Vii Fishery-At-A-Glance: California Sheephead
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marine Ecology Progress Series 477:177
Vol. 477: 177–188, 2013 MARINE ECOLOGY PROGRESS SERIES Published March 12 doi: 10.3354/meps10144 Mar Ecol Prog Ser Larval exposure to shared oceanography does not cause spatially correlated recruitment in kelp forest fishes Jenna M. Krug*, Mark A. Steele Department of Biology, California State University, 18111 Nordhoff St., Northridge, California 91330-8303, USA ABSTRACT: In organisms that have a life history phase whose dispersal is influenced by abiotic forcing, if individuals of different species are simultaneously exposed to the same forcing, spa- tially correlated settlement patterns may result. Such correlated recruitment patterns may affect population and community dynamics. The extent to which settlement or recruitment is spatially correlated among species, however, is not well known. We evaluated this phenomenon among 8 common kelp forest fishes at 8 large reefs spread over 30 km of the coast of Santa Catalina Island, California. In addition to testing for correlated recruitment, we also evaluated the influences of predation and habitat quality on spatial patterns of recruitment. Fish and habitat attributes were surveyed along transects 7 times during 2008. Using these repeated surveys, we also estimated the mortality rate of the prey species that settled most consistently (Oxyjulis californica) and evaluated if mortality was related to recruit density, predator density, or habitat attributes. Spatial patterns of recruitment of the 8 study species were seldom correlated. Recruitment of all species was related to one or more attributes of the habitat, with giant kelp abundance being the most widespread predictor of recruitment. Mortality of O. californica recruits was density-dependent and declined with increasing canopy cover of giant kelp, but was unrelated to predator density. -
CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies. -
Environmental DNA Reveals the Fine-Grained and Hierarchical
www.nature.com/scientificreports OPEN Environmental DNA reveals the fne‑grained and hierarchical spatial structure of kelp forest fsh communities Thomas Lamy 1,2*, Kathleen J. Pitz 3, Francisco P. Chavez3, Christie E. Yorke1 & Robert J. Miller1 Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifes species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms ofers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fsh communities on temperate rocky reefs in southern California. eDNA provided a more‑detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species fltering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC. -
Distribution, Abundance, and Biomass of Giant Sea Bass (Stereolepis Gigas) Off Santa Catalina Island, California, 2014-2015
Bull. Southern California Acad. Sci. 115(1), 2016, pp. 1–14 E Southern California Academy of Sciences, 2016 The Return of the King of the Kelp Forest: Distribution, Abundance, and Biomass of Giant Sea Bass (Stereolepis gigas) off Santa Catalina Island, California, 2014-2015 Parker H. House*, Brian L.F. Clark, and Larry G. Allen California State University, Northridge, Department of Biology, 18111 Nordhoff St., Northridge, CA, 91330 Abstract.—It is rare to find evidence of top predators recovering after being negatively affected by overfishing. However, recent findings suggest a nascent return of the critically endangered giant sea bass (Stereolepis gigas) to southern California. To provide the first population assessment of giant sea bass, surveys were conducted during the 2014/2015 summers off Santa Catalina Island, CA. Eight sites were surveyed on both the windward and leeward side of Santa Catalina Island every two weeks from June through August. Of the eight sites, three aggregations were identified at Goat Harbor, The V’s, and Little Harbor, CA. These three aggregation sites, the largest containing 24 individuals, contained a mean stock biomass of 19.6 kg/1000 m2 over both summers. Over the course of both summers the giant sea bass population was primarily made up of 1.2 - 1.3 m TL individuals with several small and newly mature fish observed in aggregations. Comparison to historical data for the island suggests giant sea bass are recovering, but have not reached pre-exploitation levels. The giant sea bass (Stereolepis gigas) is the largest teleost to inhabit nearshore rocky reefs and kelp forests in the northeastern Pacific (Hawk and Allen 2014). -
And Red Sea Urchins
NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA By Johnathan Centoni A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology Committee Membership Dr. Sean Craig, Committee Chair Dr. Brian Tissot, Committee Member Dr. Paul Bourdeau, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Erik Jules, Program Graduate Coordinator May 2018 ABSTRACT NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA Johnathan Centoni Red abalone and sea urchins are both important herbivores that potentially compete with each other for resources like food and space along the California coast. Red abalone supported a socioeconomically important recreational fishery during this study (which was closed in 2018) and red sea urchins support an important commercial fishery. Both red sea urchins and red abalone feed on the same macroalgae (including Pterygophora californica, Laminaria setchellii, Stephanocystis osmundacea, Costaria costata, Alaria marginata, Nereocystis leutkeana), and a low abundance of this food source during the period of this project may have created a highly competitive environment for urchins and abalone. Evidence that suggests competition between red abalone and red sea urchins can be seen within data collected during the years of this study (2014-2016): a significantly higher red sea urchin density, concomitant with a significantly lower red abalone density, was observed within areas closed to commercial sea urchin harvest (in MPAs) compared to nearby reference areas open to sea urchin harvest. -
