Light Echoes from Historic Supernovae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FY08 Technical Papers by GSMTPO Staff
AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................ -
Nd AAS Meeting Abstracts
nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron -
Blasts from the Past Historic Supernovas
BLASTS from the PAST: Historic Supernovas 185 386 393 1006 1054 1181 1572 1604 1680 RCW 86 G11.2-0.3 G347.3-0.5 SN 1006 Crab Nebula 3C58 Tycho’s SNR Kepler’s SNR Cassiopeia A Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese Historical Observers: European, Chinese, Korean Historical Observers: European, Chinese, Korean Historical Observers: European? Arabic, European Arabic, Native American? Likelihood of Identification: Possible Likelihood of Identification: Probable Likelihood of Identification: Possible Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Distance Estimate: 8,200 light years Distance Estimate: 16,000 light years Distance Estimate: 3,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,500 light years Distance Estimate: 13,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,000 light years Distance Estimate: 6,000 light years Type: Core collapse of massive star Type: Core collapse of massive star Type: Core collapse of massive star? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Thermonuclear explosion of white dwarf? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Core collapse of massive star NASA’s ChANdrA X-rAy ObServAtOry historic supernovas chandra x-ray observatory Every 50 years or so, a star in our Since supernovas are relatively rare events in the Milky historic supernovas that occurred in our galaxy. Eight of the trine of the incorruptibility of the stars, and set the stage for observed around 1671 AD. -
Supernovae 6 Supernovae Stellar Catastrophes 1. Observations
Supernovae 6 Supernovae Stellar Catastrophes 1. Observations Which stars explode? Which collapse? Which outwit the villain gravity and settle down to a quiet old age as a white dwarf? Astrophysicists are beginning to block out answers to these questions. We know that a quiet death eludes some stars. Astronomers observe some stars exploding as supernovae, a sudden brightening by which a single star becomes as bright as an entire galaxy. Estimates of the energy involved in such a process reveal that a major portion of the star, if not the entire star, must be blown to smithereens. Historical records, particularly the careful data recorded by the Chinese, show that seven or eight supernovae have exploded over the last 2000 years in our portion of the Galaxy. The supernova of 1006 was the brightest ever recorded. One could read by this supernova at night. Astronomers throughout the Middle and Far East observed this event. The supernova of 1054 is by far the most famous, although this event is clearly not the only so-called “Chinese guest star.” This explosion produced the rapidly expanding shell of gas that modern astronomers identify as the Crab nebula. The supernova of 1054 was apparently recorded first by the Japanese and was also clearly mentioned by the Koreans, although the Chinese have the most careful records. There is a strong suspicion that Native Americans recorded the event in rock paintings and perhaps on pottery. An entertaining mystery surrounds the question of why there is no mention of the event in European history. One line of thought is that the church had such a grip on people in the Middle Ages that no one having seen the supernova would have dared voice a difference with the dogma of the immutability of the heavens. -
Today's Topics A. Supernova Remnants. B. Neutron Stars. C
