Terrestrial and Marine Biological Resource Information

Total Page:16

File Type:pdf, Size:1020Kb

Terrestrial and Marine Biological Resource Information APPENDIX C Terrestrial and Marine Biological Resource Information Appendix C1 Resource Agency Coordination Appendix C2 Marine Biological Resources Report APPENDIX C1 RESOURCE AGENCY COORDINATION 1 The ICF terrestrial biological team coordinated with relevant resource agencies to discuss 2 sensitive biological resources expected within the terrestrial biological study area (BSA). 3 A summary of agency communications and site visits is provided below. 4 California Department of Fish and Wildlife: On July 30, 2020, ICF held a conference 5 call with Greg O’Connell (Environmental Scientist) and Corianna Flannery (Environmental 6 Scientist) to discuss Project design and potential biological concerns regarding the 7 Eureka Subsea Fiber Optic Cables Project (Project). Mr. O’Connell discussed the 8 importance of considering the western bumble bee. Ms. Flannery discussed the 9 importance of the hard ocean floor substrate and asked how the cable would be secured 10 to the ocean floor to reduce or eliminate scour. The western bumble bee has been 11 evaluated in the Biological Resources section of the main document, and direct and 12 indirect impacts are avoided. The Project Description describes in detail how the cable 13 would be installed on the ocean floor, the importance of the hard bottom substrate, and 14 the need for avoidance. 15 Consultation Outcomes: 16 • The Project was designed to avoid hard bottom substrate, and RTI Infrastructure 17 (RTI) conducted surveys of the ocean floor to ensure that proper routing of the 18 cable would occur. 19 • Ms. Flannery will be copied on all communications with the National Marine 20 Fisheries Service 21 California Department of Fish and Wildlife: On August 7, 2020, ICF held a conference 22 call with Greg O’Connell to discuss a site assessment and survey approach for the 23 western bumble bee. Because capture of insects was not part of the sampling design, an 24 incidental take permit was not necessary. Mr. O’Connell stressed the importance of 25 nesting and over-wintering habitat but was not concerned with the bee’s flight period. Mr. 26 O’Connell described an approach to assess the cable landing site 1 year prior to ground 27 disturbance to determine the presence/absence of western bumble bee. 28 Consultation Outcomes: 29 • Mr. O’Connell provided literature for review that was used to develop the survey 30 and assessment approach. 31 • A survey was designed that involved two separate site visits during the appropriate 32 time and weather conditions to observe and photograph foraging insects. February 2021 C1-1 Eureka Subsea Cables Project MND Appendix C1 – Resource Agency Coordination 1 U.S. Fish and Wildlife Service (USFWS): On August 7, October 9 and 13, 2020, ICF 2 corresponded via email with John Hunter, of the Arcata U.S. Fish and Wildlife Office. 3 Consultation Outcomes: 4 • August 7 – Mr. Hunter stated that he would be in contact to discuss the project in 5 more detail. 6 • October 9 – On behalf of RTI, ICF emailed Mr. Hunter a letter requesting technical 7 assistance for the federally endangered beach layia (Layia carnosa) and federally 8 threatened western snowy plover (Charadrius nivosus nivosus). ICF requested 9 that USFWS concur with our no effect (NE) determination. 10 • October 13 – Mr. Hunter responded to the technical assistance letter emailed on 11 October 9. Mr. Hunter asked whether the Project was private or had a federal 12 nexus. If private, he stated that “This might be a no take at this point” and that a 13 technical assistance letter would be issued. However, if there was a federal nexus, 14 the process for a no effect concurrence would be different. ICF’s Steve Yonge 15 emailed Mr. Hunter and stated that RTI had yet to contact the U.S. Army Corps of 16 Engineers (USACE) to discuss the Project and whether the terrestrial portion of 17 the Project would be included in the Clean Water Act 404 permit that RTI will apply 18 for. Mr. Hunter stated that the USFWS does not issue technical assistance letters 19 for NE determinations but stated “It would seem to us that your reasoning for a 20 potential NE determination looks sound.” Mr. Hunter requested that ICF inform him 21 of the permitting approach the USACE takes and whether a federal nexus is 22 identified. 23 California Department of Fish and Wildlife: On August 19, 2020, ICF met Greg 24 O’Connell at the cable landing site to discuss the potential for the western bumble bee to 25 occur. We reviewed the area for nesting and over-wintering habitat, and discussed the 26 proposed methods to determine whether western bumble bees were using the site. We 27 explained our sample approach and the photography taken to capture images of foraging 28 insects that would be used for identification to be performed by an entomologist. We 29 discussed potential temporary and permanent impacts, and installation of temporary 30 fencing around the work area during construction. Mr. O’Connell thought impacts on the 31 dune mat community may require restoration; he provided example restoration 32 opportunities and recommended that ICF contact Laurel Goldsmith with USFWS for 33 assistance with dune restoration concepts. 