Supernova 1572 and Other Newly Observed Stars in the Literature of the Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FY08 Technical Papers by GSMTPO Staff
AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................ -
The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used. -
The New Astral Medicine Hiro Hirai Introduction
CHAPTER EIGHT THE NEW ASTRAL MEDICINE Hiro Hirai Introduction The impact of astrology on medical theories and practice in the Renais- sance still remains to be fully explored. Besides the general influences of celestial bodies on sublunary and terrestrial beings, physicians were traditionally taught to take astrology into account in questions such as: 1) conception or nativity; 2) crises of health or illness, known as “criti- cal days”; and 3) medication. The link between medicine and astrology became especially firm after the work of Pietro d’Abano (1257–ca. 1315).1 In the Renaissance, two major factors contributed to the modifica- tion of this traditional relationship between medicine and astrology. One is the severe criticism of judicial astrology, advanced by Giovanni Pico della Mirandola (1463–1494) in his posthumous work, entitled Disputa- tions against Judicial Astrology (Disputationes adversus astrologiam divina- tricem) (Bologna, 1496). Many of his contemporaries (followed by modern historians) generally considered that Pico rejected the divinatory aspects of astrology and accepted only its physical dimensions, which can be labeled as “natural astrology.” According to this interpretation, the influ- ences of the celestial region were exerted only by physical means: motion, light and heat.2 Pico thus criticized the astrological aspects of the doctrine 1 See Nancy G. Siraisi, Medieval and Early Renaissance Medicine: An Introduction to Knowledge and Practice (Chicago: University of Chicago Press, 1990). Cf. also Andrew Wear, “Galen in the Renaissance,” in Galen: Problems and Prospects, ed. Vivian Nutton (London: The Wellcome Institute for the History of Medicine, 1981), pp. 229–267, esp. 245–250; Wolf-Dieter Müller-Jahncke, Astrologisch-magische Theorie und Praxis in der Heilkunde der frühen Neuzeit (Stuttgart: Steiner, 1985); Roger French, “Astrology in Medical Prac- tice,” in Practical Medicine from Salerno to the Black Death, ed. -
The Astronomers Tycho Brahe and Johannes Kepler
Ice Core Records – From Volcanoes to Supernovas The Astronomers Tycho Brahe and Johannes Kepler Tycho Brahe (1546-1601, shown at left) was a nobleman from Denmark who made astronomy his life's work because he was so impressed when, as a boy, he saw an eclipse of the Sun take place at exactly the time it was predicted. Tycho's life's work in astronomy consisted of measuring the positions of the stars, planets, Moon, and Sun, every night and day possible, and carefully recording these measurements, year after year. Johannes Kepler (1571-1630, below right) came from a poor German family. He did not have it easy growing Tycho Brahe up. His father was a soldier, who was killed in a war, and his mother (who was once accused of witchcraft) did not treat him well. Kepler was taken out of school when he was a boy so that he could make money for the family by working as a waiter in an inn. As a young man Kepler studied theology and science, and discovered that he liked science better. He became an accomplished mathematician and a persistent and determined calculator. He was driven to find an explanation for order in the universe. He was convinced that the order of the planets and their movement through the sky could be explained through mathematical calculation and careful thinking. Johannes Kepler Tycho wanted to study science so that he could learn how to predict eclipses. He studied mathematics and astronomy in Germany. Then, in 1571, when he was 25, Tycho built his own observatory on an island (the King of Denmark gave him the island and some additional money just for that purpose). -
PDF (Pbcameron Thesis.Pdf)
The Formation and Evolution of Neutron Stars: Astrometry, Timing, and Transients Thesis by P. Brian Cameron In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2009 (Defended June 2, 2008) ii c 2009 P. Brian Cameron All Rights Reserved iii Acknowledgements I have been incredibly fortunate these last five years to work with and have the support of so many amazing people. Foremost, I would like to acknowledge my enormous debt to my advisor, Shri Kulkarni. His vision and tireless dedication to astronomy were inspiring, and led to the topics in this thesis being at the forefront of astrophysics. Our styles contrasted, but his energy, open advice, and support made for a very rewarding collaboration. In this same vein, I am grateful to Matthew Britton whose ideas and open door made the last 2 years incredibly enjoyable. I have also had the privilege of working with a number talented people on a wide variety of topics. I am grateful to Bryan Jacoby, David Kaplan, Bob Rutledge, and Dale Frail for their insights and patience. I would also like to thank the NGAO crowd that got me thinking hard about astrometry: Rich Dekany, Claire Max, Jessica Lu, and Andrea Ghez. No observer could ever function with out people working tirelessly at the telescope and when you return from it. I am grateful for the patience and dedication of the Keck astronomers, especially Al Conrad, Randy Campbell and Jim Lyke, as well as those at Palomar: Jean Mueller, and Karl Dunscombe. I am indebted to the excellent staff here at Caltech for putting up with my endless questions and requests: Patrick Shopbell, Anu Mahabal, and Cheryl Southard. -