Rockfish Population Slowly on the Rise
West Coast rockfish Rockfish population slowly on the rise Above: Rockfish in a kelp forest. Right: Black rockfish. Inset: Juvenile rockfish. More than 60 species of rockfi sh dwell in ocean perch, and canary. These species are of- schooling rockfi sh. vast numbers in the Eastern Pacifi c Ocean fi cially “overfi shed,” a designation which the When you’ve got a permit for hake, you’re from Baja to Alaska. White-fl eshed and deli- council grants when a fi sh’s population drops geared up for hake, you’re fi shing for hake, cious, they frequently school together and to 25 percent of its estimated virgin level, and and you know there is a hell of a lot of hake often intermingle with other commercially a stock is not considered “recovered” until it around, nothing stinks so much as scooping sought fi shes — but seven members of the ge- has climbed back up to the 40-percent mark. up a school of lousy rockfi sh — especially nus Sebastes have spoiled the party. These guidelines were devised and written ones protected by strict bycatch limits. Actually, it was fi shermen, who harvested into policy in 1998 as part of the Fishery Man- The fl eet may have dozens of tonnes of hake them nearly to economic extinction last centu- agement Plan. Since then, two species have as- left uncaught in the quota but must stop be- ry, and this handful of species is now largely cended back to the 40 percent level and been cause the rockfi sh cap has been exceeded. -
The Underwater Life Off the Coast of Southern California
California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2005 The underwater life off the coast of Southern California Kathie Lyn Purkey Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Education Commons, Environmental Studies Commons, and the Marine Biology Commons Recommended Citation Purkey, Kathie Lyn, "The underwater life off the coast of Southern California" (2005). Theses Digitization Project. 2752. https://scholarworks.lib.csusb.edu/etd-project/2752 This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. THE UNDERWATER LIFE OFF THE COAST OF SOUTHERN CALIFORNIA A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Education: Environmental Education 1 by Kathie Lyn Purkey June 2005 THE UNDERWATER LIFE OFF THE COAST OF SOUTHERN CALIFORNIA A Project Presented to the Faculty of California State University, San Bernardino by Kathie Lyn Purkey June 2005 Approved by: ABSTRACT This project reviews the basic chemical and geological features of the ocean, biological classification of marine life, background of the ocean's flora and fauna, and the ocean's environment. These facts are presented through an underwater documentary filmed at various sites along California's coast in San Diego County and Santa Catalina Island. The documentary was filmed and written by the author. -
California Spiny Lobster Used to Take Lobster
What You Need to Know to “Stay Legal” How to Measure Lobster Basic Sport Fishing Regulations for Spiny Lobster A California sport fishing retrieving their net, and any license with ocean enhancement undersized lobster must be stamp is required to take lobster released immediately. south of Point Arguello. The The lobster daily bag license must be displayed by and possession limit is seven hoop netters, and divers must (7) lobsters. This includes keep their fishing license either any lobster stored at home CDFG aboard the vessel or, if beach or elsewhere; at no time may diving, with their gear within more than seven lobsters be in 500 yards from shore. anyone’s possession. D. Stein \ CDFG Stein D. To determine whether the lobster you’ve just caught A Spiny Lobster Report A legal-sized lobster carapace is as large or A maximum of five (5) Card is required for every larger than the fixed gap of the measuring gauge. hoop nets may be fished by is large enough to keep, you must measure the person fishing for or taking an individual, except on piers, length of the body shell, or carapace, along the mid- spiny lobster. This includes jetties, and other shore-based line from the rear edge of the eye socket (between persons who are not required to have a sport fishing structures where each angler is limited to two (2) the horns) to the rear edge of the carapace with a license, such as children under the age of 16, persons hoop nets. No more than 10 hoop nets may be lobster gauge (see diagram above). -
2019 Annual Marine Environmental Analysis and Interpretation Report