34 Consultation Outcomes: 35 • Mr. O’Connell thought it was sufficient to photograph insects and then have the 36 photographs reviewed by an entomologist. 37 • Permanent impacts at the cable landing site would be minimal and would involve 38 installation of four vault boxes. Eureka Subsea Cables Project MND C1-2 February 2021 Appendix C1 – Resource Agency Coordination 1 National Marine Fisheries Service (NMFS): From August 5 through August 31, 2020, 2 ICF corresponded via email with multiple staff members who support the West Coast and 3 Pacific Islands NMFS regions. ICF clarified the location of the cable landing site and 4 discussed the nexus for consultation that would be initiated by the USACE as part of 5 Nationwide Permit #12. 6 On October 21, 2020, ICF held a conference call with representatives from both the NMFS 7 West Coast and Pacific Islands Regional offices. We discussed the four phases of the 8 Project, potential effects of the Project to be addressed in the biological assessment (BA) 9 and essential fish habitat (EFH) assessment, and the permitting approach. 10 Consultation Outcomes: 11 • Developed a list of NMFS staff to coordinate with and discuss an approach to 12 review and analyze the Project that spans the NMFS West Coast and Pacific 13 Islands regions. 14 • Agreed to engage the USACE to determine the most appropriate way to permit the 15 Project through the Clean Water Act 404 process. 16 • ICF on behalf of RTI would begin to prepare the draft BA and EFH assessment 17 that would support formal consultation under Section 7 of the federal Endangered 18 Species Act. February 2021 C1-3 Eureka Subsea Cables Project MND Appendix C1 – Resource Agency Coordination Table C1-1. Special-Status Wildlife and Fish Species and Their Potential to Occur in the Terrestrial Biological Study Area (BSA) Legal Common Name Status Potential to Occur in General Range and Habitat Description Scientific Name Federal/ the BSA Statea Southern torrent –/SSC Found in coastal drainages from southern Mendocino County None – No suitable habitat salamander north to Oregon; prefers cold shaded streams and seeps, present. Rhyacotriton variegatus often with rocks and talus, usually on north-facing slopes. Pacific tailed frog –/SSC Occurs in coastal northern California and inland to Big Bend in None – No suitable habitat Ascaphus truei Shasta County and north in the Cascade Mountains. present Restricted to montane cold, clear, rocky perennial streams in wet forests; tadpoles require water below 15 degrees Celsius. Northern red-legged frog –/SSC Occurs in coastal northern California; Mendocino County None – No suitable habitat Rana aurora through Oregon and Washington; humid forests, woodlands, present and streams with plant cover. Often found in woods adjacent to streams. Breeding habitat is in permanent water sources; lakes, ponds, reservoirs, slow streams, marshes, bogs, and swamps. Foothill yellow-legged –/SSC Occurs throughout the North and South Coast Ranges, south None – No suitable habitat frog to the Transverse Range, across northern California to the present Rana boylii west slope of the Cascade Range, and south through the foothills of the Sierra Nevada. Inhabits forest streams and rivers (both perennial and intermittent) with sunny, sandy, and rocky banks, with deep pools, and shallow riffles. Western pond turtle –/SSC Occurs throughout California west of the Sierra-Cascade crest; None – No suitable habitat Emys marmorata found from sea level to 6,000 feet; occupies ponds, marshes, present rivers, streams, and irrigation canals with muddy or rocky bottoms. Eureka Subsea Cables Project MND C1-4 February 2021 Appendix C1 – Resource Agency Coordination Table C1-1. Continued Legal Common Name Status Potential to Occur in General Range and Habitat Description Scientific Name Federal/ the BSA Statea White-tailed kite –/FP Occur in savanna, open woodlands, marshes, desert Moderate – Suitable Elanus leucurus grassland, partially cleared lands, and cultivated fields nesting and foraging throughout the West; often nest in isolated trees in open- habitat present. Not country or forest edges. observed during the July 10, 2020 habitat-based field survey. Bald eagle –/SE, FP Nests in large, old-growth, or emergent live tree with open None – No suitable nesting Haliaeetus leucocephalus branchwork. Nests typically located 50 to 200 feet above or foraging habitat present ground. Forages primarily in large inland fish-bearing waters with adjacent large trees or snags, and occasionally in uplands with abundant rabbits, other small mammals, or carrion. Breeding range includes the Sierra Nevada, Cascade Range, and portions of the Coast Ranges; winter range expands to include most of the State. Northern harrier –/SSC Widespread throughout North America in wide-open Moderate – Suitable Circus cyaneus grasslands, marshes, or fields; breed in freshwater and nesting and foraging brackish marshes; nest on the ground and usually in a dense habitat present.
