Prehistory of Transit Searches Danielle BRIOT1 & Jean
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Catholic Christian Christian
Religious Scientists (From the Vatican Observatory Website) https://www.vofoundation.org/faith-and-science/religious-scientists/ Many scientists are religious people—men and women of faith—believers in God. This section features some of the religious scientists who appear in different entries on these Faith and Science pages. Some of these scientists are well-known, others less so. Many are Catholic, many are not. Most are Christian, but some are not. Some of these scientists of faith have lived saintly lives. Many scientists who are faith-full tend to describe science as an effort to understand the works of God and thus to grow closer to God. Quite a few describe their work in science almost as a duty they have to seek to improve the lives of their fellow human beings through greater understanding of the world around them. But the people featured here are featured because they are scientists, not because they are saints (even when they are, in fact, saints). Scientists tend to be creative, independent-minded and confident of their ideas. We also maintain a longer listing of scientists of faith who may or may not be discussed on these Faith and Science pages—click here for that listing. Agnesi, Maria Gaetana (1718-1799) Catholic Christian A child prodigy who obtained education and acclaim for her abilities in math and physics, as well as support from Pope Benedict XIV, Agnesi would write an early calculus textbook. She later abandoned her work in mathematics and physics and chose a life of service to those in need. Click here for Vatican Observatory Faith and Science entries about Maria Gaetana Agnesi. -
Apus Constellation Visible at Latitudes Between +5° and -90°
Apus Constellation Visible at latitudes between +5° and -90°. Best visible at 21:00 (9 p.m.) during the month of July. Apus is a small constellation in the southern sky. It represents a bird-of-paradise, and its name means "without feet" in Greek because the bird-of-paradise was once wrongly believed to lack feet. First depicted on a celestial globe by Petrus Plancius in 1598, it was charted on a star atlas by Johann Bayer in his 1603 Uranometria. The French explorer and astronomer Nicolas Louis de Lacaille charted and gave the brighter stars their Bayer designations in 1756. The five brightest stars are all reddish in hue. Shading the others at apparent magnitude 3.8 is Alpha Apodis, an orange giant that has around 48 times the diameter and 928 times the luminosity of the Sun. Marginally fainter is Gamma Apodis, another ageing giant star. Delta Apodis is a double star, the two components of which are 103 arcseconds apart and visible with the naked eye. Two star systems have been found to have planets. Apus was one of twelve constellations published by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman who had sailed on the first Dutch trading expedition, known as the Eerste Schipvaart, to the East Indies. It first appeared on a 35-cm diameter celestial globe published in 1598 in Amsterdam by Plancius with Jodocus Hondius. De Houtman included it in his southern star catalogue in 1603 under the Dutch name De Paradijs Voghel, "The Bird of Paradise", and Plancius called the constellation Paradysvogel Apis Indica; the first word is Dutch for "bird of paradise". -
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere A Constellation of Rare Books from the History of Science Collection The exhibition was made possible by generous support from Mr. & Mrs. James B. Hebenstreit and Mrs. Lathrop M. Gates. CATALOG OF THE EXHIBITION Linda Hall Library Linda Hall Library of Science, Engineering and Technology Cynthia J. Rogers, Curator 5109 Cherry Street Kansas City MO 64110 1 Thinking Outside the Sphere is held in copyright by the Linda Hall Library, 2010, and any reproduction of text or images requires permission. The Linda Hall Library is an independently funded library devoted to science, engineering and technology which is used extensively by The exhibition opened at the Linda Hall Library April 22 and closed companies, academic institutions and individuals throughout the world. September 18, 2010. The Library was established by the wills of Herbert and Linda Hall and opened in 1946. It is located on a 14 acre arboretum in Kansas City, Missouri, the site of the former home of Herbert and Linda Hall. Sources of images on preliminary pages: Page 1, cover left: Peter Apian. Cosmographia, 1550. We invite you to visit the Library or our website at www.lindahlll.org. Page 1, right: Camille Flammarion. L'atmosphère météorologie populaire, 1888. Page 3, Table of contents: Leonhard Euler. Theoria motuum planetarum et cometarum, 1744. 2 Table of Contents Introduction Section1 The Ancient Universe Section2 The Enduring Earth-Centered System Section3 The Sun Takes -
