In This Exercise, You Will Learn Some of the Stars That Make up Patterns in the Sky

Total Page:16

File Type:pdf, Size:1020Kb

In This Exercise, You Will Learn Some of the Stars That Make up Patterns in the Sky PHYS 1830 - Perspectives on the Universe Winter 2015 PLANETARIUM EXERCISE In this exercise, you will learn some of the stars that make up patterns in the sky. These are properly known as asterisms. Constellations, on the other hand, are defined as 88 regions or patches of sky that are officially designated by the International Astronomical Union (IAU). Constellations often contain the familiar patterns of stars that are the asterisms, but constellations are usually identified by their Latin name. For example, the asterism of the Big Dipper is contained within the constellation of Ursa Major, the Greater Bear. You will also be introduced to the astronomical coordinate system that is most commonly used to describe positions of objects in the sky: the equatorial coordinate system. Part 1: Sketching You will sketch several asterisms on a single page. Draw a line across the bottom of the page to indicate the position of the horizon. Label this line with the cardinal points. Draw a cross near the top of your sketch to represent the position of the zenith. Label this point. Lightly draw in the position of the meridian and label it. For each sketch, label the time for which the planetarium is set and record your location within the dome. Use circles to mark the relative positions of the stars. The size of the circle should reflect the relative brightness with larger circles indicating brighter stars. Use straight lines to connect the relevant stars to draw the asterism shape. Sketch #1: Big Dipper, Little Dipper, and Cassiopeia Label the asterism/constellation name. Label the pointer stars in the Big Dipper. Label Polaris. Sketch #2: Winter Hexagon (Orion, Taurus, Auriga, Gemini, Canis Minor, Canis Major) Include at least a few bright stars in each of the constellations and label each one. Label the seven brightest stars that make the hexagon (plus the middle): Rigel, Aldeberan, Capella, Castor, Pollux, Procyon, Sirius, and Betelgeuse, together with the Pleiades. Comment on the position of the the Big Dipper compared to your first sketch. Part 2: Equatorial Coordinate System Using the grid projected onto the planetarium, write down the equatorial coordinates of the following stars (Hint: remember that the great circles of RA converge on Polaris): Right Ascension (α) Declination (δ) Rigel Procyon Capella Pleiades Summer Solstice Tuesday, 20 January, 2015 -idc.
Recommended publications
  • Aquarius Aries Pisces Taurus
    Zodiac Constellation Cards Aquarius Pisces January 21 – February 20 – February 19 March 20 Aries Taurus March 21 – April 21 – April 20 May 21 Zodiac Constellation Cards Gemini Cancer May 22 – June 22 – June 21 July 22 Leo Virgo July 23 – August 23 – August 22 September 23 Zodiac Constellation Cards Libra Scorpio September 24 – October 23 – October 22 November 22 Sagittarius Capricorn November 23 – December 23 – December 22 January 20 Zodiac Constellations There are 12 zodiac constellations that form a belt around the earth. This belt is considered special because it is where the sun, the moon, and the planets all move. The word zodiac means “circle of figures” or “circle of life”. As the earth revolves around the sun, different parts of the sky become visible. Each month, one of the 12 constellations show up above the horizon in the east and disappears below the horizon in the west. If you are born under a particular sign, the constellation it is named for can’t be seen at night. Instead, the sun is passing through it around that time of year making it a daytime constellation that you can’t see! Aquarius Aries Cancer Capricorn Gemini Leo January 21 – March 21 – June 22 – December 23 – May 22 – July 23 – February 19 April 20 July 22 January 20 June 21 August 22 Libra Pisces Sagittarius Scorpio Taurus Virgo September 24 – February 20 – November 23 – October 23 – April 21 – August 23 – October 22 March 20 December 22 November 22 May 21 September 23 1. Why is the belt that the constellations form around the earth special? 2.
