Supernovae: from Stellar Evolution to Cosmology

Total Page:16

File Type:pdf, Size:1020Kb

Supernovae: from Stellar Evolution to Cosmology Supernovae: from Stellar Evolution to Cosmology Massimo Turatto – Padova - Italia Outlook • Lesson a – Introduction to SNe • Lesson b – SN 1987A in LMC • Lesson c – SN general properties • Lesson d – SN progenitors and models • Lesson e – Thermonuclear SNe • Lesson f – Core Collapse SNe • Lesson g – SN rates • Lesson h – SNe and Cosmology • Lesson i – SNe and GRB Lesson a Introduction to Supernovae 1.History 2.Discovery techniques 3.Numerology Definition of Supernova Explosive event disrupting a star at the end of its (single or binary) evolution, returning to the Inter-Stellar Medium all (or most) the gas synthetized during its evolution and explosion. Kepler SN 1604 De Stella Nova in Pede Serpentarii Galileo: no significant parallax Î above the Moon against Aristotle’s Cosmology (Digges already for SN 1572) .. generated by the embrace of Mars and Jupiter at the time of their encounter Novae and Supernovae • Novae observed since millennia in the East and in the West • Few in “Nebulae” (S And 1885) • Lundmark (1919) Î D(And)=200Kpc Î MSN1885=-15 • Lundmark (1925) Î “It is quite possible that we have to deal with two distinct classes of Novae: one 'upper class' having comparatively few members and reaching an absolute magnitude more or less equal to the absolute magnitude of the system in which they appear: one 'lower class' in the mean 10 magnitudes fainter ...” • Baade & Zwicky 1933-1934 Î SuperNovae as final stages of Stellar Evolution, sources of cosmic rays and result of creation of NS (!!) Historical SNe (Stephenson & Green 2005) • Investigations of ancient (East and West) chronicles Criteria: 1. Long duration of visibility 2. Fixed location 3. Low b 4. No angular extent 5. Unusual brilliance 6. Independent records 7. (association with SNR) “safe” historical supernovae only 8 reliable events: Year Date Con RA Dec mag Comment/SNR • 185 AD Cen 14:43.1 -62:28 -2(-6??) SNR: G135.4-2.3/RCW 86 • 386 Sgr SNR: G11.2-0.3 (?) • 393/396 Sco 17:14 -39.8 -3 3 radio sources candidates for SNR • 1006 Apr 30 Lup 15:02.8 -41:57 -9(+-1) SNR: PKS 1459-41 • 1054 Jul 4 Tau 05:34.5 +22:01 -6 M1 Crab Nebula • 1181 Aug 6 Cas 02:05.6 +64:49 -1 3C 58 • 1572 Nov 6 Cas 00:25.3 +64:09 -4 Tycho • 1604 Oct 9 Oph 17:30.6 -21:29 -3 Kepler • 1680? 1667? Cas 23:23.4 +58:50 6? Cas A SN (Stephenson & Green 2005; http://www.seds.org/messier/more/mw_sn.html) SN discovery (SN 1998S) Image to be searched Reference image Subtracted image SN 2000fc type Ia V=22.4 z=0.42 IAUC7537 Each image is the sum of three 15min exposures The search is based on the comparison of two images taken at different epochs. The image with the best seeing is matched to the other and the reference frame is subtracted using ISIS2.1 package. The difference image is searched for candidates using sextractor. Then we use a scoring algorithm tuned after artificial star experiment to sort the candidates. Early searches • 1885: a bright nova is discovered in the Andromeda Nebula • 1936: Zwicky systematic SN search using the new 18 inch Schmidt telescope • 1941: Minkowski provisionally divides SNe in type I and II Palomar 18 inch Schmidt telescope Field of view 9 x 9 deg limit discovery magnitude 16.5 Monitoring 150 nebular fields covering 1/5 of the entire sky visible from Palomar. Sept.1936 -- 1941 19 SNe 1 SN / 135 photographs 1 SN / 8 nights exposure time 1936-1938: 3 SNe First estimate of the Palomar 18 inch SN rate 1/ 600yr /galaxy Zwicky, F. 1938, ApJ 88,529 1936-1941: 19 SNe - Control