History of Astrometry

Total Page:16

File Type:pdf, Size:1020Kb

History of Astrometry 5 Gaia web site: http://sci.esa.int/Gaia site: web Gaia 6 June 2009 June are emerging about the nature of our Galaxy. Galaxy. our of nature the about emerging are More detailed information can be found on the the on found be can information detailed More technologies developed by creative engineers. creative by developed technologies scientists all over the world, and important conclusions conclusions important and world, the over all scientists of the Universe combined with the most cutting-edge cutting-edge most the with combined Universe the of The results from Hipparcos are being analysed by by analysed being are Hipparcos from results The expression of a widespread curiosity about the nature nature the about curiosity widespread a of expression 118218 stars to a precision of around 1 milliarcsecond. milliarcsecond. 1 around of precision a to stars 118218 trying to answer for many centuries. It is the the is It centuries. many for answer to trying created with the positions, distances and motions of of motions and distances positions, the with created will bring light to questions that astronomers have been been have astronomers that questions to light bring will accuracies obtained from the ground. A catalogue was was catalogue A ground. the from obtained accuracies Gaia represents the dream of many generations as it it as generations many of dream the represents Gaia achieving an improvement of about 100 compared to to compared 100 about of improvement an achieving orbit, the Hipparcos satellite observed the whole sky, sky, whole the observed satellite Hipparcos the orbit, ear Y of them in the solar neighbourhood. solar the in them of revolutionised our knowledge of star positions. From its its From positions. star of knowledge our revolutionised search for extrasolar planets by detecting thousands thousands detecting by planets extrasolar for search 150 BC 1600 1800 2000 1800 1600 BC 150 , which has has , which Hipparcos satellite, astrometric . It will also revolutionise the the revolutionise also will It . Way Milky the Galaxy, own (ESA) launched the first first the launched (ESA) Agency Space European understanding the origin and evolution of our our of evolution and origin the understanding science: But things changed for astrometry in 1989, as the the as 1989, in astrometry for changed things But Gaia most challenging yet fundamental questions of modern modern of questions fundamental yet challenging most 0.00001 ambitious and its ultimate aim is to solve one of the the of one solve to is aim ultimate its and ambitious Invention of telescope of Invention arcsecond, limited mostly by atmospheric effects. atmospheric by mostly limited arcsecond, The science case for Gaia is extremely broad and and broad extremely is Gaia for case science The 0.0001 precision obtainable from Earth, of approximately 0.1 0.1 approximately of Earth, from obtainable precision From Hipparchus to Gaia to Hipparchus From very difficult, because it had reached the best best the reached had it because difficult, very ARCOS HIPP 0.001 to occur. Progress in astrometry meanwhile became became meanwhile astrometry in Progress occur. to in astronomy enabled this change change this enabled astronomy in plates photographic 0.01 ASTROMETRY composition, temperature and nature) and the use of of use the and nature) and temperature composition, Gaia arcseconds chemical their determine to objects by emitted Late 20th century 20th Late 0.1 (which studies the light light the studies (which spectroscopy like techniques instead of only measuring their position. New New position. their measuring only of instead HISTORY OF OF HISTORY 1 19th century 19th on learning more about the nature of celestial objects objects celestial of nature the about more learning on stars. stars. , astronomy focused its research research its focused astronomy , century 20th the n I 18th century 18th 10 distance of 1000 km!) and even better for brighter brighter for better even and km!) 1000 of distance to measuring the diameter of a human hair at a a at hair human a of diameter the measuring to 17th century 17th stars and of our place in the Universe. the in place our of and stars 100 accuracy will be about 20 microarcseconds (equivalent (equivalent microarcseconds 20 about be will accuracy distances was a turning point in our understanding of of understanding our in point turning a was distances ycho Brahe ycho T distances and also velocities about 1 billion stars. Its Its stars. billion 1 about velocities also and distances confirmation that stars lay at very large but still finite finite still but large very at lay stars that confirmation 1000 with positions, positions, with Galaxy our of map three-dimensional the first stellar parallaxes in the 1830s. The The 1830s. the in parallaxes stellar first the dynamic precise an extremely to create Hipparchus increase in precision was fundamental for measuring measuring for fundamental