2019 ANNUAL MARINE ENVIRONMENTAL ANALYSIS AND INTERPRETATION San Onofre Nuclear Generating Station ANNUAL MARINE ENVIRONMENTAL ANALYSIS AND INTERPRETATION San Onofre Nuclear Generating Station July 2020 Page intentionally blank Report Preparation/Data Collection – Oceanography and Marine Biology MBC Aquatic Sciences 3000 Red Hill Avenue Costa Mesa, CA 92626 Page intentionally blank TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................................... iii LIST OF TABLES ...............................................................................................................................v LIST OF APPENDICES ................................................................................................................... vi EXECUTIVE SUMMARY .............................................................................................................. vii CHAPTER 1 STUDY INTRODUCTION AND GENERATING STATION DESCRIPTION 1-1 INTRODUCTION ................................................................................................................... 1-1 PURPOSE OF SAMPLING ......................................................................................... 1-1 REPORT APPROACH AND ORGANIZATION ........................................................ 1-1 DESCRIPTION OF THE STUDY AREA ................................................................... 1-1 HISTORICAL BACKGROUND ........................................................................................... -
Seasonal and Geographical Differences in Cleaner Fish Activity in the Mediterranean Sea
Helgol Mar Res (2002) 55:232–241 DOI 10.1007/s101520100084 ORIGINAL ARTICLE C. Dieter Zander · Ilka Sötje Seasonal and geographical differences in cleaner fish activity in the Mediterranean Sea Received: 17 January 2001 / Received in revised form: 10 August 2001 / Accepted: 10 August 2001 / Published online: 11 October 2001 © Springer-Verlag and AWI 2001 Abstract Investigations into symbioses may be impor- Keywords Cleaner wrasse · Symphodus spp. · tant in order to analyse the grade of stability in ecosys- Symbiosis · Mediterranean Sea · Cleaner activity tems. Host–cleaner relationships were investigated in two localities of the Mediterranean Sea: Giglio (Tuscany, Italy) and Banyuls-sur-Mer (France). The cleaner Introduction wrasse, Symphodus melanocercus, was the main cleaner. Supplementary cleaners, such as the young of several Cleaner fish symbioses are widespread in the sea and wrasses, Symphodus mediterraneus, Symphodus ocella- maybe in fresh water as well (Losey et al. 1999; Zander tus, Symphodus tinca, Coris julis and Ctenolabrus rupes- et al. 1999). This mode of symbiosis represents either tris, are able to help out in times when there is a shortage facultative or obligatory mutualism, or even a type of cleaners. Differences between the localities were ob- of parasitism. In the tropic Indo-Pacific the labrid vious by a greater fish (host) density in Banyuls, which Labroides dimidiatus is an obligatory cleaner fish, whose is probably due to eutrophication and might improve and territories become cleaner stations (Randall 1958); at increase cleaner activities. Regarding two seasons, other localities different fish species can play this spring and late summer, the fishes presented a lower de- role, for instance, the labrid Oxyjulis californicus on gree of activity in Giglio, but a higher one in Banyuls – the American west coast (Hobson 1971), the gobiid in late summer compared with spring. -
Humboldt Bay Fishes
Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar -
Giant Sea Bass, Stereolepis Gigas
8 Giant Sea Bass, Stereolepis gigas Giant sea bass, Stereolepis gigas. Photo credit: Edgar Roberts. History of the Fishery The giant sea bass, Stereolepis gigas, an apex predator of shallow rocky reefs, is the largest resident bony fish found along the California coast and offshore islands. They range from the southern tip of Baja California, Mexico to Humboldt Bay in northern California and in the northern Gulf of California. Aggregations of both sexes are predominantly found south of Point Conception. Giant sea bass are commonly seen by recreational scuba divers in California along La Jolla, Catalina Island, and Anacapa Island. Because the giant sea bass is slow growing, long lived, and aggregates in large groups, it is susceptible to over fishing. In the past, it was not uncommon for nearly entire aggregations to be eliminated by commercial and recreational fisheries. Commercial fishing for the giant sea bass began in 1870 in southern California, much earlier than the recreational fishery. In 1932 California commercial landings peaked at more than 254,000 pounds (115 metric tons). Mexican commercial landings peaked at 807,750 pounds (367 metric tons) in 1934 and declined to less than 200,000 pounds (91 metric tons) in 1964. Early commercial fishers used hand lines to catch giant sea bass, but as the resource declined, fishing with hand lines became too inefficient and they changed to gill nets. This technique quickly reduced stock numbers, driving the commercial fishery south into Mexican waters. Commercial and recreational fishing for giant sea bass in Mexico continues today with no restrictions. The recreational fishery for giant sea bass began in 1895, peaking in California in 1964 and in Mexico in 1973.