Johannes Kepler on Stars and Size (With an English Translation of Chapter 16 of His 1606 De Stella Nova)

Total Page:16

File Type:pdf, Size:1020Kb

Johannes Kepler on Stars and Size (With an English Translation of Chapter 16 of His 1606 De Stella Nova) Of Mites and Men: Johannes Kepler on Stars and Size (with an English translation of Chapter 16 of his 1606 De Stella Nova) Christopher M. Graney Jefferson Community & Technical College Louisville, KY 40272 [email protected] ABSTRACT: In his 1606 De Stella Nova, Johannes Kepler attempted to answer Tycho Brahe’s argument that the Copernican heliocentric hypothesis required all the fixed stars to dwarf the Sun, something Brahe found to be a great drawback of that hypothesis. This paper includes a translation into English of Chapter 16 of De Stella Nova, in which Kepler discusses this argument, along with brief outlines of both Tycho’s argument and Kepler’s answer (which references snakes, mites, men, and divine power, among other things). Page 1 of 19 Page 2 of 19 ycho Brahe had developed a strong objection to the heliocentric theory of Nicolaus Copernicus. Johannes Kepler set out to answer that objection in his 1606 book De Stella T Nova, his book on the “new star” of 1604 (now known to have been a supernova). Brahe’s objection was rooted in the stars. In the heliocentric theory the stars had to be very distant in order to explain why Earth’s annual motion around the Sun produced no corresponding visible annual changes in their appearance—no “annual parallax”. For instance, stars were not seen to grow brighter when Earth happened to move toward them as it journeyed around the Sun, nor were they seen to grow dimmer when it moved away from them. The explanation for this was that the orbit of the Earth was like a point in comparison to the distance to the stars— negligible in size. But Brahe noted that stars have a measurable apparent size as seen from Earth. He had measured these sizes. He determined that the more prominent or “first magnitude” stars measured a little less than a tenth the apparent diameter of the Moon—a little less than three minutes of arc, since the Moon has an apparent diameter of approximately thirty minutes, or one half of one degree. At the vast distances required for the stars in the heliocentric hypothesis, these apparent sizes translated into enormous physical sizes. Were Copernicus correct, every one of the stars would have to dwarf the Sun. The Sun would be a unique, small body in a universe of giants.1 A decade after Brahe died, Johann Georg Locher and his mentor Christoph Scheiner would neatly summarize Brahe’s objection in their 1614 book Disquisitiones Mathematicae. They wrote that in the Copernican hypothesis the Earth’s orbit is like a point within the universe of stars; but the stars, having measurable sizes, are larger than points; therefore, in the Copernican hypothesis every star must be larger than Earth’s orbit, and of course vastly larger than the Sun itself.2 The giant stars of the Copernican hypothesis stood in contrast to the more commensurate star sizes found in Brahe’s own hypothesis, a hybrid geocentric (or geo-heliocentric) hypothesis in which the Sun, Moon, and stars circled an immobile Earth, but the planets circled the Sun (Figure 1). Brahe’s hypothesis was observationally and mathematically identical to the Copernican hypothesis insofar as the Sun, Moon, and planets were concerned. However, since the Earth did not move relative to the stars in Brahe’s geocentric hypothesis, there was no expectation of annual parallax, and thus no need for the stars to be distant in order to explain the absence of observable parallax. Brahe had the stars located a bit beyond Saturn. And, since the stars were roughly similar to Saturn in both distance and in their appearance in the night sky, they had to be similar to Saturn in physical size, too. In Brahe’s hypothesis, the sizes of the Earth, Sun, Moon, and planets were commensurate, with the Moon being smallest and the Sun being largest, as opposed to the case in the Copernican hypothesis, where every last star dwarfed Sun, Moon, and planets (see Figure 2).3 1 (Graney 2015, 32-38) 2 (Graney 2017, 30) 3 (Graney 2015, 32-38) Page 3 of 19 Kepler devotes Chapter 16 of De Stella Nova to the star size issue. This follows a discussion of the vast distance of the stella nova from Earth in Chapter 15. A translation of Chapter 16 into English is provided here in Appendix 1. The historian of science Albert van Helden has written that Brahe’s measurements of the apparent sizes of stars were unassailable, and his logic incontrovertible, so Copernicans simply had to accept Brahe’s objection and agree that the stars were giant.4 This Kepler does. He does not question that the stars are all vastly