    [Show full text]
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • Newpointe-Catalog
    NewPointe® Constellation Collections More value from Batesville Constellation Collections 18 Gauge Steel Caskets Leo Collection Leo Brushed Black Silver velvet interior Leo Brushed Black shown with Praying Hands decorative kit. 257178 - half couch Choose from 11 designs. 262411 - full couch See page 15 for your options. • Includes decorative kit option for lid Leo Painted Silver Silver velvet interior 257172 - half couch 262415 - full couch • Includes decorative kit option for lid Leo Brushed Ruby Leo Brushed Blue Leo Painted Sand Leo Painted White Moss Pink velvet interior Light Blue velvet interior Champagne velvet interior Moss Pink velvet interior 257177 - half couch 257179 - half couch 257173 - half couch 257166 - half couch 262410 - full couch 262412 - full couch 262416 - full couch 262414 - full couch • Includes decorative kit option • Includes decorative kit option • Includes decorative kit option • Includes decorative kit option for lid for lid for lid for lid 2 All caskets not available in all locations. Please check to ensure availability in your area. 18 Gauge Steel Caskets Virgo Collection Virgo White/Pink Moss Pink crepe interior| $845 250673 - half couch Virgo White/Pink shown with Roses 254258 - full couch decorative kit and corner decals. Choose from 11 designs. • Includes decorative kit option See page 15 for your options. for lid and corner decals Virgo Blue Light Blue crepe interior 250658 - half couch 254255 - full couch • Includes decorative kit option for lid and corner decals Virgo Silver Virgo White Virgo Copper
    [Show full text]
  • The Twenty−Eight Lunar Mansions of China
    浜松医科大学紀要 一般教育 第5号(1991) THE TWENTY-EIGHT LUNAR MANSIONS OF CHINA (中国の二十八宿) David B. Kelley (英 語〉 Abstract: This’Paper attempts to place the development of the Chinese system ・fTw・nty-Eight Luna・ Man・i・n・(;+八宿)i・・血・lti-cult・・al f・am・w・・k, withi・ which, contributions from cultures outside of China may be recognized. lt・ system- atically compares the Chinese system with similar systems from Babylonia, Arabia,・ and lndia. The results of such a comparison not only suggest an early date for its development, but also a significant level of input from, most likely, a Middle Eastern source. Significantly, the data suggest an awareness, on the part of the ancient Chinese, of completely arbitrary groupings of stars (the twelve constellations of the Middle Eastern Zodiac), as well as their equally arbitrary syMbolic associ- ations. The paper also attempts to elucidate the graphic and organizational relation- ship between the Chinese system of lunar mansions and (1.) Phe twelve Earthly Branches(地支)and(2.)the ten Heavenly S.tems(天干). key words二China, Lunar calender, Lunar mansions, Zodiac. O. INTRODUCTION The time it takes the Moon to circle the Earth is 29 days, 12 hours, and 44 minutes. However, the time it takes the moon to return to the same (fixed一) star position amounts to some 28 days. ln China, it is the latter period that was and is of greater significance. The Erh-Shih-Pα一Hsui(一Kung), the Twenty-Eight-lnns(Mansions),二十八 宿(宮),is the usual term in(Mandarin)Chinese, and includes 28 names for each day of such a month. ln East Asia, what is not
    [Show full text]
  • Constellations with Prominent Stars That Can Be Found Near the Meridian at 10 Pm on January 15
    ONSTELLATIONS C Altitude Ruler The rotation of the Earth on its axis causes the stars to rise and set each evening. In addition, the orbit of the Earth around the Sun places different regions of the sky in our Horizon night-time view. The PLANISPHERE is an extremely useful tool for finding stars and 10 constellation in the sky, depicting not only what is currently in the sky but it also allows the 20 prediction of the rising and setting times of various celestial objects. 30 THE LAYOUT OF THE PLANISPHERE 40 50 The outer circumference of the dark blue circular disk (which is called the star wheel) you’ll notice that the wheel is divided into the 12 months, and that each month is divided into 60 individual dates. The star wheel rotates about the brass fastener, which represents the 70 North Celestial Pole. The frame of the planisphere has times along the outer edge. 80 Holding the planisphere on the southern corner you'll see "midnight" at the top. Moving Zenith counterclockwise, notice how the hours progress, through 1 AM, 2 AM, and so on through "noon" at the bottom. The hours then proceed through the afternoon and evening (1 PM, 2 PM, etc.) back toward midnight. Once you have the wheel set properly for the correct time and day, the displayed part represents what you see if you stand with the star and planet locator held directly over your head with the brass fastener toward the north. (Notice that the compass directions are also written on the corners of the frame.) Of course, you don't have to actually stand that way to make use of the Star and Planet Locator--this is just a description to help you understand what is displayed.
