Biology of the Red Sea Urchin, Strongylocentrotus Franciscanus, and Its Fishery in California

Total Page:16

File Type:pdf, Size:1020Kb

Biology of the Red Sea Urchin, Strongylocentrotus Franciscanus, and Its Fishery in California Biology of the Red Sea Urchin, Strongylocentrotus franciscanus, and Its Fishery in California SUSUMU KAT0 and STEPHEN C. SCHROETER Introduction Canada and the United States to answer quested information to help them devel- some of these needs. This report pre- op fisheries for their species of sea Since Kat0 (1972) reported on the sents relevant information from the urchins. beginning of the sea urchin fishery in literature, much of which is not readily California, it has grown dramatically. accessible to persons in the industry, as Description of Sea Urchins The catch has exceeded 11,OOO metric well as from our own investigations. A Sea urchins belong to the phylum tons (t) in 1981 in California, and up to review of red sea urchin, Strongylocen- Echinodermata, which also includes 500 t have been harvested in 1 year in trotus franciscanus (Fig. l), biology is starfish, sea cucumbers, sea lilies, and Washington. Most of the product of the given to promote understanding of brittle stars. All sea urchins have a hard fishery, the roe (both male and female natural processes which can have a calcareous shell called a test, which is gonads), is marketed in Japan, where bearing on the commercial use of sea covered with a thin epithelium and is the sea urchins as well as the roe are urchins. Descriptions of the harvesting, usually armed with spines. The mouth, called “uni.” processing, and marketing sectors of the located on the underside, consists of five Inevitabky, development of the fishery industry are also presented. We hope calcareous plates called “Aristotle’s lan- has raised questions about the status of that this information will aid in main- tern” in honor of the Greek naturalist populations, and effects of the fishery taining a commercially viable and envi- and philosopher. The mouth leads to the on the urchins and environment. Be- ronmentally sound fishery for many digestive tract which empties through cause fishermen, processors, potential years. We hope that this report will fill the anus located on the top of the test. investors, and management officials all the needs of the hundreds of persons Five skeins of roe comprise the most require information, several scientific from throughout the United States as prominent structures in the internal studies were initiated by researchers in well as other countries who have re- cavity of sea urchins. Sea urchins are Susumu Kat0 is with the Tiburon Laboratory, Southwest Fisheries Center, National Marine Fisheries Service, NOAA, Tiburon, CA 94920, and Stephen C. Schrceter is with the Department of Biological Sciences, University of Southern California, University Park, CA 90089. ABSIRACT-The Californiajishery for the red sea urchin, Strongylocentrotus francis- canus, has grown steadily since its inception in 1972, and the mimum annual catch has exceeded 11,000 metric tons. Most of the producr of the jishery, the roe, is exported to Japan, though a significant amount is also consumed in the United Stares. This paper describes aspects of red sea urchin life history, distribution, abundance, ecology, and management. A detailed description of the jshery, including harvesting, processing, shipping, and markering methods, is also Figure 1.-The red sea urchin, Strongylocenrrotusfranciscanus (left), and the given. smaller purple sea urchin, S. purpurarus. 47(3), 1985 I unisexual, being either male or female, constituents are likely to change, de- found as deep as 125 m (McCauley and but cases of hermaphroditism (Le., with pending on the nutritional and reproduc- Carey, 1967). Individuals of both spe- both male and female gonads) have been tive states of the urchins. Sea urchin roe cies prefer rocky substrates, particularly recorded in several species (Boolootian also contains calcium, phosphorus, ledges and crevices (Schrc~ter,1978), and Moore, 1956). Between the skeins iron, Vitamins A, B,, BZ, Bu, nicotinic and avoid sand and mud. of roe are gill-like structures which are acid, pantothenic acid, folic acid, and Both species are often found in and part of the water vascular system, im- carotenes (Higashi et al. 1959, 1965). around stands of the giant kelp, Macro- portant in movement, respiration, and Since polychlorinated biphenols cystis spp., and other brown algae. Typi- food gathering. The gut is dark and (PCB) and other potentially toxic hydro- cally, sea urchins are most abundant often filled with partially digested plant carbons are of major concern to the near the outer edges of kelp beds and material. Japanese, an analysis was undertaken to less numerous inside (Pearse et al., Two species of sea urchins are com- learn the extent of pollution from these 1970; Low, 1975; Pace, 1975; Mattison mon in shallow coastal waters