larger than the Sun. In fact, in Chapter 16 he grants that a star with an apparent diameter of three minutes, one tenth the diameter of the Moon, has the same physical size as the orbit of Saturn; and that Sirius, the most brilliant of stars, is even larger; and the nova larger still. It follows from Kepler’s numbers that any star whose physical size was the same as Earth’s orbit would have an apparent diameter of three tenths of a minute, or eighteen seconds, the apparent diameter that Brahe had determined for the stars barely visible to the eye (sixth-magnitude stars).5 And as the physical diameter of the Sun is less than one hundredth that of Earth’s orbit according to Kepler, clearly every last star in the sky utterly dwarfs the Sun. To Kepler, the Sun and its planets are surrounded by giants, and only by giants. Kepler’s answer to Brahe then is that the Sun and planets being surrounded by giants makes sense, or at least more sense than the geocentric alternative. Kepler argues that Brahe fixes upon size, but that what is commensurate in the Copernican hypothesis are speeds. Speeds in any geocentric hypothesis are more incommensurate than sizes in the heliocentric hypothesis, he says. Moreover, he says, a vast range of sizes exists in the physical world, and he illustrates some of these: the longest snake vs. the smallest insect; human beings vs. the Earth; the Earth vs. the universe. And finally, there is the power and creativity of God, for whom nothing is too big, and yet who also confers value upon the small. Answers such as these to Brahe’s star size objection to Copernicus would endure. In 1651 Giovanni Battista Riccioli in his Almagestum Novum analyzed one hundred and twenty six pro- and anti-Copernican arguments, concluding that the vast majority in either direction were indecisive. As he saw it, there were two decisive arguments, both in favor of the anti- Copernicans: one was the absence of any detectable Coriolis Effect (as it would be called today);6 the other was Brahe’s star size objection. By 1651 the telescope had long been brought to bear on the star size question, including by Riccioli,7 but since the small-aperture telescopes of the time showed stars as definite disks (not yet understood to be spurious artefacts of diffraction; see Figure 3) but did not reveal any parallax, Brahe’s objection still stood (Simon Marius in his 1614 Mundus Jovialis first noted this telescopic support for Brahe8). Riccioli noted how Brahe’s objection could be answered by appealing to the speed issue, but he dismissed this answer. The rising and setting of the stars is caused by either the rotation of the Earth or the rotation of the stars, he said, and in either case, whatever rotates turns though one circumference per day— 4 (Van Helden 1985, 51) 5 (Graney 2015, 34) Brahe reported sixth-magnitude stars as having a diameter of twenty seconds. 6 (Graney 2015, 115-128), (Graney 2017, xix) 7 (Graney 2015, 53-61, 129-139) 8 (Graney 2015, 50-53) Page 4 of 19 proportionally the rates of motion are the same. And as for appealing to the power of God, that answer cannot be refuted, said the Jesuit Riccioli, but it does not satisfy the prudent. Besides, he said, if divine power can be called in as an explanation for the difficult aspects of a hypothesis, could not the geocentric hypothesis’s vast speeds also be explained via divine power?9 Thus whereas Johannes Kepler set out in De Stella Nova to answer Tycho Brahe’s star size objection to the heliocentric theory of Nicolaus Copernicus, that objection still carried force almost five decades later. What would answer Brahe’s objection would not be comparisons to geocentric speeds, or discussions of the sizes of snakes and mites, or appeals to divine power. Rather it would be the discovery that the apparent sizes of stars, whether measured visually or with a telescope, were the spurious product of optical systems, a product which gave no indication of the true sizes of stars. The first evidence suggesting the spurious nature of apparent stellar sizes, Jeremiah Horrocks’ observations that stars winked out instantaneously when being occulted by the Moon, was not published until a decade after Riccioli’s Almagestum Novum, six decades after De Stella Nova.10 Such evidence would eventually show that stars did not have to all be giants in a Copernican universe. Indeed, recent progress in astronomy has shown that, while some giant stars do exist that dwarf the sun, these are relatively rare; most stars are smaller than the Sun, with a large majority of stars being small, dim “red dwarfs” that are far outclassed by the Sun. 9 (Graney 2015, 136-138) 10 (Graney 2015, 150-151) Page 5 of 19 Page 6 of 19 APPENDIX 1—A translation into English of Chapter 16 of Johannes Kepler’s De Stella Nova.
