in moving frame, isothermal gas spheres, 102–106, 119 238–240 core radius, 104 geometry of, 238 projected, 104 maximum energy of scattered photon, singular, 119, 120 242 structural index, or structural length, 104

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

846 Index

isothermal gas spheres, (cont.) formation of Wien peak, 253–255 tidal radius of, 105 induced scattering and, 250 truncated, 105 Monte Carlo solutions of, 254 isothermal helium core, 63 photon conservation and, 251 power-law solutions of, 255–257 Jacobian for transformation between inertial frames of recoil effect and, 251, 255 reference, 240 recoil effect and induced scattering, James Clerk Maxwell Telescope (JCMT), 14, 252 742 solutions for ω kT, 253 James Webb Space Telescope (JWST), spectra of X-ray sources and solutions of, 11 253–257 Jansky (Jy), 760 Kramers opacity, 460, 461 Jeans’ instability, 368 Kruskal coordinates, 433 fragmentation within giant molecular clouds, Kuiper Airborne Observatory, 14, 359 368 in molecular clouds, 368 Lagrangian formulation of classical dynamics, time-scale for collapse, 368 182 Jeans’ length, 368 action integral in, 182 Jeans’ mass, 368 CDM model of galaxy and structure formation, Jet Propulsion Laboratory, 391 749–752 Jupiter, mass of, 66, 759 problems with accounting for Faber–Jackson relation and K-correction, 716, 732 Tully–Fisher relation, 752 K20 sample of galaxies, 736, 747 Lane–Emden equation, 103, 398 very red galaxies in, 748 Laplace’s equation, 425 Kamiokande neutrino experiment, 32, Large Hadron Collider (LHC), 125 389 Large Magellanic Cloud, 125 Keck 10 metre telescope, 736 distance from observations of SN 1987A, Kelvin–Helmholtz instability, 320 392 Kelvin–Helmholtz time-scale, 43 Larmor’s formula for radiation of accelerated electron, Kepler’s third law of planetary motion, 92, 158, 232, 374, 376 356 laser emission, 778 Keplerian orbits, 451, 452, 456, 457, 630 Laser Interferometer Gravitational-Wave Observatory Keplerian velocity, 454, 456, 457, 463, 471, (LIGO), 33 472 last stable circular orbit, 432, 433, 436 Kerr black holes, 434 late-type galaxies, 78, 80 maximum energy release, 436, 445 Lectures on Physics, Vol. III (Feynman), Kerr metric, 434, 435 247 kinetic energy per nucleon, 180 Leiden–Berkeley Deep Survey (LBDS), ionisation losses and, 142 723 King profiles for mass distribution in clusters, 105, Lexan polycarbonate, 147, 148 107 Lienard-Weichert´ potentials, 161, 200, 202, Kirchhoff’s law, 340 266 Klein–Nishina cross-section, 237, 264 doppler shift factor in, 202, 203 Kompaneets equation, 246, 250–257, 259, lifetimes of stars of different mass, 260 361 ‘current’ of photons in phase space and, technique, 385 251 light, L, group of elements, 508 diffusion coefficient for photons in phase space, light-year, definition, 756 252 line blanketing, 88 diffusion of photons in phase space and, Lockman Hole survey field, 725 252 long period variables, 73 expansion to higher orders in ∂n/∂x, Lorentz factor γ , 139, 141, 146, 178, 180, 193, 211, 259 222, 293, 431, 502, 781 formation of power-law spectrum by thermal Lorentz force, 178, 183, 425 processes, 255 Lorentz gauge, 160

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

847 Index

Lorentz transformations, 155, 781 magnetic buoyancy, 321–323 inverse, 140, 239 formation of magnetic loops and, 323 Lorentz transforms for electric and magnetic fields, in a plane-parallel stratified atmosphere, 322 137–139, 194 magnetic dipole radiation, 422, 425, 427 low mass X-ray binaries, 479–484, 490 pulsars and, 408 accretion disc corona, 480, 481 magnetic field fluctuations in interplanetary medium dependence of observed properties on angle of power spectrum of, 184, 185, 187 inclination, 479 magnetic field, energy density of, 307 eclipses and ‘dips’ in X-ray light curves, 479 magnetic field, Galactic, 225 quasi-periodic oscillations (QPOs), 483, 484 magnetic fields models for, 484 in extragalactic radio sources, 18 thick absorbing screen about accretion disc, slowly varying, 180, 182 481 magnetic fields in our Galaxy, see Galactic magnetic X-ray burst sources (bursters), 481 field comparison of accretion and thermonuclear magnetic fields in supernova shock fronts, 574–576 runaway luminosities, 482 magnetic fluctuations generated by Alfven´ and properties of, 481 hydromagnetic waves in interstellar medium, Type I, 481–483 187–189 Type II, 483 physical model for, 187 X-ray colour–colour diagram for, 484 magnetic flux freezing, 304–314, 405, 425, 463 luminosity change of magnetic flux density with density of definition of, 763 plasma, 310 luminosity classes for stars, 37, 38 diffusion time for magnetic field in a plasma and, luminosity density of starlight in the Universe, 310 97 magnetohydrodynamic approach, 307–311 luminosity function of galaxies, 95–98, 719 physical approach, 305–307 for red and blue galaxies, 96 similarity to adiabatic motion of charged particles, luminosity density of starlight and, 97 183 mass-to-luminosity ratio magnetic lines of force for the Universe as a whole, 97 Faraday’s concept of, 321 Schechter, 96 magnetic flux freezing and, 305 break absolute magnitude M∗, 96 magnetic lines of force, reconnection of, see break luminosity L∗, 96 reconnection of magnetic lines of force written in absolute magnitudes, 96 magnetic mirroring, 181 useful statistics about galaxies, 97–98 in the Earth’s radiation belts, 181 luminosity function of stars, 361 magnetic moment µ of the current loop, 181 luminosity indicators for stars, 37, 38 Magnetic Reconnection (Priest and Forbes), 329 luminosity–temperature diagram for stars, see magnetic reconnection, see reconnection of magnetic Hertzsprung–Russell diagram lines of force luminous infrared galaxies magnetic Reynolds’ number, 311 evolution of, 740 ‘longitudinal’, 326 N1–015 Lundquist number and, 326 spectral energy distribution of, 739 magnetic rigidity, see rigidity R Lundquist number, 326 magnetic tubes of force, 322 Lyman continuum absorption, 22 magnetoactive medium, 345 Lyman limit for hydrogen, 22 magnetohydrodynamics aspects of, 298–329 Mach number, M, 316, 452, 454, 554, 570, 577, 579, derivation from microscopic description of particle 671 dynamics in a magnetic field, 184 Alfven,´ 575 equations of, 307–308 MACHO project, 124, 125 entropy equation, 308 MACHOs, 124 equation of continuity, 307 mean mass of, 125 force equation, 307 Magellanic Clouds, 446, 447 Maxwell’s equation, 307 , 418–419 Ohm’s law, 308 magnetic fields in, 419 magnetopause, 320