off Cali- noxious compounds. Red sea urchins et al., 1977; Tegner and Dayton, 1981). fornia: The red. S. franciscanus, and collected at Fort Bragg, Calif., in 1973 Adult sea urchins that live within kelp purple, S. purpurufus, sea urchins (Fig. were found to have no detectable beds are larger than those outside, and 1). Several other species also occur in amounts of DIYT, but contained an aver- recent recruits (<lo-20 mm) are much California, but they are either too small age of 0.026 ppm (parts per million of more abundant outside than inside the or too rare to be of economic signifi- wet weight) of DDE (range 0.006-0.050 beds (Pearse et al., 1970; Bernard and cance. In fact, only the red sea urchin ppm). Amounts of PCB averaged 0.04 Miller, 1973; Tegner and Dayton, 1981). is presently harvested, although the pur- pprn and ranged from 0.01 to 0.09 ppml. Similar patterns have been documented ple sea urchin offers potential because Tolerance levels for PCB set by the for green sea urchins, S. drobachiensis) of its abundance. The red sea urchin is Japanese government vary depending on on the coast of Nova Scotia, Canada one of the largest species of sea urchins the foodstuff. In flesh of coastal fishes (Bernstein et al., 1981). Several hypoth- in the world, growing to a test diameter a level of 3.0 ppm is allowed? In the eses have been advanced to account for of about 18 cm. Its test and spine color United States, the maximum allowable these patterns. Individuals within kelp is usually dark purple. Not infrequent- in “shellfish” is 2 ppm. Thus the Cali- beds may be larger either because they ly, however, either the test or spines- fornia sample fell well within acceptable grow faster, survive longer, or both or both-are reddish or light purple. levels. (Pearse et al., 1970). T. A. Ebert’s work The length of the spines may be corre- (1968) supports the conjecture that in- Distribution and Abundance lated with the habitat; sea urchins in dividuals inside are larger because they deeper, calmer waters tend to have Red sea urchins are found on the west have more food. He studied intertidal longer spines than those in shallower coast of North America as far south as populations of purple sea urchins and waters where greater abrasion of spines the tip of Baja California, although their found that the maximum size attained occurs (Silver and Brierton, 1974). The abundance declines south of lat. 27”N by individuals in a population is influ- purple sea urchin, which has relatively (Malagrino Lumare, 1972). They range enced directly by food supply. Addi- short spines, is usually light purple or northward to Sitka and Kodiak, Alaska, tional studies on red sea urchins in lavender. and along the Asiatic coast as far south southern California (Pearse et al., 1970; Sea urchin roe contains an assortment as the southern tip of Hokkaido Island, Baker, 1973) also support this hy- of nutrients. Major components of the Japan (McCauley and Carey, 1967). Off pothesis. roe of red and purple urchins are given the California coast, dense concentra- The much greater abundance of very in Table 1. The percentages of various tions occur patchily throughout the small individuals outside of kelp beds state. Notable exceptions are those areas may be due to higher rates of settlement, off central California where sea otters, higher survival after settlement, or both Enhydra lurris, a major predator of sea (Pearse et al., 1970; Ebert, 1983). High- urchins, are abundant (McLean, 1962; er rates of settlement could result from Table l.-Proximate analyses of red and purple sea urchin me (percent of total roe weight)’. E. E. Ebert, 1968; Lowry and Pearse, active selection by larvae or from the 1973). passive concentration of larvae. Alterna- Red Purple sea urchin sea urchin Both the red sea urchin and its close tively, larvae may be equally abundant ~~ ~~ Item 12 32 relative, the purple sea urchin, usually inside and outside of beds, but may suf- occupy shallow waters, from the mid to fer higher mortality in the former habitat Moisture 700 708 686 71 8 Protein 77 96 95 123 low intertidal zones to depths in excess (Pearse et al., 1970). Lipid 76 83 54 52 of 50 m, but red sea urchins have been Juvenile red sea urchins are frequent- Ash 16 15 13 17 Glycogen 13 17 ly found under the spines of larger red ~ Nonprotein IReuben Lasker, National Marine Fisheries Ser- urchins, and are scarce elsewhere in the nitrogen 01 05 01 05 vice, NOAA, La Jolla, Calif. Personal commun. same habitat (Low, 1975; Breen et al., ‘Sources. 1. Modified alter Greenfield el al , 1958: 2Katsutoshi Miwa, Tokai Regional Fisheries 2 from Krarner and Nordin, 1979: 3 Modified after Research Laboratory, Tokyo, Japan. Personal 1976; Tegner and Dayton, 1977; Schroe- Giese et ai, 1958 commun. ter, 1978). One possible explanation for 2 Marine Fisheries Review this distributional pattern is that larvae et al., 1974; Tegner and Dayton, 1981; along the west coast of North Anicrica.