Recommended publications
  • Fixed Stars More Than the Wandering Planets Used by Modern Astrologers
    Ancients used the fixed stars more than the wandering planets used by modern astrologers. With improved technical abilities due to software enhancements, the fixed stars are beginning to make a return in present day astrology. The information contained in these pages is just a sampling of the stars and their meanings. It is designed to encourage you to look at the subject in a deeper level. When you blend the meaning of the fixed stars with the natal planets in your chart, it adds a great deal of texture to the understanding of your planet/star combination. I normally use a three degree orb of influence between stars and planets, but the commonly accepted orb is only one degree. A research project I did several years ago indicated that people felt the effects of the stars from this wider distance (which can amount to millions of miles). For example, if the planet Mercury in your natal chart is at 17° Gemini, then you will find on page four that item T is the star Rigel in the Orion constellation. Stars that are in the feet of a constellation are considered to be teacher stars in that they bring higher information down to earth to be used. Mercury represents communications, education, writing, and short trips. Combined, this could be a teacher of higher information, possibly a person who travels or writes as part of the teaching process. Again, this is a partial list of stars. Listed below are some of the books and references I have used. REFERENCE: The interpretations come from Bernadette Brady’s “Book of Fixed Stars”, the Solar Maps software program http://www.bernadettebrady.com/; , Ebertin-Hoffman’s book Fixed Stars,” Vivian Robson’s “The Fixed Stars & Constellations in Astrology” and miscellaneous sources.
    [Show full text]
  • University Microfilms International 300 N
    WAVEFRONT ERRORS PRODUCED BY MULTILAYER THIN-FILM OPTICAL COATINGS Item Type text; Dissertation-Reproduction (electronic) Authors Knowlden, Robert Edward Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 05/10/2021 11:15:02 Link to Item http://hdl.handle.net/10150/281959 INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality--is-heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.
    [Show full text]
  • Prehistory of Transit Searches Danielle BRIOT1 & Jean
    Prehistory of Transit Searches Danielle BRIOT1 & Jean SCHNEIDER2 1) GEPI, UMR 8111, Observatoire de Paris, 61 avenue de l’Observatoire, F- 75014, Paris, France [email protected] 2) LUTh, UMR 8102, Observatoire de Paris, 5 place Jules Janssen, F-92195 Meudon Cedex, France [email protected] Abstract Nowadays the more powerful method to detect extrasolar planets is the transit method, that is to say observations of the stellar luminosity regularly decreasing when the planet is transiting the star. We review the planet transits which were anticipated, searched, and the first ones which were observed all through history. Indeed transits of planets in front of their star were first investigated and studied in the solar system, concerning the star Sun. The first observations of sunspots were sometimes mistaken for transits of unknown planets. The first scientific observation and study of a transit in the solar system was the observation of Mercury transit by Pierre Gassendi in 1631. Because observations of Venus transits could give a way to determine the distance Sun-Earth, transits of Venus were overwhelmingly observed. Some objects which actually do not exist were searched by their hypothetical transits on the Sun, as some examples a Venus satellite and an infra-mercurial planet. We evoke the possibly first use of the hypothesis of an exoplanet transit to explain some periodic variations of the luminosity of a star, namely the star Algol, during the eighteen century. Then we review the predictions of detection of exoplanets by their transits, those predictions being sometimes ancient, and made by astronomers as well as popular science writers.