    [Show full text]
  • MATARIKI- SPACE/TIME GUIDE the Star Cluster Matariki Plays A
    TEACHER SCIENCE RESOURCE CONTENT/ CURRICULUM LINK ASTRONOMICAL STARDOME OBSERVATORY & PLANETARIUM SYSTEMS FACTS, RESOURCES AND ACTIVITIES ON... MATARIKI- SPACE/TIME GUIDE The star cluster Matariki plays a pivotal role in marking the Māori PISCES New Year. It is one of the AQUARIUS ARIES CAPRICORN nearest open star clusters MATARIKI SEP A OCT UG to Earth, and is the most V Matariki rises early JU obvious grouping of stars O Matariki rises in the morning & is visible L TAURUS N middle of the night & until sunrise that can be seen with is visible until sunrise Matariki rises pre-dawn & is visible the unaided eye. It can until sunrise Matariki rises late C evening & is visible E N SAGITTARIUS be seen from almost until early morning SUN D U Matariki is J everywhere in the world, not visiable Matariki rises and at almost any time at dusk & is visible Matariki is visible near GEMINI until late EARTH Matariki is visible high the western horizon JA of the year. N in the sky at dusk & is at dusk & is visible Y for a short while MA visible in the evening FEB APR Because of Earth’s MAR SCORPIO rotation, the Sun and CANCER & MAUI’S FISH HOOK stars appear to move LEO LIBRA across the sky. Matariki VIRGO appears to move through the night sky along the same path as the Sun. This path is known as the ecliptic. Matariki can be found at different points of the ecliptic at different times in the year. This is because of Earth’s yearly One of the easiest times of orbit around the Sun.
    [Show full text]
  • NSF's National Optical Infrared Astronomy Research Laboratory
    NSF’s National Optical Infrared Astronomy Research Laboratory and Planetary Science Tod R. Lauer (NOIRLab) [email protected] (520) 861-4618 John Blakeslee (Gemini / NOIRLab) NSF’s National Optical Infrared Astronomy Research Laboratory (NOIRLab) is a new organization that consolidates NSF’s National Optical Astronomy Observatory (NOAO), the Gemini Observatory, and the operation of the Rubin Observatory into a unified system for providing the US research community with frontier observational facilities and data. NOIRLab will also be tasked with providing the community with access to the US extremely large telescope (ELT) projects now in development: the Giant Magellan Telescope and the Thirty Meter Telescope, if the NSF invests in construction and/or operations of one or both of these telescopes Historically, NOAO and Gemini have enthusiastically supported planetary science research, and fully expect to continue to do so over the coming decade. The Rubin Observatory will soon begin operations with its Legacy Survey of Space and Time (LSST), which will provide a deep census of small bodies throughout the solar system. The ELTs will be built around high- performance adaptive optics fed imaging and spectroscopy, which will be available for detailed study of all solar system objects, and will support strong programs in exo-planet research. The Decade Ahead We write to the Planetary Science and Astrobiology Decadal Survey with the simple goal of requesting that the survey consider us within the constellation of facilities available for supporting initiatives in planetary science and astrobiology over the coming decade. Overall, we see NOIRLab supporting leading-edge planetary science research with all of its facilities, and would enjoy working with the planetary science community to realize this ambition.
    [Show full text]
  • CONSTELLATION BOÖTES, the HERDSMAN Boötes Is the Cultivator Or Ploughman Who Drives the Bears, Ursa Major and Ursa Minor Around the Pole Star Polaris
    CONSTELLATION BOÖTES, THE HERDSMAN Boötes is the cultivator or Ploughman who drives the Bears, Ursa Major and Ursa Minor around the Pole Star Polaris. The bears, tied to the Polar Axis, are pulling a plough behind them, tilling the heavenly fields "in order that the rotations of the heavens should never cease". It is said that Boötes invented the plough to enable mankind to better till the ground and as such, perhaps, immortalizes the transition from a nomadic life to settled agriculture in the ancient world. This pleased Ceres, the Goddess of Agriculture, so much that she asked Jupiter to place Boötes amongst the stars as a token of gratitude. Boötes was first catalogued by the Greek astronomer Ptolemy in the 2nd century and is home to Arcturus, the third individual brightest star in the night sky, after Sirius in Canis Major and Canopus in Carina constellation. It is a constellation of large extent, stretching from Draco to Virgo, nearly 50° in declination, and 30° in right ascension, and contains 85 naked-eye stars according to Argelander. The constellation exhibits better than most constellations the character assigned to it. One can readily picture to one's self the figure of a Herdsman with upraised arm driving the Greater Bear before him. FACTS, LOCATION & MAP • The neighbouring constellations are Canes Venatici, Coma Berenices, Corona Borealis, Draco, Hercules, Serpens Caput, Virgo, and Ursa Major. • Boötes has 10 stars with known planets and does not contain any Messier objects. • The brightest star in the constellation is Arcturus, Alpha Boötis, which is also the third brightest star in the night sky.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • From Our Perspective... the Ecliptic