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Improving Habitat Restoration for Native Pollinators in San Francisco Tyrha Delger [email protected]
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Master's Projects and Capstones Theses, Dissertations, Capstones and Projects Spring 5-18-2018 Improving Habitat Restoration for Native Pollinators in San Francisco Tyrha Delger [email protected] Follow this and additional works at: https://repository.usfca.edu/capstone Recommended Citation Delger, Tyrha, "Improving Habitat Restoration for Native Pollinators in San Francisco" (2018). Master's Projects and Capstones. 739. https://repository.usfca.edu/capstone/739 This Project/Capstone is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Projects and Capstones by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. This Master’s Project Improving Habitat Restoration for Native Pollinators in San Francisco by Tyrha Delger is submitted in partial fulfillment of the requirements or the degree of Master of Science in Environmental Management at the University of San Francisco Submitted: Received: ……………………………. …………………………….... Your Name Date Allison Luengen, Ph.D. Date Name: Tyrha Delger USF MSEM Master’s Project Spring 2018 Final Paper Table of Contents List of Tables………………………………………………………………………………………....1 List of Figures………………………………………………………………………………………..2 Abstract……………………………………………………………………………………………….3
    [Show full text]
  • Environmental DNA Reveals the Fine-Grained and Hierarchical
    www.nature.com/scientificreports OPEN Environmental DNA reveals the fne‑grained and hierarchical spatial structure of kelp forest fsh communities Thomas Lamy 1,2*, Kathleen J. Pitz 3, Francisco P. Chavez3, Christie E. Yorke1 & Robert J. Miller1 Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifes species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms ofers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fsh communities on temperate rocky reefs in southern California. eDNA provided a more‑detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species fltering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC.
    [Show full text]
  • Fertilization Selection on Egg and Jelly-Coat Size in the Sand Dollar Dendraster Excentricus
    Evolution, 55(12), 2001, pp. 2479±2483 FERTILIZATION SELECTION ON EGG AND JELLY-COAT SIZE IN THE SAND DOLLAR DENDRASTER EXCENTRICUS DON R. LEVITAN1,2 AND STACEY D. IRVINE2 1Department of Biological Science, Florida State University, Tallahassee, Florida 32306-1100 2Bam®eld Marine Station, Bam®eld, British Columbia VOR 1B0, Canada Abstract. Organisms with external fertilization are often sperm limited, and in echinoids, larger eggs have a higher probability of fertilization than smaller eggs. This difference is thought to be a result of the more frequent sperm- egg collisions experienced by larger targets. Here we report how two components of egg target size, the egg cell and jelly coat, contributed to fertilization success in a selection experiment. We used a cross-sectional analysis of correlated characters to estimate the selection gradients on egg and jelly-coat size in ®ve replicate male pairs of the sand dollar Dendraster excentricus. Results indicated that eggs with larger cells and jelly coats were preferentially fertilized under sperm limitation in the laboratory. The selection gradients were an average of 922% steeper for egg than for jelly- coat size. The standardized selection gradients for egg and jelly-coat size were similar. Our results suggest that fertilization selection can act on both egg-cell and jelly-coat size but that an increase in egg-cell volume is much more likely to increase fertilization success than an equal change in jelly-coat volume. The strengths of the selection gradients were inversely related to the correlation of egg traits across replicate egg clutches. This result suggests the importance of replication in studies of selection of correlated characters.