time method -SN rate 1/ 359yr /galaxy - independent on galaxy type Zwicky, F. 1942, ApJ 96,28 The golden age • 1957: Schmidt telescopes devoted to SN searches in Zimmerwald (CH, P. Wild), Asiago (I, L. Rosino), Tonantzintla (MX, G. Haro, E. Chavira) • 1958: Palomar 48-inch Schmidt telescope began SN search • 1961: Coordinated international SN search • 1968: First SN by an amateur (J. Bennet SN 1968L) Asiago 40/50cm Schmidt telescope (1958 -1992) Field of view 5.5 x 5.5 deg Limit discovery mag 16.0 Asiago 67/92 cm Schmidt telescope (1966 Æ ) Field of view 5.5 x 5.5 deg Limit discovery mag 17.0 1954A Zwicky international end of Palomar Palomar SN search 48 inch search 1972E Asiago 40/50 Schmidt The modern times • 1975: “Zwicky” Palomar SN search ends • 1979: Southern SN search (Maza) • 1980: Evans begins his visual SN search (43 SNe) • 1981 CCD automated SN search • 1986 High redshift SN search z=0.2-0.4 • 1987 in LMC the brightest SN in the last 4 centuries MT graduates with a thesis on SNe Ωλ>0 1998bw 1988T GRBs z = 0.28 1995at z = 0.66 end of Palomar Southern search SN 1987A searches Today • LOTOSS 251; LOSS 139 • BAOSS 41 •QUEST 62 •EROS 60 • MSACSST 50 • + amateurs astronomers Sky distribution of SNe discovered to date Equatorial coordinates <1980 511 SNe 1980-1998 944 SNe >=1999 1295 SNe SN distribution in galactic coordinates Sky coverage of SN searches <1980 >=2002 z < 0.01 z > 0.1 Galaxy types Distribution of SN magnitudes SN redshift distribution LOTOSS SNe & spiral galaxy inclination Di Paola et al. (2002) A&A393, L21 II+Ib/c AV>6 mag 2002cv Sb-Scd Ia S0-Sab 2002bo AV =1.5 mag Iband SN types vs. galaxy types SN Numerology • Asiago supernova Catalogue (Barbon et al. 1984, 1989, 1999) • http://web.pd.astro.it/supern/snean.txt pec 2% (20/6/2005) Ibc 1% • Tot SNe 3154 Ic 3% Ib 1% -- 32% II 23% I 3% Ia 35% SN 1987A SN 1998bw • (too) large number of SN types • SNIa also in E • No SNII, Ib/c in early type galaxies • Different distribution among types High-z SN searches mid ’80s: • Danish 1.5m (Norgaard-Nielsen et al.) in the ’90s: •SCP (Perlmutter et al.) • High-z SN Search (Schmidt et al.) Î ΩΛ=0.7 in the ’00s: • Essence (Tololo, Smith et al.) • Legacy Survey CFHT (PI-less) Î w=p/ρ Southern Intermediate Redshift ESO SN Search (aimed to the SN rates) [email protected] Effective search area ~5.1 Telescope aperture: 2.2 m square degrees Field of view: 34`x 33` Spectroscopic follow up with Pixel scale: 0.238 arcsec/pix VLT+FORS1/2 12(+13) nights ESO 2.2+WFI 6 nights VLT • 21 fields • > 500 Gby of raw data • > 500 science exposures • > 100 candidates SN search target reference difference - = SN 2000fc type Ia z = 0.42 V=22.4 IAUC7537 SouthernSSouthern InIntermediatetermediate RRedshiftedshift E ESOSO SSNN SearchSearch 1. Observations: ESO2.2+WFI 2. SN search: STRESS package • Data reduction Æ mscred • Image subtraction Æ ISIS2.1 • Candidate detection Æ sextractor + “score” 3. SN confirmation • Spectroscopy (VLT+FORS) • Photometric history (mysql database) 4. Estimate of the detection efficiency • Artificial star experiment • Control time 5. Characterization of the galaxy sample: • Deep stacked images Æ swarp • Photometric redshift Æ hyperz 6. Compute the rate SN Searches SN 2001gf Ia z=0.132 SN2001gj II z = 0.27 ≈30% of candidates turn out to be AGNs. 34 spectroscopically confirmed SNe Ia cc Ia/All = 45% VLT Survey Telescope + OmegaCAM location: Paranal (Chile) size: 2.6 m field of view: 1 x 1 deg Large Binocular Telescope + LBCs location: Mt. Graham (Arizona) size: 2 x 8.2 m field of view: 23 x 23 arcmin 25% of the observing time for the Italian community .