Star Clusters Or Asterisms? 2MASS CMD and Structural Analyses of 15 Challenging Targets
A&A 530, A32 (2011) Astronomy DOI: 10.1051/0004-6361/201116452 & c ESO 2011 Astrophysics Star clusters or asterisms? 2MASS CMD and structural analyses of 15 challenging targets E. Bica and C. Bonatto Universidade Federal do Rio Grande do Sul, Departamento de Astronomia, CP 15051, RS, Porto Alegre 91501-970, Brazil e-mail: [charles;bica]@if.ufrgs.br Received 7 January 2011 / Accepted 29 March 2011 ABSTRACT Context. Poorly-populated star clusters may have photometric and structural properties not much different from asterisms, to the point that, in some cases, widely-used databases present conflicting classifications. Aims. We investigate the nature of a sample of challenging targets that have been classified either as star clusters or asterisms in different studies. A few objects are studied for the first time. Methods. The analysis employs 2MASS photometry, field-star decontamination, to enhance the intrinsic colour–magnitude diagram (CMD) morphology, and colour-magnitude filters, for high contrast stellar radial density profiles (RDPs). Results. Based on properties derived from field-star decontaminated CMDs, and structural parameters from RDPs, we find that Pismis 12, IC 1434, Juchert 10, Ruprecht 30, NGC 3519, Herschel 1, Mayer 1, and Muzzio 1 are open clusters with ages within 5Myr−1.3 Gyr. Ruprecht 129, 130, 140, and 146 are borderline cases, being rather poorly-populated, with evolutionary sequences and RDPs suggesting star clusters. Dolidze 39, BH 79, and Ruprecht 103, have CMDs and RDPs typical of asterisms. Conclusions. When a low stellar population is associated with a dense field contamination and/or important differential reddening, only a thin line separates star clusters and asterisms. -
Seminarvortrag 17.4.2019 Zu Sonnenflecken
Early telescopic observations of sunspots by Simon Marius and other (1610-1620) Ralph Neuhäuser Astrophysikalisches Institut und Universitäts-Sternwarte www.astro.uni-jena.de FSU Jena 400 years telescopic sunspots. Schwabe cycle 10.4 ± 1.2 yr (since 1750) Schwabe cycle and butterfly diagram Sonnenflecken-Relativzahl (Rudolf Wolf 1816-1893): Rz = k x (10 x g + n) Anzahl der Einzelflecken n, Anzahl der Fleckengruppen g, individueller Gütefaktor des jeweiligen Beobachters k Hoyt & Schatten (1998): Sonnenfleckengruppenzahl RG = (12.08 / N) x Si (ki' x Gi) individueller Korrekturfaktor ki' des i-ten Beobachters Gruppenzahl Gi am betreffenden Tag, N ist die Anzahl der Beobachter des entsprechenden Tages. oder Fleckenfläche statt Fleckenanzahl Active day fraction f = (aktive Tage) / (aktive + inaktive Tage) In 17th century, all sources have to be checked ! Clette et al. 2015 - First telescopic observations of sun spots - Observations by Simon Marius 1611 – 1619 - More observations by Saxonius, Tarde, Malapert: Constraining the first telescopic Schwabe cycle (1620) Erste teleskopische Beobachtungen von Flecken (ab 1609): -Vorstufen als Lesestein um 1000 AD (Ibn al-Haytham) - Linsen, Monokel, Brillen im Mittelalter (China, Italien) - Teleskop 1608 (Hans Lipperdey, Holland) - Galileo Galilei: erste Himmelsbeobachtungen (1609) Jupiter-Monde, Sterne in Milchstraße, Venus-Phasen, Sonnenflecken - Kepler Fernrohr (1611) Kopernikanische Wende: Helio-Zentrismus Erste teleskopische Beobachtungen von Flecken (ab 1609): - Galileo Galilei: erste Himmelsbeobachtungen -
The Maunder Minimum and the Variable Sun-Earth Connection
The Maunder Minimum and the Variable Sun-Earth Connection (Front illustration: the Sun without spots, July 27, 1954) By Willie Wei-Hock Soon and Steven H. Yaskell To Soon Gim-Chuan, Chua Chiew-See, Pham Than (Lien+Van’s mother) and Ulla and Anna In Memory of Miriam Fuchs (baba Gil’s mother)---W.H.S. In Memory of Andrew Hoff---S.H.Y. To interrupt His Yellow Plan The Sun does not allow Caprices of the Atmosphere – And even when the Snow Heaves Balls of Specks, like Vicious Boy Directly in His Eye – Does not so much as turn His Head Busy with Majesty – ‘Tis His to stimulate the Earth And magnetize the Sea - And bind Astronomy, in place, Yet Any passing by Would deem Ourselves – the busier As the Minutest Bee That rides – emits a Thunder – A Bomb – to justify Emily Dickinson (poem 224. c. 1862) Since people are by nature poorly equipped to register any but short-term changes, it is not surprising that we fail to notice slower changes in either climate or the sun. John A. Eddy, The New Solar Physics (1977-78) Foreword By E. N. Parker In this time of global warming we are impelled by both the anticipated dire consequences and by scientific curiosity to investigate the factors that drive the climate. Climate has fluctuated strongly and abruptly in the past, with ice ages and interglacial warming as the long term extremes. Historical research in the last decades has shown short term climatic transients to be a frequent occurrence, often imposing disastrous hardship on the afflicted human populations. -