was precision in increase Gaia of Books Little The . Gaia will use the most advanced technology technology advanced most the use will Gaia . Gaia called accuracies of fractions of a second of arc. This This arc. of second a of fractions of accuracies launch a much more powerful astrometric satellite satellite astrometric powerful more much a launch and measurements were possible with with possible were measurements and further Positional accuracy through History through accuracy Positional Following the success of Hipparcos, ESA is planning to to planning is ESA Hipparcos, of success the Following engraving techniques advanced advanced techniques engraving , century 19th the In - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Astrometry is the oldest branch of astronomy. It The radial velocity is easily found by observing the In 129 B.C. and only with the help of the naked eye, the Tycho's observations of the planets throughout their studies the geometrical relationships between spectrum of a star, but finding the proper motion is Greek astronomer Hipparchus was the first to orbit with unprecedented accuracy allowed Kepler to objects in the sky and their apparent and true tougher and requires careful observation of the complete a catalogue of a thousand stars, specifying discover that planets move in elliptical orbits. motions. movement of the star with respect to others over a their relative brightness and position with an accuracy number of years. of about one degree, i.e. the angle equivalent to the In 1609, the telescope was invented, opening new To find the distance to a star we use a concept called apparent height of a person at a distance of 100 worlds to human scrutiny. But the telescope alone the parallax. If we observe a star from the Earth and Measuring distances and motions of stars is metres. This is considered to represent the birth of wasn't of much use for measuring angles. It took some record its position with respect to the background fundamental to our understanding of the nature of the the science of astrometry. time to devise an instrument which would make use of stars and then repeat this measurement 6 months Universe. Knowing the distance to a star, we can the improved sight available with the telescope, but later, when the Earth is on the opposite side of its deduce its true luminosity and size and so we can After Hipparchus, progress in the accuracy of angular which would also permit a high angular accuracy. orbit around the Sun, we see that the position of the derive essential information about its nature and age. measurements was slight until the 16th century. A star appears to shift with respect to the background. On the other hand, knowing the motion of stars we can revolution came with Tycho Brahe (1546-1601), a In the 17th century the filar micrometer was invented, This apparent angular displacement of a star is what deduce not only where they were millions of years ago Danish astronomer, who fixed star positions to about a consisting of two wires mounted in the field of view of is called the stellar parallax. By measuring the but also what their positions will be in the future. minute of arc, i.e. one sixtieth of a degree. He a telescope which moved towards and away from each parallax, we can deduce the distance to a nearby star designed, built and calibrated a wide variety of viewing other with a screw. The number of turns of the screw using simple geometry. But stellar parallax is a Ancient civilizations already realised that objects in instruments like the sextant or the mural quadrant and indicated the angle subtended by the object in the sky. difficult quantity to measure as it is extremely small the sky appear to move in a regular manner which can changed observational practice profoundly. This allowed breaking the barrier of accuracy imposed for all but the nearest few hundred stars. be useful for determining directions and time on the by the limited resolution of the human eye, which Earth. The need to solve problems originating from cannot distinguish angles below 1 minute of arc. early communities (e.g. establishing accurately the optimum moment for planting and harvesting) In the 18th century, knowledge of materials and Sun constituted a starting point for precision astrometry. workshop techniques improved significantly allowing instrument makers to engrave angular scales like the Parallax Making accurate angular measurements and cataloguing astronomical circle with high precision. Accuracies celestial positions has been the fundamental task of improved to the order of arcseconds, which allowed the Earth astronomy until the 19th century and still constitutes a detection of stellar aberration in 1725, the first direct basic element of astronomical research. The angles proof that the Earth was moving through space. This Astrometry also determines how celestial objects are involved are extremely small and improving the finally confirmed the controversial Copernican theory moving in space relative to each other.