The Struve Family in Europe and Texas
THE STRUVE FAMILY IN EUROPE AND TEXAS An 1843 publication by Amand von Struve (1798-1867), a brother of Heinrich Struve (1812- 1898) was the source of information for a re-publication in 1881 by Heinrich von Struve (1840-??), a professor in Warsaw, Poland and a nephew of Heinrich Struve (1812-1898), the man who came to Texas. It is now offered [in an abridged form] by Arno Struve of Abernathy, Texas, great-grandson of Heinrich Struve (1812-1898). The reader is referred to a further explanation of this book at the conclusion of Lebensbild/Memories of My Life. (Title page lettered by D. Z. Ward and manuscript typed by Sandy Struve.) Sandy is a daughter-in-law of Arno Struve. You have in hand the story of a family named Struve. Once it was von Struve. Some individuals still retain the von. The earlier use of the “von” in our name is evidence that someone back there somewhere was honored for service rendered his king. The von is roughly equivalent to knighthood in the English world in which the title “Sir” was conferred by the king. In the English world, however, the title is not inherited whereas in the German practice it is. The importance of the title “von” is difficult for Americans to grasp but Germans fully understand its weight. One of my cousins insisted that I should use the von at least while traveling in Europe, but my egalitarian upbringing would not allow me to feel comfortable doing it. The “von” was dropped from the name when certain family members who were promoting democracy in Germany felt it unbecoming to use an unearned title. -
A New Vision of the Senses in the Work of Galileo Galilei
Perception, 2008, volume 37, pages 1312 ^ 1340 doi:10.1068/p6011 Galileo's eye: A new vision of the senses in the work of Galileo Galilei Marco Piccolino Dipartimento di Biologia, Universita© di Ferrara, I 44100 Ferrara, Italy; e-mail: [email protected] Nicholas J Wade University of Dundee, Dundee DD1 4HN, Scotland, UK Received 4 December 2007 Abstract. Reflections on the senses, and particularly on vision, permeate the writings of Galileo Galilei, one of the main protagonists of the scientific revolution. This aspect of his work has received scant attention by historians, in spite of its importance for his achievements in astron- omy, and also for the significance in the innovative scientific methodology he fostered. Galileo's vision pursued a different path from the main stream of the then contemporary studies in the field; these were concerned with the dioptrics and anatomy of the eye, as elaborated mainly by Johannes Kepler and Christoph Scheiner. Galileo was more concerned with the phenomenology rather than with the mechanisms of the visual process. His general interest in the senses was psychological and philosophical; it reflected the fallacies and limits of the senses and the ways in which scientific knowledge of the world could be gathered from potentially deceptive appearances. Galileo's innovative conception of the relation between the senses and external reality contrasted with the classical tradition dominated by Aristotle; it paved the way for the modern understanding of sensory processing, culminating two centuries later in Johannes Mu« ller's elaboration of the doctrine of specific nerve energies and in Helmholtz's general theory of perception. -
Big Data and Big Questions
Big meta Q:Visualization-based discoveries ?? • When have graphics led to discoveries that might not have been achieved otherwise? . Snow (1854): cholera as a water-borne disease Big Data and Big Questions: . Galton (1883): anti-cyclonic weather patterns Vignettes and lessons from the history of data . E.W. Maunder (1904): 11-year sunspot cycle visualization . Hertzsprung/Russell (1911): spectral classes of stars Galton (1863) Snow (1854) Maunder (1904) H/R (1911) Michael Friendly York University Workshop on Visualization for Big Data Fields Institute, Feb. 2015 2 Big meta Q:Visualization-based discoveries ?? Context: Milestones Project • In the history of graphs, what features and data led to such discoveries? . What visual ideas/representations were available? . What was needed to see/understand something new? • As we go forward, are there any lessons? . What are the Big Questions for today? . How can data visualization help? 3 Web site: http://datavis.ca/milestones 4 Vignettes: 4 heros in the history of data