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

848 Index

magnetosheath, 321 Maxwellian velocity distribution, 168 magnetosphere of Earth, 319–321, 323 McGill pulsar group, 419 collisionless plasmas in, 321 mean free path, 454 collisionless shocks in, 321 for pitch angle scattering, 186 plasma wave interactions in, 321 of particle in a plasma, 301 magnetopause, 320 of a proton in the interplanetary medium, magnetotail, 320 303 neutral sheet, 320 mean free time between particle collisions in a plasma sheet, 320 plasma, 303 shock wave discontinuity in, 321 Medium Deep Survey of galaxies (MDS), 736 magnetotail, 320, 323 medium, M, group of elements, 508 magnitude metallicity Z, 68, 69, 88 absolute, definition of, 763 metals, 40 apparent, definition of, 760 meteorites, 148–151 bolometric absolute, definition of, 763 constancy of the flux of cosmic rays and, 151 bolometric apparent, definition of, 762 exposure ages of, 151 magnitudes in optical and infrared astronomy, fossil tracks of cosmic rays and, 148–150 760 Galactic cosmic rays and, 149, 150 main sequence, 36, 37, 38, 39, 40, 44, 48, 49, 50, 61, history of Solar System and, 148–151 62, 63, 68, 69, 70, 71, 764 Solar cosmic rays and, 149, 150 main sequence termination point, 39, 68, 73 Mg2 index, 88 main sequence lifetimes of sun and stars, 50 correlation with (B–V) colour, 88 Mariner 4, 184, 185 microquasar, 440 maser action of interstellar molecules, 21 Mie theory of scattering and absorption, 348, 349 maser emission, 778 Mikheyev–Smirnov–Wolfenstein (MSW) effect, 57, mass absorption coefficient for high energy photons, 58 271, 272 Milky Way, 755 mass conservation, equation of, 41 Millennium galaxy catalogue, 83, 97 mass function of a binary system, 414, 439 Millennium Simulation, 749, 751, 752 mass loss first quasar candidate, 751 formation of white dwarfs and, 378 Miller and Scalo initial mass function, 361, 362 quiescent, 70 millimetre and submillimetre waveband, 14–17 rates of for massive stars, 71 all-sky images in, 14–17 mass–luminosity ratio Cosmic Microwave Background Radiation in, 14 early-type galaxies, 122 molecular lines in, 14 mass–luminosity relation for main sequence stars, 36, observing in, 14 48, 50, 68 millisecond pulsars, 405, 417–418 mass–luminosity relation for stars, 361, as members of old galactic populations, 420 731 discovery of, 418 mass–metallicity relation for galaxies, 88–89 distribution in the Galaxy, 420 mass-to-luminosity ratio in globular clusters, 418 for the Universe as a whole, 97 limit to spin-up of, 418 for visible parts of galaxies, 98 location on P−P˙ diagram, 418 of elliptical galaxies, 97 magnetic fields in, 418 of spiral galaxies, 97 space velocities of, 420 masses in astronomy, 9, 759–760 spin-up of, 418 masses of galaxies, 89–95 minimum energy requirements for synchrotron masses of elliptical galaxies, 93–95 radiation, 549–552 from widths of absorption lines, 93, 95 Minkowski metric, 430 rotation curves of spiral galaxies, 92–93 MKK spectral classification system, 37 virial theorem for galaxies and clusters, 89–92 modified Bessel functions of order 2/3 and 1/3, 206 massive galaxies in clusters, 750 asymptotic expressions for, 210 Mathematical Theory of Black Holes modified Bessel functions of order zero and one, 164 (Chandrasekhar), 429 asymptotic values of, 164 Mauna Kea Observatory, Hawaii, 14 molecular hydrogen Maxwell’s equations in free space, 158 distribution in the Galaxy, 356

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

849 Index

molecular radio lines, 335–338 neutron capture γ -ray line at 2.223 MeV, 290, list of molecules identified by their, 335 291 maser action and, 335 neutron degeneracy pressure, 76, 378 molecular doubling processes and, 337 neutron drip, 403 rotational ladder of, 337 neutron production by (γ,n) interaction, 297 molecules in the interstellar gas, 335–338 neutron stars, 19, 68, 76, 311, 378, 401–406 acetylenic, 338 binding energy of, 379 CO as a tracer of molecular hydrogen, 337 cooling by neutrino emission, 421 discovery of, 335 diffusion time for magnetic field from, 311 electronic transitions of, 335 discovery of, 406–419 glycine, 338 ellipticity  due to rotation, 424 in large redshift quasars, 338 galactic population of, 419–420 list of known species, 335 in X-ray binary systems, 410–415 molecular hydrogen, 337 internal structure of, 401–406 rotational transitions of, 335 core region, 404 self-shielding, 337 inner crust, 404 shielding by dust, 337 inverse β-decay process and, 401 types of, 338 neutron liquid phase, 404 unsaturated, 338 outer crust, 404 vibrational transitions of, 335 superconductivity and superfluidity and, 404–405 momentum four-vector, 139, 140, 154 surface layers, 403 for electrons, 235 zones within, with increasing density, 403–404 for photons, 235, 275 magnetic dipole moment of, 408 momentum impulse, 132, 139, 165, 301 magnetic flux density of, 311 morphological classification of galaxies, 77–80 mass estimates in binary star systems, 416, 417, morphologies of clusters of galaxies, 99–102 439 Mount Hopkins Observatory, Arizona, 11 predicted surface temperatures, 421 muons rotating neutron superfluid and, 424 decay of, 293 pinning of quantised vortices in, 424 mean lifetime of, 293 quantisation of angular momentum, 424 test of relativistic time dilation and length rotation of, 405 contraction, 293 rotational break-up speed, 405 underground scale height of atmospheres of, 421 measurements of intensity and isotropy of thermal emission of, 421–422 cosmic rays from, 293 ‘truly isolated’, 422 X-ray emission from surfaces of, 421 negative pressure equation of state, 433 neutronisation, 402 neutral hydrogen Newton’s law of gravity, 759 21-cm line emission of, 20 Newton’s laws of motion, 759 21-cm map of the Galaxy, 20 Nobeyama Radio Observatory, 45 m millimetre distribution in the Galaxy, 356 telescope, 364 neutral sheets, 320, 324, 325, 327 noise power, 779 thickness of, 326 fluctuations of, 778 Neutrino Astrophysics (Bahcall), 54 in thermal equilibrium, 777 neutrino interactions noise temperature charged current interaction (CC), 57, 58, 59 of the receiving system Tsys, 779 elastic scattering (ES), 57, 58, 59 non-electromagnetic astronomies, 32–34 neutral current interaction (NC), 57, 58, 59 astroparticle physics, 33–34 neutrino oscillations, 57, 125 gravitational waves, 32–33 and solar neutrinos, 57, 58, 59 neutrino astrophysics, 32 in atmospheric µ neutrinos, 58 nonlinear diffuse shock acceleration, 579 in terrestrial neutrino experiments, 58 non-relativistic gyroradiation, 195–198 neutrinos energy loss rate by, 195 laboratory limits to the masses of, 125 linear and circular polarisation of, 195, laboratory limits to the number of species of, 126 214 neutrinos, solar, see solar neutrinos, 279 non-thermal emission, 5, 193