Recommended publications
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • The Astronomers Tycho Brahe and Johannes Kepler
    Ice Core Records – From Volcanoes to Supernovas The Astronomers Tycho Brahe and Johannes Kepler Tycho Brahe (1546-1601, shown at left) was a nobleman from Denmark who made astronomy his life's work because he was so impressed when, as a boy, he saw an eclipse of the Sun take place at exactly the time it was predicted. Tycho's life's work in astronomy consisted of measuring the positions of the stars, planets, Moon, and Sun, every night and day possible, and carefully recording these measurements, year after year. Johannes Kepler (1571-1630, below right) came from a poor German family. He did not have it easy growing Tycho Brahe up. His father was a soldier, who was killed in a war, and his mother (who was once accused of witchcraft) did not treat him well. Kepler was taken out of school when he was a boy so that he could make money for the family by working as a waiter in an inn. As a young man Kepler studied theology and science, and discovered that he liked science better. He became an accomplished mathematician and a persistent and determined calculator. He was driven to find an explanation for order in the universe. He was convinced that the order of the planets and their movement through the sky could be explained through mathematical calculation and careful thinking. Johannes Kepler Tycho wanted to study science so that he could learn how to predict eclipses. He studied mathematics and astronomy in Germany. Then, in 1571, when he was 25, Tycho built his own observatory on an island (the King of Denmark gave him the island and some additional money just for that purpose).
    [Show full text]
  • Nd AAS Meeting Abstracts
    nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron
    [Show full text]
  • Today's Topics A. Supernova Remnants. B. Neutron Stars. C
    Today’s Topics Wednesday, November 3, 2020 (Week 11, lecture 31) – Chapter 23. A. Supernova remnants. B. Neutron stars. C. Pulsars. Cassiopeia A: Supernova Remnant Supernova in the late 1600’s Cassiopeia A supernova remnant (type II) False color composite image from Hubble (optical = gold), Spitzer (IR = red),and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers] Cassiopeia A: Supernova Remnant neutron star Cassiopeia A supernova remnant (type II) False color composite image from Hubble (optical = gold), Spitzer (IR = red),and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers] Cassiopeia A: Supernova Remnant neutron star 10 light years Cassiopeia A supernova remnant (type II) False color composite image from Hubble (optical = gold), Spitzer (IR = red),and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers] Crab Nebula: Supernova Remnant Supernova in 1054 AD (type II) constellation: Taurus [NASA/ESA/Hubble, 1999-2000] Crab Nebula: Supernova Remnant Supernova in 1054 AD (type II) constellation: Taurus 11 light years [NASA/ESA/Hubble, 1999-2000] Tycho’s Supernova Remnant SN 1572 (type I = white dwarf + red giant binary explosion) Constellation: Cassiopeia Composite image: blue = hard x-rays, red = soft x-rays, background stars = optical [NASA/Chandra (2009)] Tycho’s Supernova Remnant SN 1572 (type I = white dwarf + red giant binary explosion) Constellation: Cassiopeia 10 light years Composite image: blue = hard x-rays, red = soft x-rays, background stars = optical [NASA/Chandra (2009)] Where do heavy elements come from ? ▪ Supernovae are a major source of heavy elements ▪ Most of the iron core of a massive star is “dissolves” into protons in the core collapse.