    [Show full text]
  • Publications of Peter H. Raven
    Peter H. Raven LIST OF PUBLICATIONS 1950 1. 1950 Base Camp botany. Pp. 1-19 in Base Camp 1950, (mimeographed Sierra Club report of trip). [Upper basin of Middle Fork of Bishop Creek, Inyo Co., CA]. 1951 2. The plant list interpreted for the botanical low-brow. Pp. 54-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). 3. Natural science. An integral part of Base Camp. Pp. 51-52 in Base Camp 1951, (mimeographed Sierra Club report of trip). 4. Ediza entomology. Pp. 52-54 in Base Camp 1951, (mimeographed Sierra Club report of trip). 5. 1951 Base Camp botany. Pp. 51-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). [Devils Postpile-Minaret Region, Madera and Mono Counties, CA]. 1952 6. Parsley for Marin County. Leafl. West. Bot. 6: 204. 7. Plant notes from San Francisco, California. Leafl. West. Bot. 6: 208-211. 8. 1952 Base Camp bird list. Pp. 46-48 in Base Camp 1952, (mimeographed Sierra Club report of trip). 9. Charybdis. Pp. 163-165 in Base Camp 1952, (mimeographed Sierra Club report of trip). 10. 1952 Base Camp botany. Pp. 1-30 in Base Camp 1952, (mimeographed Sierra Club report of trip). [Evolution Country - Blaney Meadows - Florence Lake, Fresno, CA]. 11. Natural science report. Pp. 38-39 in Base Camp 1952, (mimeographed Sierra Club report of trip). 1953 12. 1953 Base Camp botany. Pp. 1-26 in Base Camp 1953, (mimeographed Sierra Club report of trip). [Mono Recesses, Fresno Co., CA]. 13. Ecology of the Mono Recesses. Pp. 109-116 in Base Camp 1953, (illustrated by M.
    [Show full text]
  • Evaluating the Monophyly and Biogeography of Cryptantha (Boraginaceae)
    Systematic Botany (2018), 43(1): pp. 53–76 © Copyright 2018 by the American Society of Plant Taxonomists DOI 10.1600/036364418X696978 Date of publication April 18, 2018 Evaluating the Monophyly and Biogeography of Cryptantha (Boraginaceae) Makenzie E. Mabry1,2 and Michael G. Simpson1 1Department of Biology, San Diego State University, San Diego, California 92182, U. S. A. 2Current address: Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, U. S. A. Authors for correspondence ([email protected]; [email protected]) Abstract—Cryptantha, an herbaceous plant genus of the Boraginaceae, subtribe Amsinckiinae, has an American amphitropical disjunct distri- bution, found in western North America and western South America, but not in the intervening tropics. In a previous study, Cryptantha was found to be polyphyletic and was split into five genera, including a weakly supported, potentially non-monophyletic Cryptantha s. s. In this and subsequent studies of the Amsinckiinae, interrelationships within Cryptantha were generally not strongly supported and sample size was generally low. Here we analyze a greatly increased sampling of Cryptantha taxa using high-throughput, genome skimming data, in which we obtained the complete ribosomal cistron, the nearly complete chloroplast genome, and twenty-three mitochondrial genes. Our analyses have allowed for inference of clades within this complex with strong support. The occurrence of a non-monophyletic Cryptantha is confirmed, with three major clades obtained, termed here the Johnstonella/Albidae clade, the Maritimae clade, and a large Cryptantha core clade, each strongly supported as monophyletic. From these phylogenomic analyses, we assess the classification, character evolution, and phylogeographic history that elucidates the current amphitropical distribution of the group.