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

850 Index

non-thermal sources shell burning, 384 spectra of, 212 steady-state hydrostatic, 386–388 nonlinear diffuse shock acceleration, 576 synthesis of isotopes and, 386, 387 norm of four-vector, 161, 781 Nucleosynthesis and Chemical Evolution of Galaxies north celestial pole (NCP), 753, 754, (Pagel), 497 755 nucleosynthesis in massive stars, 378 North Polar Spur, 224, 374 nucleosynthesis, primordial, 123, 500 northern celestial hemisphere, 754 nucleus, radius of, 279 novae, 383, 478–479 Nyquist’s theorem, 777 nuclear γ -ray lines important, 292 OB supergiant mass-loss rates, 485, 486 nuclear cascades, 275 observability of the sky in different astronomical number of particles produced in, 281 wavebands, 5, 6 nuclear deflagration, 479 observations in cosmology for Friedman world models nuclear emission lines, 287–292 flux density–redshift relations 44Ti from supernova remnant Cas A, 289 for starburst galaxies in the submillimetre asymptotic giant branch stars, 288 waveband, 741, 742 collisional excitation of nuclei, 289–292 occupation number, 240, 246–250 cross-sections for, 289, 290 as a Lorentz invariant, 250 in the interstellar medium, 289, 290, 291 for Bose–Einstein distribution, 249 decay of radioactive isotopes, 287–289 for Planck distribution, 249 astrophysically important examples of, 287 in Rayleigh–Jeans region of Planck spectrum, conditions for observability of, 287–288 249 diffuse 26Al and 60Fe emission from the Galaxy, mean, 248 288 spontaneous and induced processes and, 246 diffuse 26Al emission from the Galaxy, 288 OH/IR stars, 73 explosive nucleosynthesis and, 288 old red galaxies, 746–749 supernovae and, 288 constancy of masses with redshift, 747 Wolf–Rayet stars and, 288 early formation of stellar populations of, 748 nuclear emulsions, 146 evidence for old stellar populations in, 747 development of, 146 evolving stellar mass density and, 747 discovery of elementary particle and, 146 massive, 746–749 silver bromide crystals, AgBr, 146 need for early starbursts, 748 nuclear energy generation rates in stars, selected in the K waveband, 747 43–45 star-forming galaxies at large redshift and, 748 nuclear interaction cross-section, 279, 281 stellar masses as a function of redshift, 747 nuclear interactions, 131, 279–297 ‘onion-skin’ chemical structure of massive stars, 65 cosmic rays in the atmosphere, 292–297 opacity κ of stellar material, 45–47, 48 high energy astrophysics and, 279–282 optical and infrared wavebands used in ground-based multiple scattering within nuclei, 279, 280 astronomy, 761 neutron production in, 280 optical and ultraviolet absorption lines, 338–339 nuclear emission lines, 287–292 curve of growth of, 339 nucleus–nucleus collision, 281–282 D lines of sodium, 338 pion and strange particle production in, 280, deficit of heavy element in the interstellar gas, 281 339 spallation cross-sections, 282–283 deuterium and, 339 spallation fragments, 280 Doppler broadening of, 339 nuclear interactions in the atmosphere equivalent width of, 339 mean free path for, 281 H and K lines of calcium, 338 nucleonic cascades highly ionised OVI and, 339 particle detectors and, 293 molecular hydrogen and, 339 total ionisation as a measure of energy of primary radiation or natural broadening of, 339 cosmic ray, 293 optical depth for radiation τ, 172 nucleosynthesis optical polarisation of starlight, 371–374 explosive, 386–388 alignment of interstellar grains and, 372–374 late stages of, in massive stars, 385 as a function of Galactic coordinates, 374

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

851 Index

degree of polarisation correlated with extinction, permittivity 372 relation to refractive index n, 267 maximum degree of, 371 Perseus Cluster of galaxies, 750 parallel to minor axis of grains, 372 Petrosian r-band luminosity, 85 optical waveband, 5–9 Petschek mechanism of magnetic reconnection, all-sky images in, 7–9 327 observing in, 5–7 phase space Orbital Astronomical Observatories II (OAO-II), 338 elementary volume of, 248 orbital migration, 68 photodisintegration of iron nuclei, 385 origin of cosmic rays in our Galaxy, 536–560 photoelectric absorption, 228–230 The Origin of the Chemical Elements (Tayler), 496 cross-sections for, 228–230 OSO III satellite, 26 spectra of X-ray sources at energies ε ∼ 1 keV, overdensity of galaxies about any galaxy, 84 228–230 OVRO Millimetre Array, 115, 116 photoelectric effect, 228 oxygen burning, 64 photoionisation cross-section for hydrogen atoms, 341 P(D) distribution, 725 photon loss processes P-Cygni profiles, 70–73, 478 summary of absorption coefficient for, 271 mass outflows and, 71 photon–photon collisions, 275 p-p chain, see proton–proton chain (p-p chain) as a source of opacity for high-energy γ -rays, paleogeomagnetic studies of Earth’s magnetic field, 276 296 cross-section for 2 Palomar 200-inch telescope, 7, 591 in the regimeε ¯ ≈ mec , 277 parallax-second (or , pc), definition, 755 in ultra-relativistic limit, 276 parallaxes, 757 threshold energy for electron–positron pair Parkes Radio Telescope, 410 production, 275–276 Parkes Selected Region (PSR) sample, 723 examples of, 276 Parseval’s theorem, 162–163, 269 physical constants in SI units, 780 applied to magnetic field fluctuations in The Physics of Fully Ionised Gases (Spitzer), 298, 302 interplanetary medium, 184 The Physics of Plasmas (Fitzpatrick), 298 spectral distribution of the radiation of an Physics of Shock Waves and High-Temperature accelerated electron and, 162–163 Hydrodynamic Phenomena (Zeldovich and partial spallation cross-sections, see spallation Raizer), 314 cross-sections, partial Pioneer missions of NASA, 312 particle–antiparticle annihilation, 275 pionisation, see cosmic rays in the atmosphere, pion Pauli exclusion principle, 126 production P˙ versus P diagram for pulsars, 410 pions ‘graveyard’ region of, 410 decay of, 293 as an evolutionary sequence for pulsars, 410 mean lifetime of, 293 death line for pulsars on, 410, 418 pitch angle, 193, 195, 196, 198, 201, 203, 206, 207, pulsar equivalent of the Hertzsprung–Russell 208, 213, 215, 222 diagram, 410 isotropic distribution of, 195, 213 peculiar galaxies, 79 pitch angle θ, 178, 179, 184 strong gravitational encounters or collisions, 79 pitch angle scattering, 187 tails associated with prograde encounter between physical model for, 184 galaxies, 80 Planck spectrum, 5, 170, 171, 246, 247, 248, 352, 459 Penrose process, 437 as a solution of Kompaneets equation, 253 perchloroethylene C2Cl4, 54 plane of the ecliptic, 753, 754 perfect gas law, 109 planetary nebulae, 73–74 permitted and forbidden transitions in gaseous nebula, central stars of, 74 340–343 evolutionary tracks for, 75 excitation by ultraviolet emission of hot stars, images of, 74 340 mass loss and, 74 photoexcitation and photoionisation, 340 mass loss events and the structures of, 74 temperature of emitting regions, Tgas ≈ T, 341, plasma frequency, 298–300, 344, 345 358, 359 angular, 298