    [Show full text]
  • The Nova Stella and Its Observers
    Running title: Nova stella 1572 AD The Nova Stella and its Observers P. Ruiz–Lapuente ∗,∗∗ 1. Introduction In 1572, physicists were still living with the concepts of mechanics inherited from Aris- totle and with the classification of the elements from the Greek philosopher. The growing criticism towards the Aristotelian views on the natural world could not turn very produc- tive, because the necessary elements of calculus and the empirical tools to move into a better frame were still lacking. However, in astronomy, observers had witnessed by that time the comet of 1556 and they would witness a new one in 1577. Moreover, since 1543 when De Revolutionibus Orbium Caelestium by Copernicus came to light, the apparent motion of the planets had a radically different explanation from the ortodox geocentrism. The new helio- centric view slowly won supporters among astronomers. The explanations concerning the planetary motions would depart from the “common sense” intuitions that had placed the earth sitting still at the center of the planetary system. Thus the “nova stella” in 1572 happened in the middle of the geocentric–versus–heliocentric debate. The other “nova”, the one that would be observed in 1604 by Kepler, came just shortly after the posthumous publication of Tycho Brahe’s Astronomiae Instauratae Progymnasmata1 which contains most of the debates in relation to the appearance of the “new star”2. arXiv:astro-ph/0502399v1 21 Feb 2005 The machinery moving the planetary spheres, i.e. the intrincate system of solid spheres rotating by the motion imparted to them as the wheels in a clock, was not directly affected by the new heliocentric proposal.
    [Show full text]
  • John P. Hughes
    John P. Hughes Professional History 2011 { Professor II, Rutgers University 2005 { 2011 Professor I, Rutgers University 2000 { 2005 Associate Professor, Rutgers University 1996 { 2000 Assistant Professor, Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 1988 { 1996 Staff Scientist, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 1984 { 1987 Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA Education 1984 Columbia University, Ph.D., Physics 1980 Columbia University, M.A., Physics 1978 Columbia College, A.B., Physics Awards and Appointments 2010 Elected member, Executive committee of the High Energy Astrophysics Division of the American Astronomical Society 2009 Rutgers University Board of Trustees Award for Excellence in Research 2008 Fellow, American Physical Society 2006 { 2007 Visiting Fellow, Department of Astrophysical Sciences, Princeton University 1999 { 2000 Visiting Scientist, Service d'Astrophysique, CEA-Saclay 1993 NASA Public Service Medal 1993 Visiting Research Scientist, Kyoto University, Japan 1992 NASA Group Achievement Award for AXAF VETA 1992 Smithsonian Institution Special Achievement Award 1991 NASA Group Achievement Award for ROSAT 1985 Japanese Foreign Research Fellow, The Institute of Space and Astronautical Science, Tokyo, Japan 1984 { 1996 Associate, Harvard College Observatory 1984 { 1987 Smithsonian Postdoctoral Fellow 1978 { 1980 Columbia University Faculty Fellow 1977 Summer Research Assistant, Bell Labs, Murray Hill, NJ Professional Activities
    [Show full text]
