Asterism and Constellation: Terminological Dilemmas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used. -
PDF (Pbcameron Thesis.Pdf)
The Formation and Evolution of Neutron Stars: Astrometry, Timing, and Transients Thesis by P. Brian Cameron In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2009 (Defended June 2, 2008) ii c 2009 P. Brian Cameron All Rights Reserved iii Acknowledgements I have been incredibly fortunate these last five years to work with and have the support of so many amazing people. Foremost, I would like to acknowledge my enormous debt to my advisor, Shri Kulkarni. His vision and tireless dedication to astronomy were inspiring, and led to the topics in this thesis being at the forefront of astrophysics. Our styles contrasted, but his energy, open advice, and support made for a very rewarding collaboration. In this same vein, I am grateful to Matthew Britton whose ideas and open door made the last 2 years incredibly enjoyable. I have also had the privilege of working with a number talented people on a wide variety of topics. I am grateful to Bryan Jacoby, David Kaplan, Bob Rutledge, and Dale Frail for their insights and patience. I would also like to thank the NGAO crowd that got me thinking hard about astrometry: Rich Dekany, Claire Max, Jessica Lu, and Andrea Ghez. No observer could ever function with out people working tirelessly at the telescope and when you return from it. I am grateful for the patience and dedication of the Keck astronomers, especially Al Conrad, Randy Campbell and Jim Lyke, as well as those at Palomar: Jean Mueller, and Karl Dunscombe. I am indebted to the excellent staff here at Caltech for putting up with my endless questions and requests: Patrick Shopbell, Anu Mahabal, and Cheryl Southard. -
Star Clusters Or Asterisms? 2MASS CMD and Structural Analyses of 15 Challenging Targets
A&A 530, A32 (2011) Astronomy DOI: 10.1051/0004-6361/201116452 & c ESO 2011 Astrophysics Star clusters or asterisms? 2MASS CMD and structural analyses of 15 challenging targets E. Bica and C. Bonatto Universidade Federal do Rio Grande do Sul, Departamento de Astronomia, CP 15051, RS, Porto Alegre 91501-970, Brazil e-mail: [charles;bica]@if.ufrgs.br Received 7 January 2011 / Accepted 29 March 2011 ABSTRACT Context. Poorly-populated star clusters may have photometric and structural properties not much different from asterisms, to the point that, in some cases, widely-used databases present conflicting classifications. Aims. We investigate the nature of a sample of challenging targets that have been classified either as star clusters or asterisms in different studies. A few objects are studied for the first time. Methods. The analysis employs 2MASS photometry, field-star decontamination, to enhance the intrinsic colour–magnitude diagram (CMD) morphology, and colour-magnitude filters, for high contrast stellar radial density profiles (RDPs). Results. Based on properties derived from field-star decontaminated CMDs, and structural parameters from RDPs, we find that Pismis 12, IC 1434, Juchert 10, Ruprecht 30, NGC 3519, Herschel 1, Mayer 1, and Muzzio 1 are open clusters with ages within 5Myr−1.3 Gyr. Ruprecht 129, 130, 140, and 146 are borderline cases, being rather poorly-populated, with evolutionary sequences and RDPs suggesting star clusters. Dolidze 39, BH 79, and Ruprecht 103, have CMDs and RDPs typical of asterisms. Conclusions. When a low stellar population is associated with a dense field contamination and/or important differential reddening, only a thin line separates star clusters and asterisms. -
In This Exercise, You Will Learn Some of the Stars That Make up Patterns in the Sky
PHYS 1830 - Perspectives on the Universe Winter 2015 PLANETARIUM EXERCISE In this exercise, you will learn some of the stars that make up patterns in the sky. These are properly known as asterisms. Constellations, on the other hand, are defined as 88 regions or patches of sky that are officially designated by the International Astronomical Union (IAU). Constellations often contain the familiar patterns of stars that are the asterisms, but constellations are usually identified by their Latin name. For example, the asterism of the Big Dipper is contained within the constellation of Ursa Major, the Greater Bear. You will also be introduced to the astronomical coordinate system that is most commonly used to describe positions of objects in the sky: the equatorial coordinate system. Part 1: Sketching You will sketch several asterisms on a single page. Draw a line across the bottom of the page to indicate the position of the horizon. Label this line with the cardinal points. Draw a cross near the top of your sketch to represent the position of the zenith. Label this point. Lightly draw in the position of the meridian and label it. For each sketch, label the time for which the planetarium is set and record your location within the dome. Use circles to mark the relative positions of the stars. The size of the circle should reflect the relative brightness with larger circles indicating brighter stars. Use straight lines to connect the relevant stars to draw the asterism shape. Sketch #1: Big Dipper, Little Dipper, and Cassiopeia Label the asterism/constellation name. -