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

852 Index

plasma physics changes in moment of inertia of neutron star and, aspects of, 298–329 422 elementary concepts in, 298–304 glitch function, 423 Plasma Physics for Astrophysics (Kulsrud), 298, healing parameter, 423 329 migration of quantised vortices and, 424 plasma sheet, 320 spin-up following, 422 Plummer model for elliptical galaxies, 106 time constant of τc, 422, 423 point-spread function, 768 starquakes and, 423 Poisson statistics, 774 two-component model of interior of neutron star Poisson’s equation and, 422, 423 in electrostatics, 299 pulsar magnetosphere, 424–427 Poisson’s equation for gravity, 106, 368 beaming of radio emission and, 427 polars, 197 closed field lines in, 426 polycyclic aromatic hydrocarbon (PAH) molecules, corotation radius, 426 350–351, 739 critical field line, 426 planes of hexagonal benzene rings and, dominated by electromagnetic forces, 425 351 inevitability of fully conducting plasma unidentified infrared lines and, 351 surrounding, 425 polytropes, 398 inner and outer acceleration gaps, 428, 429 polytropic index, 398 radio emission from, 429 positron production mechanisms, 275–278 light cylinder, 426 positronium atoms, 277 magnetic field distribution in, 426 positrons open field lines in, 426 sources of, 275 polar cap regions of, 427 creation of electron–positron pairs, 275 potential differences in, 427 decay of π + pions, 275 sparks in, 428 decay of long-lived radioactive isotopes, 275 space charge distribution in, 425 Poynting vector, 157 strong electric fields in, 425 Poynting vector flux, 267, 268 zero charge cones, 426, 429 Poynting’s theorem, 233 pulsars, 345 primordial nucleosynthesis, 98 ages from braking index, 409 principle of detailed balance, 170, 217 ages of, 409 Principle of Equivalence, 430 anomalous X-ray, 418–419 principle of jump rate symmetry, 248 as rotating, magnetised neutron stars, 406, 408, Principles of Optics (Born and Wolf), 764 424 probability density function, 775 as spiral arm populations, 419 projected surface brightness, 110 associated with supernova remnants, 419 projections of celestial sphere onto a plane, 753–755 binary, 415–417 proper acceleration, 158, 161 dispersion measures of, 419 proper time high velocities of in general relativity, 431, 432 asymmetric supernova explosions and, 467 in special relativity, 430 disruption of binary systems and, 467 proton decay, 390 incoherent infrared, optical and X-ray emission proton–proton chain (p-p chain), 44, 48, 50, 54, 56 from outer gap regions, 429 pp1,pp2 and pp3 branches, 54 kinematic ages of, 420 protostars, 311, 352–353 large velocities due to asymmetric collapse of accretion shock in, 353 core-collapse supernovae, 420 as intense far infrared sources, 353 large velocities due to disruption of close binaries, diffusion time for magnetic field from, 311 420 dust photosphere of, 352, 353 luminosity function of, 420 hydrostatic core of, 352 magnetic flux density from slow-down rate, 410 release of binding energy by far infrared emission, millisecond, 405, 417–418 353 normal radio, 406–410 spectra of, 353, 354 P˙ versus P diagram, 410, 411 structure of, 352–353 radio emission of, 405 pulsar glitches, 409, 422–424 rate of loss of rotational energy, 409

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

853 Index

rates of formation of, 420 radio emissivity of, 225 scale-height in the Galaxy, 420 in direction of opaque regions of ionised space densities of, 420 hydrogen, 226 space velocities of, 420 radio spectrum of, 224, 225 spin-up, 411, 471, 472 radio galaxies by accretion, 473 3CR sample of, 722 maximum rotation rate and, 472 discovery of, 18 spin-up rate–luminosity relation, 471, 472 energy requirements of, 18 timing noise, 422 evidence for old stellar populations in, 748 0902+34, 748 quantisation of rotational angular momentum, 335 radio galaxy LBDS 53W069, 748 quantum theory of gravity, 433 radio galaxy LBDS 53W091, 748 quark matter, 404 radio map of the sky, 224 quasar spectra radio pulsars, 19, 76 Lyman-α emission line, 589, 590 brightness temperatures of, 427, 428 prominent emission lines in, 590 coherent radiation of, 427 quasars, 19, 586–592 maser emission of, 428 3CR sample of radio, 722 radio emission of, 427–429 early formation of supermassive black holes in, 748 curvature radiation and, 428 low-luminosity, 592, 724 electron/death line and, 428 radio quiet, see radio quiet quasars electron/positron–photon cascades and, 428 ratio of black hole to spheroid masses, 748, radio quiet quasars 750 counts of, 591, 592, 724 cut-off at large redshifts, 590, 724, 725 radiation damage, 131, 146–151 definition of complete samples of, 591 in plastics and meteorites, 146–151 completeness of, 591 polymers and, 147 dispersion prism-grating techniques, 591 radiation damage density J, 147, 148 multi-colour photometric technique, 590–591 radiation losses of accelerated charged particles searches for ‘i-band drop-outs’, 591, 725 non-relativistic, 155–161 searches for Lyman-α and CIV emission lines, relativistic, 161–162 591 radiation of accelerated charged particles, 154–163 searches for variability of, 591 from Maxwell’s equations, 158–161 ultraviolet excess technique, 588–589 J.J. Thomson’s treatment, 155–158 discovery of, 724 loss rate of, 193 evolution of, with cosmic epoch, 591, 724 polar diagram of, 158 luminosity function of polarisation of, 158 ‘luminosity evolution’ of, 724 properties of, 158 evolution of, 591, 593, 724, 725 relativistic invariants, 154–155 radio waveband, 17–21 total energy loss rate, 154, 155, 174 neutral hydrogen and molecular line astronomy, total energy loss rate of, 158 20–21 radiation pressure in stars, 45, 48 observing the sky in, 21 Radiation Processes in Astrophysics (Rybicki and origin of high energy astrophysics and, 17–20 Lightman), 129 Radiocarbon, 295 radiation resistance, 779 radiocarbon dating, 294–297 radiation-driven pulsational instability for massive calibration of, 295, 296 stars, 71 impact of nuclear test explosions, 297 radiative transport of energy in stars, 45–47 influence of Earth’s magnetic field, 296 radio emission of spinning dust grains, 374–376 using coral samples, 296 Galactic background radiation and, 376 using tree ring dating, 296 radio emission of the Galaxy, 224–227, 779 detection of supernovae in tree-ring data, 297 comparison with predicted emission using local radionuclides, 279 energy spectrum of cosmic ray electrons, radius of curvature 226 instantaneous, 201, 203, 204, 207 determination of radio spectrum and radio range R of high energy particles, 143 emissivity, 224–226 in different materials, 144