Recommended publications
  • The Discovery of Exoplanets
    L'Univers, S´eminairePoincar´eXX (2015) 113 { 137 S´eminairePoincar´e New Worlds Ahead: The Discovery of Exoplanets Arnaud Cassan Universit´ePierre et Marie Curie Institut d'Astrophysique de Paris 98bis boulevard Arago 75014 Paris, France Abstract. Exoplanets are planets orbiting stars other than the Sun. In 1995, the discovery of the first exoplanet orbiting a solar-type star paved the way to an exoplanet detection rush, which revealed an astonishing diversity of possible worlds. These detections led us to completely renew planet formation and evolu- tion theories. Several detection techniques have revealed a wealth of surprising properties characterizing exoplanets that are not found in our own planetary system. After two decades of exoplanet search, these new worlds are found to be ubiquitous throughout the Milky Way. A positive sign that life has developed elsewhere than on Earth? 1 The Solar system paradigm: the end of certainties Looking at the Solar system, striking facts appear clearly: all seven planets orbit in the same plane (the ecliptic), all have almost circular orbits, the Sun rotation is perpendicular to this plane, and the direction of the Sun rotation is the same as the planets revolution around the Sun. These observations gave birth to the Solar nebula theory, which was proposed by Kant and Laplace more that two hundred years ago, but, although correct, it has been for decades the subject of many debates. In this theory, the Solar system was formed by the collapse of an approximately spheric giant interstellar cloud of gas and dust, which eventually flattened in the plane perpendicular to its initial rotation axis.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies
    2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies The National Academies—comprising the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council—work together to enlist the nation’s top scientists, engineers, health professionals, and other experts to study specific issues in science, technology, and medicine that underlie many questions of national importance. The results of their deliberations have inspired some of the nation’s most significant and lasting efforts to improve the health, education, and welfare of the United States and have provided independent advice on issues that affect people’s lives worldwide. To learn more about the Academies’ activities, check the website at www.nationalacademies.org. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America This study was supported by Contract NNX08AN97G between the National Academy of Sciences and the National Aeronautics and Space Administration, Contract AST-0743899 between the National Academy of Sciences and the National Science Foundation, and Contract DE-FG02-08ER41542 between the National Academy of Sciences and the U.S. Department of Energy. Support for this study was also provided by the Vesto Slipher Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agencies that provided support for the project. 2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics ROGER D.
    [Show full text]
  • The Astronomers Tycho Brahe and Johannes Kepler
    Ice Core Records – From Volcanoes to Supernovas The Astronomers Tycho Brahe and Johannes Kepler Tycho Brahe (1546-1601, shown at left) was a nobleman from Denmark who made astronomy his life's work because he was so impressed when, as a boy, he saw an eclipse of the Sun take place at exactly the time it was predicted. Tycho's life's work in astronomy consisted of measuring the positions of the stars, planets, Moon, and Sun, every night and day possible, and carefully recording these measurements, year after year. Johannes Kepler (1571-1630, below right) came from a poor German family. He did not have it easy growing Tycho Brahe up. His father was a soldier, who was killed in a war, and his mother (who was once accused of witchcraft) did not treat him well. Kepler was taken out of school when he was a boy so that he could make money for the family by working as a waiter in an inn. As a young man Kepler studied theology and science, and discovered that he liked science better. He became an accomplished mathematician and a persistent and determined calculator. He was driven to find an explanation for order in the universe. He was convinced that the order of the planets and their movement through the sky could be explained through mathematical calculation and careful thinking. Johannes Kepler Tycho wanted to study science so that he could learn how to predict eclipses. He studied mathematics and astronomy in Germany. Then, in 1571, when he was 25, Tycho built his own observatory on an island (the King of Denmark gave him the island and some additional money just for that purpose).