Today’s Topics Wednesday, November 3, 2020 (Week 11, lecture 31) – Chapter 23. A. Supernova remnants. B. Neutron stars. C. Pulsars. Cassiopeia A: Supernova Remnant Supernova in the late 1600’s Cassiopeia A supernova remnant (type II) False color composite image from Hubble (optical = gold), Spitzer (IR = red),and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers] Cassiopeia A: Supernova Remnant neutron star Cassiopeia A supernova remnant (type II) False color composite image from Hubble (optical = gold), Spitzer (IR = red),and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers] Cassiopeia A: Supernova Remnant neutron star 10 light years Cassiopeia A supernova remnant (type II) False color composite image from Hubble (optical = gold), Spitzer (IR = red),and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers] Crab Nebula: Supernova Remnant Supernova in 1054 AD (type II) constellation: Taurus [NASA/ESA/Hubble, 1999-2000] Crab Nebula: Supernova Remnant Supernova in 1054 AD (type II) constellation: Taurus 11 light years [NASA/ESA/Hubble, 1999-2000] Tycho’s Supernova Remnant SN 1572 (type I = white dwarf + red giant binary explosion) Constellation: Cassiopeia Composite image: blue = hard x-rays, red = soft x-rays, background stars = optical [NASA/Chandra (2009)] Tycho’s Supernova Remnant SN 1572 (type I = white dwarf + red giant binary explosion) Constellation: Cassiopeia 10 light years Composite image: blue = hard x-rays, red = soft x-rays, background stars = optical [NASA/Chandra (2009)] Where do heavy elements come from ? ▪ Supernovae are a major source of heavy elements ▪ Most of the iron core of a massive star is “dissolves” into protons in the core collapse. -
The Nova Stella and Its Observers
Running title: Nova stella 1572 AD The Nova Stella and its Observers P. Ruiz–Lapuente ∗,∗∗ 1. Introduction In 1572, physicists were still living with the concepts of mechanics inherited from Aris- totle and with the classification of the elements from the Greek philosopher. The growing criticism towards the Aristotelian views on the natural world could not turn very produc- tive, because the necessary elements of calculus and the empirical tools to move into a better frame were still lacking. However, in astronomy, observers had witnessed by that time the comet of 1556 and they would witness a new one in 1577. Moreover, since 1543 when De Revolutionibus Orbium Caelestium by Copernicus came to light, the apparent motion of the planets had a radically different explanation from the ortodox geocentrism. The new helio- centric view slowly won supporters among astronomers. The explanations concerning the planetary motions would depart from the “common sense” intuitions that had placed the earth sitting still at the center of the planetary system. Thus the “nova stella” in 1572 happened in the middle of the geocentric–versus–heliocentric debate. The other “nova”, the one that would be observed in 1604 by Kepler, came just shortly after the posthumous publication of Tycho Brahe’s Astronomiae Instauratae Progymnasmata1 which contains most of the debates in relation to the appearance of the “new star”2. arXiv:astro-ph/0502399v1 21 Feb 2005 The machinery moving the planetary spheres, i.e. the intrincate system of solid spheres rotating by the motion imparted to them as the wheels in a clock, was not directly affected by the new heliocentric proposal. -
John P. Hughes
John P. Hughes Professional History 2011 { Professor II, Rutgers University 2005 { 2011 Professor I, Rutgers University 2000 { 2005 Associate Professor, Rutgers University 1996 { 2000 Assistant Professor, Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 1988 { 1996 Staff Scientist, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 1984 { 1987 Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA Education 1984 Columbia University, Ph.D., Physics 1980 Columbia University, M.A., Physics 1978 Columbia College, A.B., Physics Awards and Appointments 2010 Elected member, Executive committee of the High Energy Astrophysics Division of the American Astronomical Society 2009 Rutgers University Board of Trustees Award for Excellence in Research 2008 Fellow, American Physical Society 2006 { 2007 Visiting Fellow, Department of Astrophysical Sciences, Princeton University 1999 { 2000 Visiting Scientist, Service d'Astrophysique, CEA-Saclay 1993 NASA Public Service Medal 1993 Visiting Research Scientist, Kyoto University, Japan 1992 NASA Group Achievement Award for AXAF VETA 1992 Smithsonian Institution Special Achievement Award 1991 NASA Group Achievement Award for ROSAT 1985 Japanese Foreign Research Fellow, The Institute of Space and Astronautical Science, Tokyo, Japan 1984 { 1996 Associate, Harvard College Observatory 1984 { 1987 Smithsonian Postdoctoral Fellow 1978 { 1980 Columbia University Faculty Fellow 1977 Summer Research Assistant, Bell Labs, Murray Hill, NJ Professional Activities -