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

854 Index

rapid or r-process, 65, 388 Relativity: Special, General and Cosmological formation of elements beyond the iron peak and, (Rindler), 781 388 relaxation time of particles in a plasma, proto-neutron stars and, 388 302–303 ratio of specific heat capacities retarded potentials, 267 for non-relativistic degenerate gas, 395, 396 retarded time, 160, 203 Rayleigh criterion for resolving two point sources, 768 Reuven Ramaty High Energy Solar Spectroscopic Rayleigh scattering, 349, 350 Imager (RHESSI), 289, 291 Rayleigh–Taylor instability, 383 Reynolds number R, 453, 454 Rayleigh–Jeans region of Planck spectrum, 173, right ascension (RA or α), 753 218 rigidity R, 180, 185, 186 Rayleigh–Jeans spectrum, 459, 460, 710 ring galaxies, 80 recoil effect, 236, 244, 255 Roche lobe, 461, 464, 465, 466, 467, 468, 480, reconnection of magnetic lines of force, 320, 481 323–329 overflow, 72, 467, 473, 485, 486 diffusive time-scale, 326 ROSAT satellite formation of current filaments by tearing mode ultraviolet Wide Field Camera of, 22, instabilities, 328 357 ohmic losses, 324 ROSAT X-Ray Observatory, 24, 25, 112, 422, 714, Petschek mechanism, 327 725 reconnection velocity, 326, 327 Rosseland mean opacity, 47, 460 self-consistency of models for, 329 Rossi X-ray Timing Explorer (RXTE), 418, 449, 483, Sweet–Parker mechanism for, 324–326 486, 489, 653 rectangular one-dimensional aperture rotation curves of spiral galaxies, 92–93 diffraction pattern of, 766 constancy at large radial distances, 92 red and blue sequences of galaxies, 80–85 rotation measure, 346, 369–371 colour and absolute magnitude, 81 as a function of galactic latitude, 369, effect of galaxy environment, 84–85 370 mean stellar age and concentration index C, 85 pulsar, 370, 371 Sersic´ index and colour, 81–84 RR-Lyrae variable stars, 73 statistics of galaxies belonging to, 85 masses of, 73 red sequence, 80 preferentially found in rich cluster environments, 84 Sersic´ index n, 82, 83, 84, 85 properties of galaxies of, 80 SAGE solar neutrino experiment, 32 Red-Sequence Cluster Survey, 122 Sagittarius A∗ (Sgr A∗), 754 redshift supermassive black hole in, 754 gravitational, 431 Salpeter initial mass function, 361, 362, 731, 743, reduced mass of molecule, 337 744 reference frames in standard configuration, 136 SAS-2 γ -ray satellite, 26, 504 Reissner–Nordstrøm metric, 434 scalar potential φ, 158 relativistic aberration, 198 scale height of an atmosphere, 322 formulae, 199, 200 scattering of charged particles by irregularities in relativistic beaming magnetic field, 184–187 synchrotron radiation and, 198–201, 205, 210 scattering of high energy particles by Alfven´ and relativistic invariants, 154–155 hydromagnetic waves, 187–189 total energy loss rate, 154, 155, 161, 174, 195 Schonberg–Chandrasekhar¨ limit, 49, 59, relativistic jets 731 heating of the interstellar gas by, 750 Schechter luminosity function for galaxies relativistic kinetic energy, 782 turnover luminosity L∗, 747 relativistic length contraction, 166 Schmidt law of star formation, see Schmidt-Kennicutt relativistic Maxwellian distribution, 218 law relativistic plasma, 18 Schwarzschild black hole, 490 relativistic three-momentum, 180, 183, 782 Schwarzschild metric, 430–433, 434, 435 relativistic total energy, 782 Schwarzschild radius, 19, 413, 429, 431, 433, 435, relativistic transformation of an inverse square law 444, 446, 448, 610, 611, 612, 621, 623, 629, Coulomb field, 136–139 681, 704

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

855 Index

coordinate singularity in, 433 supersonic piston, 317–319 physical singularity at r = 0, 433 SI (Systeme` International) system of units, 129 X-ray emission from the vicinity of, 25 sidelobes, 768 SCUBA submillimetre bolometer array, 14, 742 signal-to-noise ratio seeing disc, 770 background-limited, 776, 777 variation in size with wavelength, 770 dependence on size of telescope for different self-collision time of particles in a plasma, 302 limiting cases, 776 semi-analytic models of galaxy formation, 749–752 detector-noise-limited, 776, 777 as ‘experimental computational astrophysics’, 749 in the presence of other sources of noise, 775, dust extinction and, 750 776 formation of massive black holes in the nuclei of background signal from sky and telescope, 775 galaxies and, 750 dark current in the detector, 776 formation of supermassive black holes and, 752 read-out noise, 776 in centres of rich clusters, 752 photon statistics and, 775 heating of the intergalactic gas in clusters and, 750 photon statistics limit, 776, 777 nuclear starbursts and, 750 signature of metric, 781 objectives of, 749 silicate dust grains quasars at large redshifts and, 751 complex dielectric constant for, 348 radiative cooling and star formation, 750 silicon burning, 64 spectrophotometric properties of galaxies and, 750 single line spectroscopic binaries, 414, 439 supernova explosions and, 750 singularity theorems of Penrose and Hawking, the epoch of maximum quasar activity and, 752 433 two-point correlation function for galaxies and sky in different astronomical wavebands, 4–5 for different luminosities and colours, 752 Sloan Digital Sky Survey (SDSS), 4, 7, 77, 80, 81, 82, semi-forbidden transitions in spectra of gaseous 84, 85, 88, 97, 98, 100, 590, 591, 592, 714, nebulae, 342–343 724, 725 example of C iii], 342 slow or s-process, 65 intercombination lines, 342 Smithsonian Sub-Millimetre Array (SMA), 14 sensitivities of astronomical detectors, 774–779 Smoluchowski’s envelope, 103 in the photon limit, 774–777 soft γ -ray repeaters, 418–419 in the wave limit, 777–779 soft X-ray emission from the , 359 increasing signal-to-noise by increasing Solar and Heliospheric Observatory (SOHO) of ESA, bandwidth and integration time, 778 52, 53 optical and infrared detectors, 774–777 solar flares, 322 radio and millimetre-wave receivers, 777–779 γ -ray spectrum of, 289, 291 Seyfert galaxies, 592, 724 solar luminosity, 36 counts of, 591, 724 Solar Magnetohydrodynamics (Priest), 322 Shapiro time delay, 416 solar mass, 36, 759 shear stress, 452, 453 Solar Maximum Mission, 391 shock waves, 314–319, 357 solar modulation, 185, 187, 225, 358, 502, basic properties of plane, 314–317 505 collisionless, 321 cosmic ray energy spectrum and, 493 conservation relations for, 314 diffusive-convective model for, 493 energy flux conservation, 315 electron energy spectrum and, 495 mass conservation, 314, 315 solar neutrinos, 54–58 momentum flux conservation, 315 and neutrino oscillations, 57, 58 explosions and, 314 chlorine detector for, 54, 55 heating of gas to high temperatures and, 317 GALLEX solar neutrino experiment, 56 Mach number, 316 gallium experiments, 56 oblique, 319 Kamiokande II experiment, 55 passage of streamlines through, 319 SAGE experiment, 56 role of atomic or molecular viscosities, 317 Sudbury Neutrino Observatory (SNO), Ontario, shock conditions, 316 Canada, 57, 58, 59 speed of sound and, 314, 315 SuperKamiokande experiment, 56 stand-off distance, 319 solar radius, 36 strong, 317 solar seismology, see helioseismology