    [Show full text]
  • A Needs Analysis Study of Amateur Astronomers for the National Virtual Observatory : Aaron Price1 Lou Cohen1 Janet Mattei1 Nahide Craig2
    A Needs Analysis Study of Amateur Astronomers For the National Virtual Observatory : Aaron Price1 Lou Cohen1 Janet Mattei1 Nahide Craig2 1Clinton B. Ford Astronomical Data & Research Center American Association of Variable Star Observers 25 Birch St, Cambridge MA 02138 2Space Sciences Laboratory University of California, Berkeley 7 Gauss Way Berkeley, CA 94720-7450 Abstract Through a combination of qualitative and quantitative processes, a survey was con- ducted of the amateur astronomy community to identify outstanding needs which the National Virtual Observatory (NVO) could fulfill. This is the final report of that project, which was conducted by The American Association of Variable Star Observers (AAVSO) on behalf of the SEGway Project at the Center for Science Educations @ Space Sci- ences Laboratory, UC Berkeley. Background The American Association of Variable Star Observers (AAVSO) has worked on behalf of the SEGway Project at the Center for Science Educations @ Space Sciences Labo- ratory, UC Berkeley, to conduct a needs analysis study of the amateur astronomy com- munity. The goal of the study is to identify outstanding needs in the amateur community which the National Virtual Observatory (NVO) project can fulfill. The AAVSO is a non-profit, independent organization dedicated to the study of vari- able stars. It was founded in 1911 and currently has a database of over 11 million vari- able star observations, the vast majority of which were made by amateur astronomers. The AAVSO has a rich history and extensive experience working with amateur astrono- mers and specifically in fostering amateur-professional collaboration. AAVSO Director Dr. Janet Mattei headed the team assembled by the AAVSO.
    [Show full text]
  • Astrophysical Artefact in the Astrometric Detection of Exoplanets ?
    Astrophysical artefact in the astrometric detection of exoplanets ? Jean Schneider LUTh – Paris Observatory Work in progress ● Dynamical and brightness astrometry ● Astrophysical sources of excess brightness – Simulations – Observations ● Conclusion 12 Oct 2011 1 Context Ultimate goal: the precise physical characterization of Earth-mass planets in the Habitable Zone (~ 1 AU) by direct spectro- polarimetric imaging It will also require a good knowledge of their mass. Two approaches (also used to find Earth-mass planets): – Radial Velocity measurements – Astrometry 12 Oct 2011 2 Context Radial Velocity and Astrometric mass measurements have both their limitations . Here we investigate a possible artefact of the astrometric approach for the Earth-mass regime at 1 AU. ==> not applicable to Gaia or PRIMA/ESPRI Very simple idea: can a blob in a disc mimic the astrometric signal of an Earth-mass planet at 1 AU? 12 Oct 2011 3 Dynamical and brightness astrometry Baryc. M M * C B I Ph I I << I 1 2 2 1 Photoc. a M a = C ● Dynamical astrometry B M* D I I M ● 2 a 2 C a Brightness (photometric) astrometry Ph= − B= − I1 D I1 M* D Question: can ph be > B ? 12 Oct 2011 4 Dynamical and brightness astrometry Baryc. M M * C B I Ph I I << I 1 2 2 1 Photoc. MC a −6 a ● = B ~ 3 x 10 for a 1 Earth-mass planet M* D D I a I a = 2 − ~ 2 -6 ● Ph B Can I /I be > 3x10 ? I1 D I1 D 2 1 12 Oct 2011 5 Dynamical and brightness astrometry Baryc.
    [Show full text]
  • Planetarian Index
    Planetarian Cumulative Index 1972 – 2008 Vol. 1, #1 through Vol. 37, #3 John Mosley [email protected] The PLANETARIAN (ISSN 0090-3213) is published quarterly by the International Planetarium Society under the auspices of the Publications Committee. ©International Planetarium Society, Inc. From the Compiler I compiled the first edition of this index 25 years ago after a frustrating search to find an article that I knew existed and that I really needed. It was a long search without even annual indices to help. By the time I found it, I had run across a dozen other articles that I’d forgotten about but was glad to see again. It was clear that there are a lot of good articles buried in back issues, but that without some sort of index they’d stay lost. I had recently bought an Apple II computer and was receptive to projects that would let me become more familiar with its word processing program. A cumulative index seemed a reasonable project that would be instructive while not consuming too much time. Hah! I did learn some useful solutions to word-processing problems I hadn’t previously known exist, but it certainly did consume more time than I’d imagined by a factor of a dozen or so. You too have probably reached the point where you’ve invested so much time in a project that it’s psychologically easier to finish it than admit defeat. That’s how the first index came to be, and that’s why I’ve kept it up to date.