    2/9/09 Why don’t we see the same Mastering Astronomy Assignment 3 constellations throughout the year? • Due Feb 17, 11 am • Read Sections 2.1, 2.2 and S1.2 The Earth also revolves around the Sun, From our perspective... which changes our view of the stars March September Earth circles the Sun in 365.25 days and, The Ecliptic consequently, the Sun appears to go once around the ecliptic in the same period. If we could see • As the Earth orbits background stars in the daytime, our Sun would the Sun, the Sun appears to move a) appear to move against them at a rate of 360° per eastward among the day. stars following a path b) appear to move against them at a rate of about called the ecliptic 15° per day. • The ecliptic is a c) appear to move against them at a rate of about 1° projection of Earth’s per day. orbit onto the The tilt of the Earth's axis d) remain stationary against these stars. celestial sphere causes the ecliptic to be tilted to the celestial equator 1 2/9/09 The sky varies as Earth orbits the Sun • As the Earth orbits the Sun, the Sun appears to move along the Zodiac ecliptic. • At midnight, the stars on our meridian are opposite the Sun in The 13 Zodiacal constellations that our Sun the sky. covers-up (blocks) in the course of one year (used to be only 12) • Aquarius • Leo • Pisces • Libra • Aries • Virgo • Scorpius • Taurus • Ophiuchus • Gemini • Sagittarius • Cancer • Capricornus The Zodiacal Constellations that our Sun blocks in the course of one year (only 12 are shown here) North Star Aquarius Pisces Capricornus Aries 1 day Sagittarius Taurus Scorpius 365 days Libra Gemini Virgo Cancer Leo North Star Aquarius Pisces Capricornus In-class Activities: Seasonal Stars Aries 1 day Sagittarius • Work with a partner! Taurus Scorpius • Read the instructions and questions carefully.
    [Show full text]
  • Winter Constellations Orion
    Night Sky 101: Winter Constellations Orion Orion is possibly the most well-known constellation, apart from The Big and Little Dipper. Easily recognizable by the three bright stars that form the “belt of Orion,” the constellation is, in reality, much larger. The two brightest stars in Orion are called Betelgeuse and Rigel. Betelgeuse has a distinct red tint, which makes it easy to tell them apart. Betelgeuse may soon go completely supernova. Astronomers suspect that this supernova will not affect the Earth, but may cause a double shadow to be cast on the Earth’s surface for up to two weeks. Orion is identified as the hunter by the Greeks. According to the myth, Orion was the son of the god Posiedon and Euryale, queen of the Amazons. Orion inherited his mothers talents and became the greatest hunter in the whole world. However, he boasted about this repeatedly, and was killed by a small scorpion (Scorpius), who stung him on the ankle. Canis Major and Canis Minor According to Greek mythology, Canis Major and Minor represent Orion’s faithful hunting companions. Canis Major appears to be chasing the rabbit constellation, Lepus, in the night sky. Canis Major is home to the sky’s brightest star, Sirius, also called “The Dog Star.” Sirius is a blue star, but appears to be many different colors and has been repeatedly mistaken as a UFO. One of the most unique celestial objects in Canis Major is the colliding spiral galaxies, NGC 2207 and IC 2163. The larger galaxy is in the process of pulling stars and remaining material from the smaller galaxy.
    [Show full text]
  • Startheater 3 Man
    AGES 8+ 2009 ® Planetarium Projector with Astronomy Software Instruction Manual Table of Contents Discover the Universe! .......................................................................................................3 Your Own Planetarium ......................................................................................................3 What Is a Constellation? ....................................................................................................3 The Star Sphere ....................................................................................................................4 Assembly and Operation ..................................................................................................4 Installing Batteries .......................................................................................................4 Operating Your Planetarium ....................................................................................5 Setting the Date and Time ........................................................................................6 Care and Maintenance.......................................................................................................6 Meteors and Comets ..........................................................................................................7 The Constellations...............................................................................................................7 The Moving Sky..................................................................................................................10
    [Show full text]