  • 7.5 X 11.5.Doubleline.P65
    Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information Name index Abell, George, 99, 101 Cappelluti, Nico, 729 Abraham, Robert, 733 Carter, Brandon, 434 Abramovitz, Milton, 206, 209 Caswell, James, 226 Adams, Fred, 353, 369 Cavaliere, Alfonso, 110 Amsler, Claude, 275 Cesarsky, Catherine, 187, 189 Anderson, Carl, 29, 30, 163 Challinor, Anthony, 115, 259 Arnaud, Monique, 110 Chandrasekhar, Subrahmanyan, 302, 429, 434, Arnett, David, 386 455 Arzoumanian, Zaven, 420 Charlot, Stephane,´ 729, 730, 747 Auger, Pierre, 29 Chwolson, O., 117 Cimatti, Andrea, 736, 748 Babbedge, T., 740 Clayton, Donald, 386 Backer, Donald, 417, 418 Clemmow, Phillip, 267 Bahcall, John, 55, 57, 58 Colless, Matthew, 108, 109 Bahcall, Neta, 105 Compton, Arthur, 231 Balbus, Steven, 455 Cordes, James, 420 Band, David, 264 Cowie, Lennox, 733, 736, 743, 745 Barger, Amy, 745 Cox, Donald, 357 Beckwith, Steven, 737, 744 Becquerel, Henri, 146 Damon, Paul, 297 Bekefi, George, 193 Davies, Rodney, 376 Bell(-Burnell), Jocelyn, 19, 406 Davis, Leverett, 373 Bennett, Charles, 16 Davis, Raymond, 32, 54, 55 Bethe, Hans, 57, 163, 166, 175 de Vaucouleurs, Gerard,´ 77, 78 Bignami, Giovanni, 197 Dermer, Charles, 505 Binney, James, 106, 153 Deubner, Franz-Ludwig, 51 Blaauw, Adriaan, 754 Diehl, Roland, 287 Blackett, Patrick, 29 Dirac, Adrian, 29 Blain, Andrew, 743 Djorgovski, George, 88 Bland-Hawthorn, Jonathan, 733 Dougherty, John, 267 Blandford, Roger, 251 Draine, Bruce, 351, 372, 373, 375, Blumenthal, George, 163, 175,
    [Show full text]
  • Astrology, Mechanism and the Soul by Patrick J
    Kepler’s Cosmological Synthesis: Astrology, Mechanism and the Soul by Patrick J. Boner History of Science and Medicine Library 39/Medieval and Early Modern Sci- ence 20. Leiden/Boston: Brill, 2013. Pp. ISBN 978–90–04–24608–9. Cloth $138.00 xiv + 187 Reviewed by André Goddu Stonehill College [email protected] Johannes Kepler has always been something of a puzzle if not a scandal for historians of science. Even when historians acknowledged Renaissance, magical, mystical, Neoplatonic/Pythagorean influences, they dismissed or minimized them as due to youthful exuberance later corrected by rigorous empiricism and self-criticism.The pressure to see Kepler as a mathematical physicist and precursor to Newton’s synthesis remains seductive because it provides such a neat and relatively simple narrative. As a result, the image of Kepler as a mechanistic thinker who helped to demolish the Aristotelian world view has prevailed—and this despite persuasive characterization of Kepler as a transitional figure, the culmination of one tradition and the beginning of another by David Lindberg [1986] in referring to Kepler’s work on optics and by Bruce Stephenson [1987, 1–7] in discussing Kepler on physical astronomy. In this brief study, Patrick Boner once again challenges the image of Kepler as a reductivist, mechanistic thinker by summarizing and quoting passages of works and correspondence covering many of Kepler’s ideas, both early and late, that confirm how integral Kepler’s animistic beliefs were with his understanding of natural, physical processes. Among Boner’s targets, Anneliese Maier [1937], Eduard Dijksterhuis [1961], Reiner Hooykaas [1987], David Keller and E.