    [Show full text]
  • Halometry from Astrometry
    Prepared for submission to JCAP Halometry from Astrometry Ken Van Tilburg,a;b Anna-Maria Taki,a Neal Weinera;c aCenter for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003, USA bSchool of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA cCenter for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA E-mail: [email protected], [email protected], [email protected] Abstract. Halometry—mapping out the spectrum, location, and kinematics of nonluminous structures inside the Galactic halo—can be realized via variable weak gravitational lensing of the apparent motions of stars and other luminous background sources. Modern astrometric surveys provide unprecedented positional precision along with a leap in the number of cat- aloged objects. Astrometry thus offers a new and sensitive probe of collapsed dark matter structures over a wide mass range, from one millionth to several million solar masses. It opens up a window into the spectrum of primordial curvature fluctuations with comoving wavenumbers between 5 Mpc−1 and 105 Mpc−1, scales hitherto poorly constrained. We out- line detection strategies based on three classes of observables—multi-blips, templates, and correlations—that take advantage of correlated effects in the motion of many background light sources that are produced through time-domain gravitational lensing. While existing techniques based on single-source observables such as outliers and mono-blips are best suited for point-like lens targets, our methods offer parametric improvements for extended lens tar- gets such as dark matter subhalos. Multi-blip lensing events may also unveil the existence, arXiv:1804.01991v1 [astro-ph.CO] 5 Apr 2018 location, and mass of planets in the outer reaches of the Solar System, where they would likely have escaped detection by direct imaging.
    [Show full text]
  • So You Want to Be a Professional Astronomer!
    SO YOU WANT TO BE A PROFESSIONAL ASTRONOMER! Exotic workplace locales, amazing discoveries, and fame (but probably not fortune) await those who persevere on the path leading to a career as a professional astronomer. by Duncan Forbes First published in Mercury, Spring 2008. Courtesy Astronomical Society of the Pacific Courtesy Gemini Observatory Wanted: Astronomer. Must be willing to work occasional nights on the top of a mountain in an exotic location. A sense of adventure and nomad- SO YOU WANT ic lifestyle is a plus. Flexible hours and casual dress code compensate for uncertain long-term career prospects y TO BE A and average pay. The opportunity for real scientific discovery awaits the right Keck ObservatorM. W. candidate. Apply now. How would you like to work here? PROFESSIONAL In many ways, professional astronomers are very fortunate. They have an opportunity to continue their passion (one that many peo- ple share) and they’re paid to do it. Some of the reasons given by PhD students for becoming an astronomer include: it’s fun and exciting, there are great opportunities for travel, it’s a cool job, and it’s possible to make significant discoveries. ASTRONOMER! Universities, observatories, government organizations, and industry employ astronomers who, contrary to popular belief, don’t spend all their waking hours at a telescope. Instead, most of their time is spent teaching, managing projects, providing support servic- (Shaun Amy, CSIRO) Amy, (Shaun es, and performing administrative duties. A typical astronomer y might spend just a week or two a year on an observing run, follow- ing by months of data analysis and article writing.