    [Show full text]
  • Rockfish Population Slowly on the Rise
    West Coast rockfish Rockfish population slowly on the rise Above: Rockfish in a kelp forest. Right: Black rockfish. Inset: Juvenile rockfish. More than 60 species of rockfi sh dwell in ocean perch, and canary. These species are of- schooling rockfi sh. vast numbers in the Eastern Pacifi c Ocean fi cially “overfi shed,” a designation which the When you’ve got a permit for hake, you’re from Baja to Alaska. White-fl eshed and deli- council grants when a fi sh’s population drops geared up for hake, you’re fi shing for hake, cious, they frequently school together and to 25 percent of its estimated virgin level, and and you know there is a hell of a lot of hake often intermingle with other commercially a stock is not considered “recovered” until it around, nothing stinks so much as scooping sought fi shes — but seven members of the ge- has climbed back up to the 40-percent mark. up a school of lousy rockfi sh — especially nus Sebastes have spoiled the party. These guidelines were devised and written ones protected by strict bycatch limits. Actually, it was fi shermen, who harvested into policy in 1998 as part of the Fishery Man- The fl eet may have dozens of tonnes of hake them nearly to economic extinction last centu- agement Plan. Since then, two species have as- left uncaught in the quota but must stop be- ry, and this handful of species is now largely cended back to the 40 percent level and been cause the rockfi sh cap has been exceeded.
    [Show full text]
  • Checklist of the Vascular Plants of Redwood National Park
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks.
    [Show full text]
  • Terrestrial and Marine Biological Resource Information
    APPENDIX C Terrestrial and Marine Biological Resource Information Appendix C1 Resource Agency Coordination Appendix C2 Marine Biological Resources Report APPENDIX C1 RESOURCE AGENCY COORDINATION 1 The ICF terrestrial biological team coordinated with relevant resource agencies to discuss 2 sensitive biological resources expected within the terrestrial biological study area (BSA). 3 A summary of agency communications and site visits is provided below. 4 California Department of Fish and Wildlife: On July 30, 2020, ICF held a conference 5 call with Greg O’Connell (Environmental Scientist) and Corianna Flannery (Environmental 6 Scientist) to discuss Project design and potential biological concerns regarding the 7 Eureka Subsea Fiber Optic Cables Project (Project). Mr. O’Connell discussed the 8 importance of considering the western bumble bee. Ms. Flannery discussed the 9 importance of the hard ocean floor substrate and asked how the cable would be secured 10 to the ocean floor to reduce or eliminate scour. The western bumble bee has been 11 evaluated in the Biological Resources section of the main document, and direct and 12 indirect impacts are avoided. The Project Description describes in detail how the cable 13 would be installed on the ocean floor, the importance of the hard bottom substrate, and 14 the need for avoidance. 15 Consultation Outcomes: 16 • The Project was designed to avoid hard bottom substrate, and RTI Infrastructure 17 (RTI) conducted surveys of the ocean floor to ensure that proper routing of the 18 cable would occur. 19 • Ms. Flannery will be copied on all communications with the National Marine 20 Fisheries Service 21 California Department of Fish and Wildlife: On August 7, 2020, ICF held a conference 22 call with Greg O’Connell to discuss a site assessment and survey approach for the 23 western bumble bee.
    [Show full text]
  • Abronia Maritima Nutt. Ex S. Wats
    SPECIES Abronia maritima Nutt. ex S. Wats. Family: Nyctaginaceae; NRCS CODE: Gary A. Monroe @ USDA-NRCS PLANTS Database ABMA2 Order: Caryophyllales; Subclass: Caryophyllidae; Class: Magnoliopsida Subspecific taxa None. Synonyms None listed. Common name red sand verbena (CalFlora, USDA PLANTS), sticky sand verbena (CalFlora) Taxonomic relationships Abronia latifolia Eschsch. and A. umbellata Lam. are closely related species (Blancas 2001). Related taxa in region May co-occur with A. latifolia and A. umbellata where distributions overlap. All three occur between Point Arguello, Santa Barbara Co., to Morro Bay in San Luis Obispo Co. (Tilllett 1967). Other CNPS list 4.2, limited distribution. Endemic to California and Baja California. There has been concern that hybridization with the two more widespread, co-occurring species of Abronia together with rapid loss of its coastal dune habitat are making the plants vulnerable to extinction (Blancas 2001). Genetic and morphological studies by Blancas (2001) were consistent with there being a high rate of hybridization with A. umbellata within a few small populations. GENERAL Map Data provided by the participants of the Consortium of California Herbaria represent 114 records with coordinate data out of 324 total records retrieved; data accessed 9/23/10. See Berkeley Mapper: http://ucjeps.berkeley.edu/consortium Geographic range Sparsely located in central and southern California and Baja California (Hickman 1993). Distribution in California; South coast and south central coast (Hickman 1993) and Channel Islands. Ecological Sections Ecological section and subsection (http://www.fs.fed.us/r5/projects/ecoregions/ca_sections.htm): Central California Coast (261A), and Southern California Coast (261B). Life history, life form Perennial herb, rapidly growing, mat forming pioneer that keeps up with advancing sand dunes.