Messier 58, 59, 60, 89, and 90, Galaxies in Virgo
Messier 58, 59, 60, 89, and 90, Galaxies in Virgo These are five of the many galaxies of the Coma-Virgo galaxy cluster, a prime hunting ground for galaxy observers every spring. Dozens of galaxies in this cluster are visible in medium to large amateur telescopes. This star hop includes elliptical galaxies M59, M60, and M89, and spiral galaxies M58 and M90. These galaxies are roughly 50 to 60 million light years away. All of them are around magnitude 10, and should be visible in even a small telescope. Start by finding the Spring Triangle, which consists of three widely- separated first magnitude stars-- Arcturus, Spica, and Regulus. The Spring Triangle is high in the southeast sky in early spring, and in the southwest sky by mid-Summer. (To get oriented, you can use the handle of the Big Dipper and "follow the arc to Arcturus"). For this star hop, look in the middle of the Spring Triangle for Denebola, the star representing the back end of Leo, the lion, and Vindemiatrix, a magnitude 2.8 star in Virgo. The galaxies of the Virgo cluster are found in the area between these two stars. From Vindemiatrix, look 5 degrees west and slightly south to find ρ (rho) Virginis, a magnitude 4.8 star that is easy to identify because it is paired with a slightly dimmer star just to its north. Center ρ in the telescope with a low-power eyepiece, and then just move 1.4 degrees north to arrive at the oval shape of M59. Continuing with a low-power eyepiece and using the chart below, you can take hops of less than 1 degree to find M60 to the east of M59, and M58, M89, and M90 to the west and north. -
Newsletter Archive the Skyscraper February 2009
The SkyscraperVol. 36 No. 2 February 2009 Amateur Astronomical Society Of Rhode Island · 47 Peeptoad Road North Scituate, RI 02857 · www.theSkyscrapers.org February Meeting Seagrave Memorial Observatory is open with Dr. Padma Venkatraman to the public Friday, February 6 at North Scituate Community Center weather permitting Dr. Venkatraman is the author of 2. Women Mathematicians (biographies Climbing the Stairs, Double Stars: The of Maria Agnesi, Emilie du Chatalet, Emmy Story of Caroline Herschel and Women Noether, Mary Sommerville, Ada Lovelace, Mathematicians. She will speak about the and Sonya Kovalevskaya) $30 life and times of Caroline Herschel and 3. Mathematwist: Number Tales also touch on the struggles that other From Around The World (multicultural women pioneers have undergone to collection of mathematical folktales for Saturdays 7pm - 10pm achieve their goals. children aged 8-12) $15 Please note that the observatory may be inaccessible for several weeks Dr. Venkatraman is going to bring 4. Climbing the Stairs (a novel that has following a winter storm. some of her books to sell and will of strong women in it but nothing about See www.theSkyscrapers.org course autograph them. Here is the list astronomy or mathematics, but it’s the for updates. along with the prices. top of my list so I always take it wherever North Scituate 1. Double Stars: The Story of Caroline I go) $20 Community Center Herschel (biography) $30 All of our winter meetings (Dec-Mar) are held at the Community Center. From Seagrave Observatory, the Community From the president Center is the first building on the right The International Year of The Cosmic Diary is an example of a side going south on Rt. -
Remote Video Astronomy Group MECATX Sky Tour May 2020