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

856 Index

Solar System abundances of the elements, 496–497, specific heat capacities γSH 499 ratio of, for perfect gas, 218 local interstellar abundances, 497, 498 ratio of, for relativistic gas, 218 meteoritic abundances, 497 specific heat capacity per unit mass, 308 Solar Wind, 19, 70, 303, 312–314, 319, 426, 493 specific volume, 315 high-speed winds observed in, 312, 313 speckles, 771 magnetic field in, 312 spectral energy distribution of galaxies magnetosphere and the, 319–321 evolution of, 729–731 drag forces associated with, 320 in far-infrared and submillimetre wavebands, 740, rotating garden sprinkler and trajectories of 741 particles in, 312 spectral index, 212, 217 spiral configuration of magnetic field in, 313 spectrum of radiation of an arbitrarily moving out to 20–25 AU, 312 electron, 202–203 typical properties of, 312 spin temperature for 21-cm absorption, 335 Soudan Cryogenic Dark Matter Search (CDMS), 34 spinning dust grains source function, 222 radio emission of, 374–376 south celestial pole (SCP), 753, 754 spiral arm tracers in the Galaxy, 356 South Pole Observatory, 14 spiral galaxies Soviet atomic and hydrogen bomb programme, dark matter haloes, 93 250 Spitzer infrared space observatory, 10, 11, 714, spallation, 150–151, 279, 495, 499, 500, 507 737 formation of L from M elements, 508 spontaneous and induced processes, 247, 249 formation of radioactive isotopes in meteorites and, rules for, 247, 249 150, 151 stability of disc galaxies and dark matter haloes, formation of rare isotopes in meteorites and, 150 93 path length distribution for, 509–511 stand-off distance, 319, 320 characteristic escape time τe, 510 stand-off shock waves, 314, 319 dependence upon cosmic ray energy, 513, 514 standard wavebands used in ground-based astronomy, exponential, 510 761, 762 Gaussian, 510 star clusters isotopic anomalies, 515 ages of, 68 leaky box model for, 510 open, 69 truncated exponential, 510 star formation, 75, 361–369 path length through interstellar gas for, 507 angular momentum problem, 367 production of 3He from 4He, 509 energy problem, 367 products of, of iron nuclei, 509 initial mass function, 361–362 radioactive products, 500 issues in the theory of, 367–369 slab model for, 508, 510 Jeans’ instability, 368 spallation cross-sections, 282–283, 507 magnetic field problem, 368 dependence upon particle energy, 283 model for, 353, 355 for iron nuclei, 283 pre-main sequence evolutionary tracks, features of, 283 70 methods of determining pre-main sequence stars and, 353, 354 experimental, 282 regions of, 362–367 Monte Carlo techniques, 282 Schmidt–Kennicutt law, 361–362 semi-empirical relations, 282 star formation in molecular clouds partial, 282–283, 507 radiation of heated dust grains at infrared total inelastic, 283 wavelengths as a signature of, 352 weighted average total inelastic, 508, 509 role of interstellar dust grains, 351 spallation fragments, 280 star-forming galaxies, 352 relativistic, 282 spectrum of, 737 special relativity starburst galaxies, 740 notation, 781–782 ultraviolet spectra of, 743, 744 specific angular momentum, 431, 433 starquakes, 423 specific angular momentum in general relativity, stars and stellar evolution, 35–76 434 basic observations of, 35–39

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

857 Index

equations of energy generation and energy sub-giant stars, 38 transport, 43–47 Subaru 8.2 metre telescope, 382, 744 equations of hydrostatic support and mass Subaru Deep Surveys, 744 conservation, 40–41 submillimetre background radiation, equations of stellar structure, 47–50 743 evolution of high and low mass stars, Sudbury Neutrino Observatory (SNO), 59–68 32 high mass stars, 62–65 Sun low mass stars, 62, 66–68 central pressure of, 41 Hayashi tracks, 59–61 corona of, 312 helioseismology and the internal structure of the main sequence lifetime of, 50 Sun, 51–54 minimum central temperature of, 42 importance of mass loss, 71, 72 origin of magnetic field of, 54 mass loss, 70–75 properties of, 36 horizontal branch, 73 rotation of, 312 overall mass loss rate, 75 speed of sound as a function of radius, P-Cygni profiles and Wolf–Rayet stars, 52–54 70–73 sunspots, 322 planetary nebulae, 73–74 Sunyaev–Zeldovich effect, 257–259 observations of solar neutrinos, 54–58 hot gas in clusters of galaxies and, stellar evolution on the colour–magnitude diagram, 259 68–70 Hubble’s constant and, 259 stellar structure, 39–43 in Rayleigh–Jeans region of the spectrum, 115, Sun as a star, 50–58 258 virial theorem for stars, 42–43 increase in energy density of the background statistical equation of motion for mean drift velocity radiation, 258 of electrons in electric field, 303 physical nature of result in Rayleigh–Jeans spectral statistical equilibrium, 91, 759 region, 259 statistical weights, 171, 248 Sunyaev–Zeldovich effect in hot intracluster gas, 99, Stefan–Boltzmann law, 35, 37, 46, 459, 114–115, 758 758 distance estimates using, 115 stellar coronae, 70 shape of spectral distortions, 115, 259 stellar evolution SuZIE experiment and measurement of shape of formation of isothermal core, 59 spectral distortions, 115, 259 growth of central helium core, 62 super-Alfvenic´ motions, 321 hydrogen-shell burning, 59 superCDMS experiment, 127 lower mass limit of 0.08 M for hydrogen burning superclustering of galaxies, 101 stars, 66 superconductivity and superfluidity in neutron stars, of a 1.3 M star, 49 404–405 of a 15 M star, 384 supergiant stars, 38 core collapse of, 385 superluminal motions, 683–697 formation of iron core, 385 in microquasars, 440 neutrino luminosity of, 385 supernova light curve of a 5 M star, 62, 63 radioactive origin of, 288 Stellar Magnetism (Mestel), 424 supernova remnants, 379, 394 stellar structure as X-ray sources, 394 equations of, 39–50 evolution of, 554–556 stellar winds, 70 supernova remnants as sources of high energy stellar X-ray sources in Magellanic Clouds electrons, 553 X-ray luminosities of, 446, 447 supernova remnants as sources of high energy Stokes’ theorem, 324 particles, 545–548 stopping power, 142 γ -ray observations of shell-like, 547–548 straggling, 144 radio observations of, 545, 547 structural index, or structural length, supernova SN 1987A, 388–393 104 44Ti energy source for light curve, 289, sub-dwarf (sdB) stars, 38, 589 392