    [Show full text]
  • Nature's Biggest Explosions: Past, Present, and Future
    Nature’s Biggest Explosions: Past, Present, and Future Edo Berger Harvard University Why Study Cosmic Explosions? Why Study Cosmic Explosions? Why Study Cosmic Explosions? Why Study Cosmic Explosions? Why Study Cosmic Explosions? The Past About 10 “guest stars” have been mentioned in historical records, spanning from 185 to 1604 AD. All were observed with the naked eye (first telescope was built in 1608 AD). “Throughout all past time, according to the records handed down from generation to generation, nothing is observed to have changed either in the whole of the outermost heaven or in any of its proper parts.” Aristotle, De caelo (On the Heavens), 350 BC SN 185 In 185 AD Chinese records mark the appearance of a “guest star” which remained visible for 8 months and did not move like a planet or a comet. This is the oldest record of a supernova. “In the 2nd year of the epoch Zhongping, the 10th month, on the day Kwei Hae, a strange star appeared in the middle of Nan Mun … In the 6th month of the succeeding year it disappeared.” SN 1006 On April 1006 records from Europe, the Middle East, and Asia mark the appearance of the brightest “guest star” ever seen: bright as a quarter moon and visible during the day. It remained visible for almost 2 years. “…spectacle was a large circular body, 2½ to 3 times as large as Venus. The sky was shining because of its light. The intensity of its light was a little more than the light of the Moon when one-quarter illuminated" SN 1054 On July 4, 1054 AD records from the Middle East and Asia (and potentially North America) mark the appearance of a bright “guest star”; as bright as a 1/16 moon and remained visible for 2 years.
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]
  • Ex-Companions of Supernovae Progenitors Zhichao Xue Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2017 Ex-companions of Supernovae Progenitors Zhichao Xue Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Physical Sciences and Mathematics Commons Recommended Citation Xue, Zhichao, "Ex-companions of Supernovae Progenitors" (2017). LSU Doctoral Dissertations. 4456. https://digitalcommons.lsu.edu/gradschool_dissertations/4456 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. EX-COMPANIONS OF SUPERNOVAE PROGENITORS ADissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics and Astronomy by Zhichao Xue B.S., Shandong University, P.R.China, 2012 July 2017 For Mom and Dad ii Acknowledgements Ihavebeenextremelyfortunatetogainhelp,mentorship,encourageandsupportfrommany incredible people during my pursuit of my Ph.D. I would like to start by thanking my parents for backing up my decision to study abroad alone in the first place despite that I am their only child. Their combined love and support carried me through all the low and high in this process. On an equal level, I would like to express my gratitude to my advisor, Bradley Schaefer. I remembered the first time we met on the day of Christmas eve, 2012 and we talked about astronomy for a straight 6 hours.
    [Show full text]
  • The Reception of the Copernican Revolution Among Provençal Humanists of the Sixteenth and Seventeenth Centuries*
    The Reception of the Copernican Revolution Among Provençal Humanists of the Sixteenth and Seventeenth Centuries* Jean-Pierre Luminet Laboratoire d'Astrophysique de Marseille (LAM) CNRS-UMR 7326 & Centre de Physique Théorique de Marseille (CPT) CNRS-UMR 7332 & Observatoire de Paris (LUTH) CNRS-UMR 8102 France E-mail: [email protected] Abstract We discuss the reception of Copernican astronomy by the Provençal humanists of the XVIth- XVIIth centuries, beginning with Michel de Montaigne who was the first to recognize the potential scientific and philosophical revolution represented by heliocentrism. Then we describe how, after Kepler’s Astronomia Nova of 1609 and the first telescopic observations by Galileo, it was in the south of France that the New Astronomy found its main promotors with humanists and « amateurs écairés », Nicolas-Claude Fabri de Peiresc and Pierre Gassendi. The professional astronomer Jean-Dominique Cassini, also from Provence, would later elevate the field to new heights in Paris. Introduction In the first book I set forth the entire distribution of the spheres together with the motions which I attribute to the earth, so that this book contains, as it were, the general structure of the universe. —Nicolaus Copernicus, Preface to Pope Paul III, On the Revolution of the Heavenly Spheres, 1543.1 Written over the course of many years by the Polish Catholic canon Nicolaus Copernicus (1473–1543) and published following his death, De revolutionibus orbium cœlestium (On the Revolutions of the Heavenly Spheres) is regarded by historians as the origin of the modern vision of the universe.2 The radical new ideas presented by Copernicus in De revolutionibus * Extended version of the article "The Provençal Humanists and Copernicus" published in Inference, vol.2 issue 4 (2017), on line at http://inference-review.com/.
    [Show full text]