Uva-DARE (Digital Academic Repository)
UvA-DARE (Digital Academic Repository) The academization of art A practice approach to the early histories of the Accademia del Disegno and the Accademia di San Luca Jonker, M.J. Publication date 2017 Document Version Other version License Other Link to publication Citation for published version (APA): Jonker, M. J. (2017). The academization of art: A practice approach to the early histories of the Accademia del Disegno and the Accademia di San Luca. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:29 Sep 2021 Appendix 1 Money in Florence and Rome in the sixteenth and seventeenth centuries Florence 1 scudo = 7 lire = 140 soldi = 1680 danari 1 giulio = 13 soldi and 4 danari 1 carlino = 10 soldi Rome 1 scudo = 10 giuli and 100 baiocchi 1 giulio = 10 baiocchi 1 grosso = 5 baiocchi 1 quatttrino = 1/5 of a baioccho 435 Appendix 2 Letters from Agnolo Guicciardini to Cosimo I de’ Medici AG, Legazione, XII, 18 (Published in Ridolfi 1931, 46-47). -
Nd AAS Meeting Abstracts
nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron -
18 Frye and Robert Burton
215 18 Frye and Robert Burton Not previously published. From my point of view the greatest book ever written at Oxford is the Anatomy of Melancholy. (Bible, 132) I In responding to a question by David Cayley about the use of the word ―anatomy,‖ Frye reveals the very high estimate he has of Robert Burton‘s The Anatomy of Melancholy: The word anatomy in Shakespeare‘s day and a little later meant a dissection for a synthetic overview. One of my favorite books in English literature—there are times when it is actually my favorite—is Burton‘s Anatomy of Melancholy. Of course, there were four humors then, but for Burton there was only the one, melancholy. That was the source of all mental and physical diseases in the world. So he writes an enormous survey of human life. It ranks with Chaucer and Dickens, except the characters are books rather than people. It was both an analysis of the causes and cures and treatment of melancholy and a kind of synthetic overview of human nature before it gets melancholy. On a much smaller scale there was Lyly‘s Euphues: The Anatomy of Wit, which has given us the word euphuism, meaning that if you‘re too bright and don‘t know enough you can get into trouble. That use of the term anatomy was one that I thought exactly fitted what I was doing.‖ (Interviews, 936–7)1 The title Anatomy of Criticism is obviously indebted to Burton, but the title was assigned to the book late in the publication process. -
HPS Part II Students This Year
Contents THE DEPARTMENT Introduction................................................................................................................... 2 Staff and Affiliates........................................................................................................ 3 Visitors and Students..................................................................................................... 4 Comings and Goings ..................................................................................................... 5 Roles and Responsibilities ............................................................................................ 6 Prizes, Projects and Honours......................................................................................... 7 Seminars and Special Lectures...................................................................................... 8 STUDENTS Student Statistics......................................................................................................... 10 Part II Dissertation Titles ............................................................................................ 11 Part II Primary Sources Essay Titles........................................................................... 12 MPhil Essay and Dissertation Titles ........................................................................... 14 PhD Theses.................................................................................................................. 17 Transferable Skills......................................................................................................