visualization Underlying themes • The 1st statistical graph: M.F. van Langren and the Escaping flatland: 1D → 2D → nD “secret” of longitude • • “Moral statistics”: A.M. Guerry and the rise of modern • The rise of visual thinking and explanation social science • Mapping the invisible • Visual tools for state planning: C.J. Minard and the • Data → Theory → Practice Albums de Statistique Graphique in the “Golden Age” Graphical excellence • Mapping data: Galton’s discoveries & visual insight • • Appreciating the rich history of DataVis in what we do today 5 6 1. Big questions of the 17th century Big data of the 17th century • Geophysical measurement: distance, time and • Astronomical and geodetic tables space . -
Astronomy Beat
ASTRONOMY BEAT ASTRONOMY BEAT /VNCFSt"QSJM XXXBTUSPTPDJFUZPSH 1VCMJTIFS"TUSPOPNJDBM4PDJFUZPGUIF1BDJöD &EJUPS"OESFX'SBLOPJ ª "TUSPOPNJDBM 4PDJFUZ PG UIF 1BDJöD %FTJHOFS-FTMJF1SPVEöU "TIUPO"WFOVF 4BO'SBODJTDP $" The Origin of the Drake Equation Frank Drake Dava Sobel Editor’s Introduction Most beginning classes in astronomy introduce their students to the Drake Equation, a way of summarizing our knowledge about the chances that there is intelli- ASTRONOMYgent life among the stars with which we humans might BEAT communicate. But how and why did this summary for- mula get put together? In this adaptation from a book he wrote some years ago with acclaimed science writer Dava Sobel, astronomer and former ASP President Frank Drake tells us the story behind one of the most famous teaching aids in astronomy. ore than a year a!er I was done with Proj- 'SBOL%SBLFXJUIUIF%SBLF&RVBUJPO 4FUI4IPTUBL 4&5**OTUJUVUF ect Ozma, the "rst experiment to search for radio signals from extraterrestrial civiliza- Mtions, I got a call one summer day in 1961 from a man to be invited. I had never met. His name was J. Peter Pearman, and Right then, having only just met over the telephone, we he was a sta# o$cer on the Space Science Board of the immediately began planning the date and other details. National Academy of Science… He’d followed Project We put our heads together to name every scientist we Ozma throughout, and had since been trying to build knew who was even thinking about searching for ex- support in the government for the possibility of dis- traterrestrial life in 1961. -
VIRTUAL CONCEPT > REAL PROFIT
B K C L OZE ULKA OE M > K , VIRTUAL CONCEPT REAL PROFIT S , [ed.] AWSKI with Digital Manufacturing and Simulation IR E , S , , , O VIRTUAL CONCEPT In our highly competitive industrialized world of lean production TT O and fast innovation, it comes as no surprise that customers demand CASA Yves Coze instantaneous delivery of individualized products at the best price- , , > performance ratio. For manufacturing companies, vast product REAL PROFIT ranges of high quality and complexity mean that flexible develop- with Digital Manufacturing and Simulation VIRTUAL CONCEPT ment and ramp-up across supply chain networks is crucial to survive with Digital Manufacturing and Simulation and thrive. Global competition, economic pressure, environmental and energy issues demand state-of-the-art capabilities and, above all, timely action. Such formidable challenges can only be met by Nicolas Kawski tightly interwoven lifecycle-oriented engineering and manufactur- ing technologies and processes. To date more than ever, the ongoing development and integration of digital manufacturing and simu- lation is critical to eliminate the waste of time and money in the physical world, and to ensure product success as much and as early as possible. Torsten Kulka Digital manufacturing and simulation clearly constitute contempo- rary extensions of the train of thought and practice that Frederick Winslow Taylor started a century ago. The evolution from “Taylor- > made” to “tailor-made” is in perfect concert with the ongoing REAL PROFIT customization that customers have learned not only to demand but to even co-create. Apart from lowering cost and improving time- to-market, digital manufacturing and simulation are targeted at Pascal Sire intensifying the intimacy, efficiency and effectiveness of co-creation feedback loops, fostering the collaboration of manufacturers, cus- tomer communities, independent R&D institutes and individuals. -
On the Alleged Use of Keplerian Telescopes in Naples in the 1610S