    [Show full text]
  • History of Astrometry
    5 Gaia web site: http://sci.esa.int/Gaia site: web Gaia 6 June 2009 June are emerging about the nature of our Galaxy. Galaxy. our of nature the about emerging are More detailed information can be found on the the on found be can information detailed More technologies developed by creative engineers. creative by developed technologies scientists all over the world, and important conclusions conclusions important and world, the over all scientists of the Universe combined with the most cutting-edge cutting-edge most the with combined Universe the of The results from Hipparcos are being analysed by by analysed being are Hipparcos from results The expression of a widespread curiosity about the nature nature the about curiosity widespread a of expression 118218 stars to a precision of around 1 milliarcsecond. milliarcsecond. 1 around of precision a to stars 118218 trying to answer for many centuries. It is the the is It centuries. many for answer to trying created with the positions, distances and motions of of motions and distances positions, the with created will bring light to questions that astronomers have been been have astronomers that questions to light bring will accuracies obtained from the ground. A catalogue was was catalogue A ground. the from obtained accuracies Gaia represents the dream of many generations as it it as generations many of dream the represents Gaia achieving an improvement of about 100 compared to to compared 100 about of improvement an achieving orbit, the Hipparcos satellite observed the whole sky, sky, whole the observed satellite Hipparcos the orbit, ear Y of them in the solar neighbourhood.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Catholic Christian Christian
    Religious Scientists (From the Vatican Observatory Website) https://www.vofoundation.org/faith-and-science/religious-scientists/ Many scientists are religious people—men and women of faith—believers in God. This section features some of the religious scientists who appear in different entries on these Faith and Science pages. Some of these scientists are well-known, others less so. Many are Catholic, many are not. Most are Christian, but some are not. Some of these scientists of faith have lived saintly lives. Many scientists who are faith-full tend to describe science as an effort to understand the works of God and thus to grow closer to God. Quite a few describe their work in science almost as a duty they have to seek to improve the lives of their fellow human beings through greater understanding of the world around them. But the people featured here are featured because they are scientists, not because they are saints (even when they are, in fact, saints). Scientists tend to be creative, independent-minded and confident of their ideas. We also maintain a longer listing of scientists of faith who may or may not be discussed on these Faith and Science pages—click here for that listing. Agnesi, Maria Gaetana (1718-1799) Catholic Christian A child prodigy who obtained education and acclaim for her abilities in math and physics, as well as support from Pope Benedict XIV, Agnesi would write an early calculus textbook. She later abandoned her work in mathematics and physics and chose a life of service to those in need. Click here for Vatican Observatory Faith and Science entries about Maria Gaetana Agnesi.
    [Show full text]
  • The Astronomers Tycho Brahe and Johannes Kepler
    Ice Core Records – From Volcanoes to Supernovas The Astronomers Tycho Brahe and Johannes Kepler Tycho Brahe (1546-1601, shown at left) was a nobleman from Denmark who made astronomy his life's work because he was so impressed when, as a boy, he saw an eclipse of the Sun take place at exactly the time it was predicted. Tycho's life's work in astronomy consisted of measuring the positions of the stars, planets, Moon, and Sun, every night and day possible, and carefully recording these measurements, year after year. Johannes Kepler (1571-1630, below right) came from a poor German family. He did not have it easy growing Tycho Brahe up. His father was a soldier, who was killed in a war, and his mother (who was once accused of witchcraft) did not treat him well. Kepler was taken out of school when he was a boy so that he could make money for the family by working as a waiter in an inn. As a young man Kepler studied theology and science, and discovered that he liked science better. He became an accomplished mathematician and a persistent and determined calculator. He was driven to find an explanation for order in the universe. He was convinced that the order of the planets and their movement through the sky could be explained through mathematical calculation and careful thinking. Johannes Kepler Tycho wanted to study science so that he could learn how to predict eclipses. He studied mathematics and astronomy in Germany. Then, in 1571, when he was 25, Tycho built his own observatory on an island (the King of Denmark gave him the island and some additional money just for that purpose).