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

858 Index

supernova SN 1987A,(cont.) asymptotic expression for emissivity at high and 56Co γ -ray emission lines from, 288, 391 low frequencies, 210 57Co energy source for light curve, 392 critical angular frequency for, 207, 208 [Co ii] and [Ni ii] infrared emission lines from, 391, critical frequency for, 201, 211, 212, 218, 223 392 high frequency limit, 210–211 collision of envelope with mass-loss ring, 392, 393 map of Galactic, 18 observed at optical, X-ray and radio wavelengths, minimum energy requirements for, 549–552 393 polarisation of, 214–217 distance estimate from [O iii] ring, 392 circular, 217 dust formation in, 392 fractional, for power-law electron energy light curve of, 388, 389, 390, 391, 392 spectrum, 216–217 limits to neutrino mass, 390 spectra of orthogonal polarisations I⊥ and I , neutrino luminosity of, 390 214 neutrinos from, 279 system of coordinates for, 204 progenitor of, 389 total energy in polarisations I⊥ and I , 215 rings of [O iii] about, 392, 393 radio emission of the Galaxy and, 224–227 stellar mass-loss prior to, 389, 392, 393 relation between spectral index a and spectral index Type IIP, 388 of electron spectrum p, 212 supernova units (SNu), 381 self-absorption of, 217–222 supernovae, 75, 378–394 absorption coefficient for, 219–222 as sources of high energy particles, 394 physical arguments, 217–219 classification of, 379 spectral emissivity of core-collapse, 384–386 in orthogonal polarisations, 208 bounce mechanism for, 386 maximum of, 209 formation of neutron stars and black holes and, total, 208 384–386 spectrum of a power law distribution of electron inhomogeneous expulsion of outer layers, energies, 212–214 386 emissivity per unit volume, 213 kinetic energy release, 385 full analysis, 213 neutrinos from, 390 physical arguments, 212 historical, 378–380 spectrum of, detailed analysis, 202–211 kinetic energy of ejected material, 394 algebra of, 204–207 light curves, 380 of radiation of an arbitrarily moving electron, rates of occurrence, 382 202–203 Type Ia, 380–384, 466 results of, 207–211 Type II, 467 system of coordinates for, 203–204 Types I and II, 379 spectrum of, physical arguments, 198–202 differences between, 380 spontaneous transition probability for, 219 typology, 378–380 total energy loss rate, 193–195, 210 supersonic motion, see shock waves useful numerical results, 222–224 supersonic piston, 317–319 absorption coefficient χν for a random magnetic location of shock front relative to, 318 field, 224 supernovae and the, 319 critical frequency νc, 223 Sweet–Parker mechanism of magnetic reconnection, emission spectrum of a single electron, 222 324–326 radiation spectrum of a power-law electron dissipation rate of, 324, 326 energy distribution, 223 effects of gas pressure, 325 total energy loss rate, 222 energy released in, 326 synchrotron radiation as the scattering of virtual SWIFT satellite, 418, 706, 707, 708, 709, 710, photons, 241 712 synchrotron radiation facilities, 209 SWIRE Legacy sample, 740 synchrotron self-absorption, 217–222, 262, 263 symbiotic stars, 383, 461 absorption coefficient for, 219–222 synchro–Compton catastrophe, 261–264 for a randomly oriented magnetic field, 221 synchrotron radiation, 193–227, 377, 410, 489, 715 two-level system for, 219 as the relativistic limit of cyclotron radiation, evidence for presence of relativistic electrons, 219, 197 263

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

859 Index

physical arguments, 217–219 emission spectrum of, in optically thin region, polarisation of synchrotron self-absorbed source, 461 222 formation of hot spot, 467, 474, 475 spectrum of radio source exhibiting, 219 instabilities in, 478 synchrotron–self-Compton radiation, 260–264 opacity of material of, 460 models of sources of, 264, 265 role of viscosity – the α parameter, 452–455 homogeneous, 264 structure of thin discs, 455–458 inhomogeneous, 264 temperature distribution in, 458–459 synchro–Compton catastrophe, 261–264 transition from dominance of gas pressure to Systeme` International d’Unites´ (SI units), 779–781 radiation pressure, 459, 460 Third Reference Catalogue of Bright Galaxies (de TAMA gravitational wave experiment, 33 Vaucouleurs et al.), 86 tearing mode instabilities, 327 Thomson and Compton scattering, 231–237 technetium Tc, 65 Thomson cross-section, 46, 155, 195, 229, telluric absorption, 10 446 temperature-frequency relation for black-body Thomson scattering, 46, 48, 232–445 radiation, 6 degree of polarisation of, 234 term diagram for doubly ionised oxygen O iii, 342, derivation of formulae for, 232–235 343 differential cross-section for, 233, 241, 250 The Physics of Solar Flares (Tandberg-Hanssen and Eddington limiting luminosity and, 413 Emslie), 322 for 100% polarised emission, 234 Theoretical Concepts in Physics (Longair), xiii, 160, geometry of, 232 429, 777, 778, 782 mean free path for, 235 thermal bremsstrahlung, see bremsstrahlung, thermal, optical depth for, 235, 244, 253, 254, 256 340, 477 polarisation of, 234 absorption in plane of Galaxy, 340 properties of, 233–235 absorption, at radio wavelengths, 340 total scattering cross-section for, 233 at soft X-ray energies from hot component of 3CR radio galaxies, 654, 655, 720, 748 interstellar gas, 340 early formation of bulk of stellar population, 748 at X-ray energies from intracluster gas, 340 stellar masses of large redshift, 748 and FeXXV emission lines, 340 3CR radio sources, 720, 723 at X-ray energies from supernova remnants threshold detectors, 265 and FeXXV emission lines, 340 tidal radius of cluster of galaxies, 104 thermal energy per unit mass, 42 tidal radius of galaxies, 122 thermal instabilities, 360–361 time dilation formula thermal paradox for stars, 43 in general relativity, 431 thermal time-scale for stars, 43 time to reach a given signal-to-noise ratio, 777 thermalisation time for stellar systems, 93 tokamaks, 323 thermalisation time of particles in a plasma, 302–303 torque, magnetic, 470, 471, 473 thermonuclear runaway, 473, 478, 482 torque, viscous, 453, 455, 470 stabilisation at about 108 K, 479 total depth of the atmosphere in kg m−2, 176 thick accretion discs, 461–463 transfer equation for radiation, 170, 171, 221 funnels along polar directions, 462, 463 in terms of Einstein coefficients for spontaneous Newtonian rotationally supported vorticity-free and induced emission, 249 torus, 462, 463 in terms of occupation numbers, 249 stability of, 462 Transition Region and Coronal Explorer (TRACE) thin accretion discs, 451–461 spacecraft of NASA, 309 about black holes, 458 transmission function G(z) of one-dimensional inner boundary condition, 458 aperture, 765 conditions for, 451–452 Fourier transform of, 765 continuum spectra of, 476 Gaussian, 768 detailed models of, 459–461 transmission function Tν of astronomical filters, 762 Doppler tomography of, 475, 476 transparency of the atmosphere as a function of emission spectra of, 458–459 wavelength, 5, 6 in black-body approximation, 458 in the infrared and submillimetre wavebands, 10, 14 emission spectrum of, 459, 460, 462 windows in the submillimetre waveband, 14