On the Alleged Use of Keplerian Telescopes in Naples in the 1610s By Paolo Del Santo Museo Galileo: Institute and Museum of History of Science – Florence (Italy) Abstract The alleged use of Keplerian telescopes by Fabio Colonna (c. 1567 – 1640), in Naples, since as early as October 1614, as claimed in some recent papers, is shown to be in fact untenable and due to a misconception. At the 37th Annual Conference of the Società Italiana degli Storici della Fisica e dell'Astronomia (Italian Society of the Historians of Physics and Astronomy, SISFA), held in Bari in September 2017, Mauro Gargano gave a talk entitled Della Porta, Colonna e Fontana e le prime osservazioni astronomiche a Napoli. This contribution, which appeared in the Proceedings of the Conference (Gargano, 2019a), was then followed by a paper —actually, very close to the former, which, in turn, is very close to a previous one (Gargano, 2017)— published, in the same year, in the Journal of Astronomical History and Heritage (Gargano, 2019b). In both of these writings, Gargano claimed that the Neapolitan naturalist Fabio Colonna (c. 1567 – 1640), member of the Accademia dei Lincei, would have made observations with a so-called “Keplerian” or “astronomical” telescope (i.e. with converging eyepiece), in the early autumn of 1614. The events related to the birth and development of Keplerian telescope —named after Johannes Kepler, who theorised this optical configuration in his Dioptrice, published in 1611— are complex and not well-documented, and their examination lies beyond the scope of this paper. However, from a historiographical point of view, the news that someone was already using such a configuration since as early as autumn 1614 for astronomical observations, if true, would have not negligible implications, which Gargano himself does not seem to realize. -
Acta Universitatis Carolinae. Mathematica Et Physica
Acta Universitatis Carolinae. Mathematica et Physica Franz Daxecker Christoph Scheiner's main work "Rosa Ursina sive Sol" Acta Universitatis Carolinae. Mathematica et Physica, Vol. 46 (2005), No. Suppl, 127--140 Persistent URL: http://dml.cz/dmlcz/143830 Terms of use: © Univerzita Karlova v Praze, 2005 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz 2005 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 46, Supplementum Christoph Schemer's Main Work "Rosa Ursina sive Sol" FRANZ DAXECKER Innsbruck Received 20. October 2004 In volume I Scheiner tackles the issue of who was first to discover the sunspots, he also proves that Galilei made errors of observation. Volume II shows illustrations of tele- scopes, projection methods and compares the optics of a telescope with that of the human eye. In volume III, observations on sunspots are illustrated. Volume IV consists two parts. The first part again deals with the phenomena of the sun, the second part is a collection of quotations from the Scriptures, Church Fathers and philosophers, all designed to prove that Schemer's interpretation of the fluid heavens conformed to Catholic doctrine. The work contains 784 pages in Latin. The text presents a rather tedious reading task as it is written in the style typical of the time. -
GEORGE HERBIG and Early Stellar Evolution
GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study. -
Theme 4: from the Greeks to the Renaissance: the Earth in Space
Theme 4: From the Greeks to the Renaissance: the Earth in Space 4.1 Greek Astronomy Unlike the Babylonian astronomers, who developed algorithms to fit the astronomical data they recorded but made no attempt to construct a real model of the solar system, the Greeks were inveterate model builders. Some of their models—for example, the Pythagorean idea that the Earth orbits a celestial fire, which is not, as might be expected, the Sun, but instead is some metaphysical body concealed from us by a dark “counter-Earth” which always lies between us and the fire—were neither clearly motivated nor obviously testable. However, others were more recognisably “scientific” in the modern sense: they were motivated by the desire to describe observed phenomena, and were discarded or modified when they failed to provide good descriptions. In this sense, Greek astronomy marks the birth of astronomy as a true scientific discipline. The challenges to any potential model of the movement of the Sun, Moon and planets are as follows: • Neither the Sun nor the Moon moves across the night sky with uniform angular velocity. The Babylonians recognised this, and allowed for the variation in their mathematical des- criptions of these quantities. The Greeks wanted a physical picture which would account for the variation. • The seasons are not of uniform length. The Greeks defined the seasons in the standard astronomical sense, delimited by equinoxes and solstices, and realised quite early (Euctemon, around 430 BC) that these were not all the same length. This is, of course, related to the non-uniform motion of the Sun mentioned above.