    [Show full text]
  • Abd Al-Rahman Al-Sufi and His Book of the Fixed Stars: a Journey of Re-Discovery
    ResearchOnline@JCU This file is part of the following reference: Hafez, Ihsan (2010) Abd al-Rahman al-Sufi and his book of the fixed stars: a journey of re-discovery. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/28854/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/28854/ 5.1 Extant Manuscripts of al-Ṣūfī’s Book Al-Ṣūfī’s ‘Book of the Fixed Stars’ dating from around A.D. 964, is one of the most important medieval Arabic treatises on astronomy. This major work contains an extensive star catalogue, which lists star co-ordinates and magnitude estimates, as well as detailed star charts. Other topics include descriptions of nebulae and Arabic folk astronomy. As I mentioned before, al-Ṣūfī’s work was first translated into Persian by al-Ṭūsī. It was also translated into Spanish in the 13th century during the reign of King Alfonso X. The introductory chapter of al-Ṣūfī’s work was first translated into French by J.J.A. Caussin de Parceval in 1831. However in 1874 it was entirely translated into French again by Hans Karl Frederik Schjellerup, whose work became the main reference used by most modern astronomical historians. In 1956 al-Ṣūfī’s Book of the fixed stars was printed in its original Arabic language in Hyderabad (India) by Dārat al-Ma‘aref al-‘Uthmānīa.
    [Show full text]
  • Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere
    Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere A Constellation of Rare Books from the History of Science Collection The exhibition was made possible by generous support from Mr. & Mrs. James B. Hebenstreit and Mrs. Lathrop M. Gates. CATALOG OF THE EXHIBITION Linda Hall Library Linda Hall Library of Science, Engineering and Technology Cynthia J. Rogers, Curator 5109 Cherry Street Kansas City MO 64110 1 Thinking Outside the Sphere is held in copyright by the Linda Hall Library, 2010, and any reproduction of text or images requires permission. The Linda Hall Library is an independently funded library devoted to science, engineering and technology which is used extensively by The exhibition opened at the Linda Hall Library April 22 and closed companies, academic institutions and individuals throughout the world. September 18, 2010. The Library was established by the wills of Herbert and Linda Hall and opened in 1946. It is located on a 14 acre arboretum in Kansas City, Missouri, the site of the former home of Herbert and Linda Hall. Sources of images on preliminary pages: Page 1, cover left: Peter Apian. Cosmographia, 1550. We invite you to visit the Library or our website at www.lindahlll.org. Page 1, right: Camille Flammarion. L'atmosphère météorologie populaire, 1888. Page 3, Table of contents: Leonhard Euler. Theoria motuum planetarum et cometarum, 1744. 2 Table of Contents Introduction Section1 The Ancient Universe Section2 The Enduring Earth-Centered System Section3 The Sun Takes
    [Show full text]
  • A New Vision of the Senses in the Work of Galileo Galilei
    Perception, 2008, volume 37, pages 1312 ^ 1340 doi:10.1068/p6011 Galileo's eye: A new vision of the senses in the work of Galileo Galilei Marco Piccolino Dipartimento di Biologia, Universita© di Ferrara, I 44100 Ferrara, Italy; e-mail: [email protected] Nicholas J Wade University of Dundee, Dundee DD1 4HN, Scotland, UK Received 4 December 2007 Abstract. Reflections on the senses, and particularly on vision, permeate the writings of Galileo Galilei, one of the main protagonists of the scientific revolution. This aspect of his work has received scant attention by historians, in spite of its importance for his achievements in astron- omy, and also for the significance in the innovative scientific methodology he fostered. Galileo's vision pursued a different path from the main stream of the then contemporary studies in the field; these were concerned with the dioptrics and anatomy of the eye, as elaborated mainly by Johannes Kepler and Christoph Scheiner. Galileo was more concerned with the phenomenology rather than with the mechanisms of the visual process. His general interest in the senses was psychological and philosophical; it reflected the fallacies and limits of the senses and the ways in which scientific knowledge of the world could be gathered from potentially deceptive appearances. Galileo's innovative conception of the relation between the senses and external reality contrasted with the classical tradition dominated by Aristotle; it paved the way for the modern understanding of sensory processing, culminating two centuries later in Johannes Mu« ller's elaboration of the doctrine of specific nerve energies and in Helmholtz's general theory of perception.