    [Show full text]
  • Galileo in Early Modern Denmark, 1600-1650
    1 Galileo in early modern Denmark, 1600-1650 Helge Kragh Abstract: The scientific revolution in the first half of the seventeenth century, pioneered by figures such as Harvey, Galileo, Gassendi, Kepler and Descartes, was disseminated to the northernmost countries in Europe with considerable delay. In this essay I examine how and when Galileo’s new ideas in physics and astronomy became known in Denmark, and I compare the reception with the one in Sweden. It turns out that Galileo was almost exclusively known for his sensational use of the telescope to unravel the secrets of the heavens, meaning that he was predominantly seen as an astronomical innovator and advocate of the Copernican world system. Danish astronomy at the time was however based on Tycho Brahe’s view of the universe and therefore hostile to Copernican and, by implication, Galilean cosmology. Although Galileo’s telescope attracted much attention, it took about thirty years until a Danish astronomer actually used the instrument for observations. By the 1640s Galileo was generally admired for his astronomical discoveries, but no one in Denmark drew the consequence that the dogma of the central Earth, a fundamental feature of the Tychonian world picture, was therefore incorrect. 1. Introduction In the early 1940s the Swedish scholar Henrik Sandblad (1912-1992), later a professor of history of science and ideas at the University of Gothenburg, published a series of works in which he examined in detail the reception of Copernicanism in Sweden [Sandblad 1943; Sandblad 1944-1945]. Apart from a later summary account [Sandblad 1972], this investigation was published in Swedish and hence not accessible to most readers outside Scandinavia.
    [Show full text]
  • The Search for Another Earth-Like Planet and Life Elsewhere Joshua Krissansen-Totton and David C
    2 The Search for Another Earth-Like Planet and Life Elsewhere joshua krissansen-totton and david c. catling Introduction Is there life beyond Earth? Unlike most of the great cosmic questions pondered by anyone who has spent an evening of wonder beneath starry skies, this one seems accessible, perhaps even answerable. Other equally profound questions such as “Why does the universe exist?” and “How did life begin?” are perhaps more diffi- cult to address and must have complex explanations. But when one asks, “Is there life beyond Earth?” the answer is “Yes” or “No”. Yet despite the apparent simplic- ity, either conclusion would have profound implications. Few scientific discoveries have the power to reshape our sense of place inthe cosmos. The Copernican Revolution, the first such discovery, marked the birth of modern science. Suddenly, the Earth was no longer the center of the universe. This revelation heralded a series of findings that further diminished our perceived self- importance: the cosmic distance scale (Bessel, 1838), the true size of our galaxy (Shapley, 1918), the existence of other galaxies (Hubble, 1925), and finally, the large-scale structure and evolution of the cosmos. As Carl Sagan put it, “The Earth is a very small stage in a vast cosmic arena” (Sagan, 1994, p. 6). Darwin’s theory of evolution by natural selection was the next perspective- shifting discovery. By providing a scientific explanation for the complexity and diversity of life, the theory of evolution replaced the almost universal belief that each organism was designed by a creator. Every species, including our own, was a small twig in an immense and slowly changing tree of life, driven by variation and natural selection.
    [Show full text]
  • Search for Brown-Dwarf Companions of Stars⋆⋆⋆
    A&A 525, A95 (2011) Astronomy DOI: 10.1051/0004-6361/201015427 & c ESO 2010 Astrophysics Search for brown-dwarf companions of stars, J. Sahlmann1,2, D. Ségransan1,D.Queloz1,S.Udry1,N.C.Santos3,4, M. Marmier1,M.Mayor1, D. Naef1,F.Pepe1, and S. Zucker5 1 Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany 3 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal 5 Department of Geophysics and Planetary Sciences, Tel Aviv University, Tel Aviv 69978, Israel Received 19 July 2010 / Accepted 23 September 2010 ABSTRACT Context. The frequency of brown-dwarf companions in close orbit around Sun-like stars is low compared to the frequency of plane- tary and stellar companions. There is presently no comprehensive explanation of this lack of brown-dwarf companions. Aims. By combining the orbital solutions obtained from stellar radial-velocity curves and Hipparcos astrometric measurements, we attempt to determine the orbit inclinations and therefore the masses of the orbiting companions. By determining the masses of poten- tial brown-dwarf companions, we improve our knowledge of the companion mass-function. Methods. The radial-velocity solutions revealing potential brown-dwarf companions are obtained for stars from the CORALIE and HARPS planet-search surveys or from the literature. The best Keplerian fit to our radial-velocity measurements is found using the Levenberg-Marquardt method.
    [Show full text]