Remote Video Astronomy Group MECATX Sky Tour May 2020 1) Boötes (bo-OH-teez), the Herdsman - May 2 2) Libra (LEE-bruh), the Scales - May 9 3) Lupus (LOOP-us), the Wolf - May 9 4) Ursa Minor (ER-suh MY-ner), the Little Bear - May 13 5) Corona Borealis (cuh-ROE-nuh bor-ee-AL-iss) the Northern Crown - May 19 6) Norma (NOR-muh), the Carpenter's Square - May 19 7) Apus (APE-us), the Bird of Paradise - May 21 8) Triangulum Australe (try-ANG-gyuh-lum aw-STRAL-ee), the Southern Triangle - May 23 9) Draco (DRAY-co), the Dragon - May 24 MECATX RVA May 2019 - www.mecatx.ning.com – YouTube – MECATX – www.ustream.tv – dfkott Revised: Alyssa Donnell 04.19.2020 May 2 Boötes (bo-OH-teez), the Herdsman Boo Boötis (bo-OH-tiss) MECATX RVA May 2019 - www.mecatx.ning.com – YouTube – MECATX – www.ustream.tv – dfkott 1 Boötes Meaning: The Bear Driver Pronunciation: bow owe' teez Abbreviation: Boo Possessive form: Boötis (bow owe' tiss) Asterisms: The Diamond [of Virgo], The Ice Cream Cone, The Kite, The Spring Triangle, The Trapezoid Bordering constellations: Canes Venatici, Coma Berenices, Corona Borealis, Draco, Hercules, Serpens, Ursa Major, Virgo Overall brightness: 5.845 (59) Central point: RA = 14h40m Dec.= +31° Directional extremes: N = +55° S = +7° E = 15h47m W = 13h33m Messier objects: none Meteor showers: Quadrantids (3 Jan),4 Boötids (1 May), a Boötids (28 Apr), June Bootids (28 Jun) Midnight culmination date: 2 May Bright stars: a (4), F, (78), i (106), y (175) Named stars: Arcturus (a), Hans (y), Izar (s), Merez (3), Merga (38), Mufrid (ii), Nekkar -
Skywatchers of Africa and Follow The
A Teacher Resource Guide for For Grades 3 to 8 Children’s Museum of Virginia Lesson Overview The education resource was developed using the 5E model of learning and involves pre-visit activities to ENGAGE student interest, planetarium presentations using simulation software along with hands on activities to EXPLORE and EXPAIN about the nature of constellations and related the constellations to the lore from African societies, an EXTEND/ELABORATE section where they further develop the concepts of their visit as well as the EVALUATE section to allow a check of student mastery. The delivery of the EXPLORE and EXPLAIN sections can be tailored to your particular needs and may include one of two possible planetarium shows as well as a mini lesson on selected constellations. Standards of Learning Virginia Standards History 3.1, 3.4, 8.3, 8.4 Science Various point 1 bullets for grades 3 - 6 National Standards Geography How to use maps and other geographic representations, tools and technologies to acquire, process and report information. How to use mental maps to organize information about people, place and environments. Science As a result of their activities in grades k – 4, all students should develop an understanding of: o Objects in the sky o Changes in Earth and sky Essential Questions What are constellations and what methods are best to observe them? How do the constellations you can see vary from one spot to another on Earth? How do the accepted constellations of today differ from those created by early African civilizations? Instructional Objectives Students will observe the planetarium sky using familiar patters to navigate other constellations; view the southern skies above Africa to illustrate how the groups of constellations varies with latitude; learn about several of the dominant cultures of native Africa and about the names for the constellations; and recognize that the constellations which they invent can be just as useful as the ancient Greek, Roman or African constellations. -
Alternate Constellation Guide
ARKANSAS NATURAL SKY ASSOCIATION LEARNING THE CONSTELLATIONS (Library Telescope Manual included) By Robert Togni Cover Image courtesy of Wikimedia. Do not write in this book, and return with scope to library. A personal copy of this guide can be obtained online at www.darkskyarkansas.com Preface This publication was inspired by and built upon Robert (Rocky) Togni’s quest to share the night sky with all who can be enticed under it. His belief is that the best place to start a relationship with the night sky is to learn the constellations and explore the principle ob- jects within them with the naked eye and a pair of common binoculars. Over a period of years, Rocky evolved a concept, using seasonal asterisms like the Summer Triangle and the Winter Hexagon, to create an easy to use set of simple charts to make learning one’s way around the night sky as simple and fun as possible. Recognizing that the most avid defenders of the natural night time environment are those who have grown to know and love nature at night and exploring the universe that it re- veals, the Arkansas Natural Sky Association (ANSA) asked Rocky if the Association could publish his guide. The hope being that making this available in printed form at vari- ous star parties and other relevant venues would help bring more people to the night sky as well as provide funds for the Association’s work. Once hooked, the owner will definitely want to seek deeper guides. But there is no better publication for opening the sky for the neophyte observer, making the guide the perfect companion for a library telescope. -