7.5 X 11.5.Doubleline.P65
Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information Name index Abell, George, 99, 101 Cappelluti, Nico, 729 Abraham, Robert, 733 Carter, Brandon, 434 Abramovitz, Milton, 206, 209 Caswell, James, 226 Adams, Fred, 353, 369 Cavaliere, Alfonso, 110 Amsler, Claude, 275 Cesarsky, Catherine, 187, 189 Anderson, Carl, 29, 30, 163 Challinor, Anthony, 115, 259 Arnaud, Monique, 110 Chandrasekhar, Subrahmanyan, 302, 429, 434, Arnett, David, 386 455 Arzoumanian, Zaven, 420 Charlot, Stephane,´ 729, 730, 747 Auger, Pierre, 29 Chwolson, O., 117 Cimatti, Andrea, 736, 748 Babbedge, T., 740 Clayton, Donald, 386 Backer, Donald, 417, 418 Clemmow, Phillip, 267 Bahcall, John, 55, 57, 58 Colless, Matthew, 108, 109 Bahcall, Neta, 105 Compton, Arthur, 231 Balbus, Steven, 455 Cordes, James, 420 Band, David, 264 Cowie, Lennox, 733, 736, 743, 745 Barger, Amy, 745 Cox, Donald, 357 Beckwith, Steven, 737, 744 Becquerel, Henri, 146 Damon, Paul, 297 Bekefi, George, 193 Davies, Rodney, 376 Bell(-Burnell), Jocelyn, 19, 406 Davis, Leverett, 373 Bennett, Charles, 16 Davis, Raymond, 32, 54, 55 Bethe, Hans, 57, 163, 166, 175 de Vaucouleurs, Gerard,´ 77, 78 Bignami, Giovanni, 197 Dermer, Charles, 505 Binney, James, 106, 153 Deubner, Franz-Ludwig, 51 Blaauw, Adriaan, 754 Diehl, Roland, 287 Blackett, Patrick, 29 Dirac, Adrian, 29 Blain, Andrew, 743 Djorgovski, George, 88 Bland-Hawthorn, Jonathan, 733 Dougherty, John, 267 Blandford, Roger, 251 Draine, Bruce, 351, 372, 373, 375, Blumenthal, George, 163, 175, -
Supernovae and Neutron Stars
Outline of today’s lecture Lecture 17: •Finish up lecture 16 (nucleosynthesis) •Supernovae •2 main classes: Type II and Type I Supernovae and •Their energetics and observable properties Neutron Stars •Supernova remnants (pretty pictures!) •Neutron Stars •Review of formation http://apod.nasa.gov/apod/ •Pulsars REVIEWS OF MODERN PHYSICS, VOLUME 74, OCTOBER 2002 The evolution and explosion of massive stars S. E. Woosley* and A. Heger† Department of Astronomy and Astrophysics, University of California, Santa Cruz, California 95064 T. A. Weaver Lawrence Livermore National Laboratory, Livermore, California 94551 (Published 7 November 2002) Like all true stars, massive stars are gravitationally confined thermonuclear reactors whose composition evolves as energy is lost to radiation and neutrinos. Unlike lower-mass stars (M Շ8M᭪), however, no point is ever reached at which a massive star can be fully supported by electron degeneracy. Instead, the center evolves to ever higher temperatures, fusing ever heavier elements until a core of iron is produced. The collapse of this iron core to a neutron star releases an enormous amount of energy, a tiny fraction of which is sufficient to explode the star as a supernova. The authors examine our current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics. Emphasis is placed upon their post-helium-burning evolution. Current views regarding the supernova explosion mechanism are reviewed, and the hydrodynamics of supernova shock propagation and ‘‘fallback’’ is discussed. The calculated neutron star masses, supernova light curves, and spectra from these model stars are shown to be consistent with observations. -
Shell Supernova Remnants As Cosmic Accelerators: I Stephen Reynolds, North Carolina State University
Shell supernova remnants as cosmic accelerators: I Stephen Reynolds, North Carolina State University I. Overview II. Supernovae: types, energies, surroundings III.Dynamics of supernova remnants A)Two-shock (ejecta-dominated) phase B)Adiabatic (Sedov) phase C)Transition to radiative phase IV. Diffusive shock acceleration V. Radiative processes SLAC Summer Institute August 2008 Supernova remnants for non-astronomers Here: ªSNRº means gaseous shell supernova remnant. Exploding stars can also leave ªcompact remnants:º -- neutron stars (which may or may not be pulsars) -- black holes We exclude pulsar-powered phenomena (ªpulsar-wind nebulae,º ªCrablike supernova remnantsº after the Crab Nebula) SN ejects 1 ± 10 solar masses (M⊙) at high speed into surrounding material, heating to X-ray emitting temperatures (> 107 K). Expansion slows over ~105 yr. Young (ªadiabatic phaseº) SNRs: t < tcool ~ 10,000 yr. Observable primarily through radio (synchrotron), X-rays (if not absorbed by intervening ISM) Older (ªradiative phaseº): shocks are slow, highly compressive; bright optical emission. (Still radio emitters, maybe faint soft X-rays). SLAC Summer Institute August 2008 SNRs: background II Supernovae: visible across Universe for weeks ~ months SNRs: detectable only in nearest galaxies, but observable for 104 ± 105 yr So: almost disjoint sets. Important exception: Historical supernovae. Chinese, European records document ªnew starsº visible with naked eye for months. In last two millenia: 185 CE, 386, 393, 1006, 1054 (Crab Nebula), 1181 (?), 1572 (Tycho©s SN), 1604 (Kepler©s SN) ªQuasi-historical:º deduced to be < 2000 yr old, but not seen due to obscuration: Cas A (~ 1680), G1.9+0.3 (~ 1900). Unique testbed: SN 1987A (Large Magellanic Cloud) SLAC Summer Institute August 2008 A supernova-remnant gallery 1. -
Nature's Biggest Explosions: Past, Present, and Future
Nature’s Biggest Explosions: Past, Present, and Future Edo Berger Harvard University Why Study Cosmic Explosions? Why Study Cosmic Explosions? Why Study Cosmic Explosions? Why Study Cosmic Explosions? Why Study Cosmic Explosions? The Past About 10 “guest stars” have been mentioned in historical records, spanning from 185 to 1604 AD. All were observed with the naked eye (first telescope was built in 1608 AD). “Throughout all past time, according to the records handed down from generation to generation, nothing is observed to have changed either in the whole of the outermost heaven or in any of its proper parts.” Aristotle, De caelo (On the Heavens), 350 BC SN 185 In 185 AD Chinese records mark the appearance of a “guest star” which remained visible for 8 months and did not move like a planet or a comet. This is the oldest record of a supernova. “In the 2nd year of the epoch Zhongping, the 10th month, on the day Kwei Hae, a strange star appeared in the middle of Nan Mun … In the 6th month of the succeeding year it disappeared.” SN 1006 On April 1006 records from Europe, the Middle East, and Asia mark the appearance of the brightest “guest star” ever seen: bright as a quarter moon and visible during the day. It remained visible for almost 2 years. “…spectacle was a large circular body, 2½ to 3 times as large as Venus. The sky was shining because of its light. The intensity of its light was a little more than the light of the Moon when one-quarter illuminated" SN 1054 On July 4, 1054 AD records from the Middle East and Asia (and potentially North America) mark the appearance of a bright “guest star”; as bright as a 1/16 moon and remained visible for 2 years. -
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae
Noname manuscript No. (will be inserted by the editor) Magnetic fields in supernova remnants and pulsar-wind nebulae Stephen P. Reynolds · B. M. Gaensler · Fabrizio Bocchino Received: date / Accepted: date Abstract We review the observations of supernova rem- guments and dynamical modeling can be used to in- nants (SNRs) and pulsar-wind nebulae (PWNe) that fer magnetic-field strengths anywhere from 5 µG ∼ give information on the strength and orientation of mag- to 1 mG. Polarized fractions are considerably higher netic fields. Radio polarimetry gives the degree of or- than in SNRs, ranging to 50 or 60% in some cases; der of magnetic fields, and the orientation of the or- magnetic-field geometries often suggest a toroidal struc- dered component. Many young shell supernova rem- ture around the pulsar, but this is not universal. Viewing- nants show evidence for synchrotron X-ray emission. angle effects undoubtedly play a role. MHD models of The spatial analysis of this emission suggests that mag- radio emission in shell SNRs show that different orienta- netic fields are amplified by one to two orders of magni- tions of upstream magnetic field, and different assump- tude in strong shocks. Detection of several remnants in tions about electron acceleration, predict different ra- TeV gamma rays implies a lower limit on the magnetic- dio morphology. In the remnant of SN 1006, such com- field strength (or a measurement, if the emission process parisons imply a magnetic-field orientation connecting is inverse-Compton upscattering of cosmic microwave the bright limbs, with a non-negligible gradient of its background photons).