    [Show full text]
  • Vii Fishery-At-A-Glance: California Sheephead
    Fishery-at-a-Glance: California Sheephead (Sheephead) Scientific Name: Semicossyphus pulcher Range: Sheephead range from the Gulf of California to Monterey Bay, California, although they are uncommon north of Point Conception. Habitat: Both adult and juvenile Sheephead primarily reside in kelp forest and rocky reef habitats. Size (length and weight): Male Sheephead can grow up to a length of three feet (91 centimeters) and weigh over 36 pounds (16 kilograms). Life span: The oldest Sheephead ever reported was a male at 53 years. Reproduction: As protogynous hermaphrodites, all Sheephead begin life as females, and older, larger females can develop into males. They are batch spawners, releasing eggs and sperm into the water column multiple times during their spawning season from July to September. Prey: Sheephead are generalist carnivores whose diet shifts throughout their growth. Juveniles primarily consume small invertebrates like tube-dwelling polychaetes, bryozoans and brittle stars, and adults shift to consuming larger mobile invertebrates like sea urchins. Predators: Predators of adult Sheephead include Giant Sea Bass, Soupfin Sharks and California Sea Lions. Fishery: Sheephead support both a popular recreational and a commercial fishery in southern California. Area fished: Sheephead are fished primarily south of Point Conception (Santa Barbara County) in nearshore waters around the offshore islands and along the mainland shore over rocky reefs and in kelp forests. Fishing season: Recreational anglers can fish for Sheephead from March 1through December 31 onboard boats south of Point Conception and May 1 through December 31 between Pigeon Point and Point Conception. Recreational divers and shore-based anglers can fish for Sheephead year round.
    [Show full text]
  • Status Determination Criteria and Stock Assessment Citation Table
    National Marine Fisheries Service - 2019 Status of U.S. Fisheries Status Determination Criteria and Stock Assessment Citation Table This table contains: 1) overfishing and overfished status determination criteria for each stock/stock complex; 2) year and citation of stock assessment that supports the most recent overfishing and/or overfished status; and 3) year of catch/overfishing limit (OFL) for stocks that use catch/OFL to support overfishing status. Wherever "N/A" is indicated, a stock assessment or catch/OFL was not used (some stocks have an unknown overfishing and/or overfished status). Catch/ Asmt FMP Stock/Stock Complex Overfishing Criteria Definition in FMP Overfished Criteria Definition in FMP OFL Stock Assessment Citation Year Year Overfishing occurs when F is greater than FMSY B / c BMSY if the stock biomass (B) is less than or equal to c BMSY, or A stock is overfished when stock biomass when F is greater than FMSY if the stock American Samoa (B) is less than c BMSY, where c is equal https://pifsc- American Samoa biomass (B) is greater than c BMSY, where Bottomfish Multi- to the greater of 1 minus the natural 2015 N/A www.irc.noaa.gov/library/pubs/tech/ Archipelago Ecosystem c is equal to the greater of 1 minus the species Complex mortality rate (M) or 0.5. CPUE is used as NOAA_Tech_Memo_PIFSC_51.pdf natural mortality rate (M) or 0.5. a proxy for B. Standardized values of fishing effort (E) and catch-per-unit-effort (CPUE) are used as proxies for F and B, respectively. If the stock biomass is equal to or greater than BMSY, overfishing occurs when F Atlantic herring - exceeds FMSY.
    [Show full text]