(NASA/Chandra X-Ray Image) Type Ia Supernova Remnant – Thermonuclear Explosion of a White Dwarf
Stellar Evolution Card Set Description and Links 1. Tycho’s SNR (NASA/Chandra X-ray image) Type Ia supernova remnant – thermonuclear explosion of a white dwarf http://chandra.harvard.edu/photo/2011/tycho2/ 2. Protostar formation (NASA/JPL/Caltech/Spitzer/R. Hurt illustration) A young star/protostar forming within a cloud of gas and dust http://www.spitzer.caltech.edu/images/1852-ssc2007-14d-Planet-Forming-Disk- Around-a-Baby-Star 3. The Crab Nebula (NASA/Chandra X-ray/Hubble optical/Spitzer IR composite image) A type II supernova remnant with a millisecond pulsar stellar core http://chandra.harvard.edu/photo/2009/crab/ 4. Cygnus X-1 (NASA/Chandra/M Weiss illustration) A stellar mass black hole in an X-ray binary system with a main sequence companion star http://chandra.harvard.edu/photo/2011/cygx1/ 5. White dwarf with red giant companion star (ESO/M. Kornmesser illustration/video) A white dwarf accreting material from a red giant companion could result in a Type Ia supernova http://www.eso.org/public/videos/eso0943b/ 6. Eight Burst Nebula (NASA/Hubble optical image) A planetary nebula with a white dwarf and companion star binary system in its center http://apod.nasa.gov/apod/ap150607.html 7. The Carina Nebula star-formation complex (NASA/Hubble optical image) A massive and active star formation region with newly forming protostars and stars http://www.spacetelescope.org/images/heic0707b/ 8. NGC 6826 (Chandra X-ray/Hubble optical composite image) A planetary nebula with a white dwarf stellar core in its center http://chandra.harvard.edu/photo/2012/pne/ 9. -
Winter Hexagon
Applegater Fall 2011 7 THE STARRY SIDE spectacles.) Sirius in Canus Major (Orion’s Ocean). The faithful dog) holds up the bottom of the moon enters Winter hexagon winter hexagon and may not rise for you the umbra till late December/early January, but as (shadow) BY GREELEY WELLS the season moves on all will be revealed, with a I hope you’ve enjoyed the summer our second star: the bright Aldebaran. I promise! Here’s an easy trick: the later subtle, dim triangle and its constellations during this (Aldebaran is part of Taurus the Bull, a you look the farther up they will be. So warmth short summer season, and that you can beautiful and distinctive small triangle.) if you’re caught out extra late some night, that slowly keep enjoying it as it overlaps into fall and Stretch your arm out fully in front of you. that’s an excellent time to see it all. Hope envelops eventually sinks in the west during winter. With your hand wide open as a measuring for clear skies. the whole Greeley Wells I’ve talked a lot in past columns about device, the distance between Capella When they’ve all risen and you’ve moon. The the summer triangle because it’s the main and Aldebaran is the distance between figured all this out, step back and look at total eclipse is from 6:06 to 6:57 am. As asterism (a cluster of stars or constellations the end of your thumb and pinky finger this amazing, very nearly perfect hexagon we head toward dawn, this umbra begins that have a name) of summer. -
Messier 61, Oriani's Galaxy
Messier 61, Oriani’s Galaxy This beautiful face-on barred spiral galaxy was discovered in 1779 by Barnabas Oriani, a Catholic priest and accomplished astronomer, and it became the 61st entry in Messier's catalog. It is on the southern outskirts of the Virgo galaxy cluster. Through small scopes, it appears as a circular glow with a brighter center. Large scopes will show its two large spiral arms. Start by finding the Spring Triangle, which consists of three widely- separated first magnitude stars-- Arcturus, Spica, and Regulus. The Spring Triangle is high in the southeast sky in early spring, and in the southwest sky by mid-Summer. (To get oriented, you can use the handle of the Big Dipper and "follow the arc to Arcturus"). For this star hop, look in the middle of the Spring Triangle for Denebola, the star representing the back end of Leo, the lion, and Vindemiatrix, a magnitude 2.8 star in Virgo. The galaxies of the Virgo cluster are found in the area between these two stars. From Vindemiatrix, trace the curving arc of stars that form part of the constellation Virgo to reach Zaniah, as shown below. All of these stars should be easy to see with the naked eye under a clear sky. From Zaniah, move 4 degrees north to a 5th magnitude star that will be easily visible in binoculars or a finderscope. Center this star in your telescope with a low-power eyepiece, then move a little more than 1 degree to the north- northeast to reach M61. Star hop from www.skyledge.net by Jim Mazur.