    [Show full text]
  • FIXED STARS a SOLAR WRITER REPORT for Churchill Winston WRITTEN by DIANA K ROSENBERG Page 2
    FIXED STARS A SOLAR WRITER REPORT for Churchill Winston WRITTEN BY DIANA K ROSENBERG Page 2 Prepared by Cafe Astrology cafeastrology.com Page 23 Churchill Winston Natal Chart Nov 30 1874 1:30 am GMT +0:00 Blenhein Castle 51°N48' 001°W22' 29°‚ 53' Tropical ƒ Placidus 02' 23° „ Ý 06° 46' Á ¿ 21° 15° Ý 06' „ 25' 23° 13' Œ À ¶29° Œ 28° … „ Ü É Ü 06° 36' 26' 25° 43' Œ 51'Ü áá Œ 29° ’ 29° “ àà … ‘ à ‹ – 55' á á 55' á †32' 16° 34' ¼ † 23° 51'Œ 23° ½ † 06' 25° “ ’ † Ê ’ ‹ 43' 35' 35' 06° ‡ Š 17° 43' Œ 09° º ˆ 01' 01' 07° ˆ ‰ ¾ 23° 22° 08° 02' ‡ ¸ Š 46' » Ï 06° 29°ˆ 53' ‰ Page 234 Astrological Summary Chart Point Positions: Churchill Winston Planet Sign Position House Comment The Moon Leo 29°Le36' 11th The Sun Sagittarius 7°Sg43' 3rd Mercury Scorpio 17°Sc35' 2nd Venus Sagittarius 22°Sg01' 3rd Mars Libra 16°Li32' 1st Jupiter Libra 23°Li34' 1st Saturn Aquarius 9°Aq35' 5th Uranus Leo 15°Le13' 11th Neptune Aries 28°Ar26' 8th Pluto Taurus 21°Ta25' 8th The North Node Aries 25°Ar51' 8th The South Node Libra 25°Li51' 2nd The Ascendant Virgo 29°Vi55' 1st The Midheaven Gemini 29°Ge53' 10th The Part of Fortune Capricorn 8°Cp01' 4th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Semisquare Mars 1°56' Applying The Moon Trine Neptune 1°10' Separating The Moon Trine The North Node 3°45' Separating The Moon Sextile The Midheaven 0°17' Applying The Sun Semisquare Jupiter 0°50' Applying The Sun Sextile Saturn 1°52' Applying The Sun Trine Uranus 7°30' Applying Mercury Square Uranus 2°21' Separating Mercury Opposition Pluto 3°49' Applying Venus Sextile
    [Show full text]
  • Galileo in Early Modern Denmark, 1600-1650
    1 Galileo in early modern Denmark, 1600-1650 Helge Kragh Abstract: The scientific revolution in the first half of the seventeenth century, pioneered by figures such as Harvey, Galileo, Gassendi, Kepler and Descartes, was disseminated to the northernmost countries in Europe with considerable delay. In this essay I examine how and when Galileo’s new ideas in physics and astronomy became known in Denmark, and I compare the reception with the one in Sweden. It turns out that Galileo was almost exclusively known for his sensational use of the telescope to unravel the secrets of the heavens, meaning that he was predominantly seen as an astronomical innovator and advocate of the Copernican world system. Danish astronomy at the time was however based on Tycho Brahe’s view of the universe and therefore hostile to Copernican and, by implication, Galilean cosmology. Although Galileo’s telescope attracted much attention, it took about thirty years until a Danish astronomer actually used the instrument for observations. By the 1640s Galileo was generally admired for his astronomical discoveries, but no one in Denmark drew the consequence that the dogma of the central Earth, a fundamental feature of the Tychonian world picture, was therefore incorrect. 1. Introduction In the early 1940s the Swedish scholar Henrik Sandblad (1912-1992), later a professor of history of science and ideas at the University of Gothenburg, published a series of works in which he examined in detail the reception of Copernicanism in Sweden [Sandblad 1943; Sandblad 1944-1945]. Apart from a later summary account [Sandblad 1972], this investigation was published in Swedish and hence not accessible to most readers outside Scandinavia.
    [Show full text]