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

860 Index

tree-ring dating, 295 of sum of two quantities, 775 triple-α process, 64 total, as the sum of variances, 776 Tully–Fisher relation for spiral galaxies, 87 vector potential A, 158, 160, 183, 210 and the distances of galaxies, 87 Vela satellites, 27 infrared, 87 velocity cone, 214, 215, 217 turbulence velocity of Solar System through the Cosmic magnetohydrodynamic, 455 Microwave Background Radiation, 16 21-cm line emission and absorption, 333–335 velocity–distance relation for galaxies, 757 absorption coefficient for, 334–335 vernal equinox, 753 column density of neutral hydrogen from, Very Large Array (VLA), 21, 123, 774 334 Very Long Baseline Interferometry (VLBI), 21, 219, emissivity of, 334 263 kinematics of gas in galaxies from, 334 vicinity of the black hole, 637–660 spin temperature for, 335 violent interstellar medium, 359 spontaneous transition probability of, 333 supernova explosions and, 359 2dF galaxy redshift survey, 589, 714 VIRGO gravitational wave experiment, 33 2dF quasar redshift survey, 589, 590, 591, 592, 593, virial theorem, 103, 400 724, 725 virial theorem for galaxies and clusters, 89–92, 93, 94, Two Micron All Sky Survey (2MASS), 11, 98 759 two-colour diagram for stars, 763, 764 problems of application to observed systems, 91, Type Ia supernovae, 380–384, 478–479 92 as standard candles, 381 virial theorem for stars, 42–43, 89 evolution of colours of, 382 viscosity, 453, 454, 459, 656 formation of 56Ni, 382 effective, in shock fronts, 574 light curves kinematic, 445, 657 radioactive decay of 56Co, 382, 383 turbulent, 462, 469 light curves of, 380 viscosity parameter α, 459, 461, 478, 660 luminosity–width relation, 380 viscosity, dynamic or shear η, 452, 454, 455, 457 most luminous supernovae, 381 viscosity, kinematic ν, 453 rates of occurrence, 381 viscosity, turbulent, 454, 455, 459 redshift–distance relation and, 381 visible matter in the Universe thermonuclear explosions and, 380, 382 integrated luminosity of, 97 VLT Antu telescope, ISAAC infrared camera of, 365 X-ray Observatory, VLT Kueyen Telescope, FORS2 instrument of, 365, UHURU X-ray observatory, 23, 24, 410, 485, 600, 366 725 voids in the distribution of galaxies, 731 UK Schmidt Telescope, 589 Voyager missions of NASA, 312 ultra-high energy γ -ray telescopes, 275 ultrahigh energy γ -rays W UMa-type binaries, 464 detection of, 272–275 wave impedance Z0, 777 ultraluminous infrared galaxies (ULIRGs), 741 wavebands used in ground-based astronomy, ultraviolet waveband, 21–22 761 extreme ultraviolet (EUV), 22 wavefront errors, 768, 770 observations of resonance lines of common , 310 elements, 22 diffusion time for magnetic field from, 310, 311 mission of the European Space Agency and magnetic flux density of, 310 NASA, 312, 313 white dwarfs, 37, 38, 68, 74, 76, 378, 401, 443, unstable stars, 73 589 useful statistics about galaxies, 97–98 carbon-oxygen, 382 cooling curves for, 402 V/Vmax or luminosity–volume test, 718–719 cooling times for, 401 banded, 719 Hertzsprung–Russell diagram for, 402 for radio quiet quasars, 724 ultimate fate of, 401 space distribution of galaxies, quasars active with carbon-oxygen cores, 401 galaxies, 718–719 white dwarfs, neutron stars and the Chandrasekhar variance, 775 limit, 394–401

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information

861 Index

Wien distribution, 246, 247, 255 low mass X-ray binaries, 479–484 average energy of photons of, 246 sources, 479 Wien’s displacement law, 5 in globular clusters, 414, 479 Wilkinson Microwave Anisotropy Probe (WMAP), luminosities of, 413 16 soft X-ray transients, 414 WIMPs symbiotic X-ray binaries, 414 astrophysical limits to the masses of, 126 typical temperature of, 413 candidates for, 125 X-ray bursters, 414 laboratory detection of, 127 X-ray pulsars, 414 laboratory limits to the masses of, 126 X-ray emission of intracluster gas, 99 suppression mechanisms for, 127 X-ray , 487 Wolf–Rayet stars, 70–73, 288, 466, 467, 515, X-ray pulsars, 24, 438 713 X-ray source spectra and solutions of the Kompaneets mass loss rates of, 72 equation, 253–257 WC and WN types, 72 X-ray sources W ± and Z 0 bosons, 126 binary pulsating as rotating magnetised neutron stars, 446 X mass fraction of hydrogen, 69 Comptonisation and, 602, 729 X-ray absorption, 339–340 evolution of luminosity function of, with cosmic X-ray absorption coefficient of interstellar matter, epoch, 727 229, 231 populations at soft and hard X-ray energies, 602, column depth for, 230 728 optical depth and, 230 strongly absorbed, 602, 729 X-ray atomic energy levels, 230 template spectra for strongly absorbed sources, 602, X-ray background emission 729 at hard X-ray energies X-ray waveband, 22–25 nature of sources contributing to, 602, detectors for, 23 729 observing in, 22–23 at soft X-ray energies, 24, 25 sky in, 23–25 nature of sources contributing to, XMM-Newton X-Ray Observatory, 25, 108, 110, 113, 728 197, 257, 386, 421, 628, 629, 633, 714, 725 contributions of different classes of source to, 728 Y mass fraction of helium, 69 spectrum of, 728 year 2000.0 coordinate system, 753, 754 X-ray binary systems, 410–415, 461, 467, Yerkes spectral classification system, 37 479–491 accretion in, 413 Z mass fraction of ‘metals’, 69 estimate of masses of neutron stars and black holes Zeeman splitting in, 414–415 of 21-cm line radiation, 377 high mass X-ray binaries, 413, 485–486 circularly polarised components of, 377 late 0 or early B type companion stars, 413, of OH absorption lines, 377 414 zenith equidistant projection, 7, 755, 756

© in this web service Cambridge University Press www.cambridge.org