Recommended publications
  • ASSESSMENT of COASTAL WATER RESOURCES and WATERSHED CONDITIONS at CHANNEL ISLANDS NATIONAL PARK, CALIFORNIA Dr. Diana L. Engle
    National Park Service U.S. Department of the Interior Technical Report NPS/NRWRD/NRTR-2006/354 Water Resources Division Natural Resource Program Centerent of the Interior ASSESSMENT OF COASTAL WATER RESOURCES AND WATERSHED CONDITIONS AT CHANNEL ISLANDS NATIONAL PARK, CALIFORNIA Dr. Diana L. Engle The National Park Service Water Resources Division is responsible for providing water resources management policy and guidelines, planning, technical assistance, training, and operational support to units of the National Park System. Program areas include water rights, water resources planning, marine resource management, regulatory guidance and review, hydrology, water quality, watershed management, watershed studies, and aquatic ecology. Technical Reports The National Park Service disseminates the results of biological, physical, and social research through the Natural Resources Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of technical workshops and conferences are also disseminated through this series. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Copies of this report are available from the following: National Park Service (970) 225-3500 Water Resources Division 1201 Oak Ridge Drive, Suite 250 Fort Collins, CO 80525 National Park Service (303) 969-2130 Technical Information Center Denver Service Center P.O. Box 25287 Denver, CO 80225-0287 Cover photos: Top Left: Santa Cruz, Kristen Keteles Top Right: Brown Pelican, NPS photo Bottom Left: Red Abalone, NPS photo Bottom Left: Santa Rosa, Kristen Keteles Bottom Middle: Anacapa, Kristen Keteles Assessment of Coastal Water Resources and Watershed Conditions at Channel Islands National Park, California Dr. Diana L.
    [Show full text]
  • And Red Sea Urchins
    NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA By Johnathan Centoni A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology Committee Membership Dr. Sean Craig, Committee Chair Dr. Brian Tissot, Committee Member Dr. Paul Bourdeau, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Erik Jules, Program Graduate Coordinator May 2018 ABSTRACT NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA Johnathan Centoni Red abalone and sea urchins are both important herbivores that potentially compete with each other for resources like food and space along the California coast. Red abalone supported a socioeconomically important recreational fishery during this study (which was closed in 2018) and red sea urchins support an important commercial fishery. Both red sea urchins and red abalone feed on the same macroalgae (including Pterygophora californica, Laminaria setchellii, Stephanocystis osmundacea, Costaria costata, Alaria marginata, Nereocystis leutkeana), and a low abundance of this food source during the period of this project may have created a highly competitive environment for urchins and abalone. Evidence that suggests competition between red abalone and red sea urchins can be seen within data collected during the years of this study (2014-2016): a significantly higher red sea urchin density, concomitant with a significantly lower red abalone density, was observed within areas closed to commercial sea urchin harvest (in MPAs) compared to nearby reference areas open to sea urchin harvest.
    [Show full text]
  • DNA Variation and Symbiotic Associations in Phenotypically Diverse Sea Urchin Strongylocentrotus Intermedius
    DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius Evgeniy S. Balakirev*†‡, Vladimir A. Pavlyuchkov§, and Francisco J. Ayala*‡ *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525; †Institute of Marine Biology, Vladivostok 690041, Russia; and §Pacific Research Fisheries Centre (TINRO-Centre), Vladivostok, 690600 Russia Contributed by Francisco J. Ayala, August 20, 2008 (sent for review May 9, 2008) Strongylocentrotus intermedius (A. Agassiz, 1863) is an economically spines of the U form are relatively short; the length, as a rule, does important sea urchin inhabiting the northwest Pacific region of Asia. not exceed one third of the radius of the testa. The spines of the G The northern Primorye (Sea of Japan) populations of S. intermedius form are longer, reaching and frequently exceeding two thirds of the consist of two sympatric morphological forms, ‘‘usual’’ (U) and ‘‘gray’’ testa radius. The testa is significantly thicker in the U form than in (G). The two forms are significantly different in morphology and the G form. The morphological differences between the U and G preferred bathymetric distribution, the G form prevailing in deeper- forms of S. intermedius are stable and easily recognizable (Fig. 1), water settlements. We have analyzed the genetic composition of the and they are systematically reported for the northern Primorye S. intermedius forms using the nucleotide sequences of the mitochon- coast region (V.A.P., unpublished data). drial gene encoding the cytochrome c oxidase subunit I and the Little is known about the population genetics of S. intermedius; nuclear gene encoding bindin to evaluate the possibility of cryptic the available data are limited to allozyme polymorphisms (4–6).
    [Show full text]
  • Vii Fishery-At-A-Glance: California Sheephead
    Fishery-at-a-Glance: California Sheephead (Sheephead) Scientific Name: Semicossyphus pulcher Range: Sheephead range from the Gulf of California to Monterey Bay, California, although they are uncommon north of Point Conception. Habitat: Both adult and juvenile Sheephead primarily reside in kelp forest and rocky reef habitats. Size (length and weight): Male Sheephead can grow up to a length of three feet (91 centimeters) and weigh over 36 pounds (16 kilograms). Life span: The oldest Sheephead ever reported was a male at 53 years. Reproduction: As protogynous hermaphrodites, all Sheephead begin life as females, and older, larger females can develop into males. They are batch spawners, releasing eggs and sperm into the water column multiple times during their spawning season from July to September. Prey: Sheephead are generalist carnivores whose diet shifts throughout their growth. Juveniles primarily consume small invertebrates like tube-dwelling polychaetes, bryozoans and brittle stars, and adults shift to consuming larger mobile invertebrates like sea urchins. Predators: Predators of adult Sheephead include Giant Sea Bass, Soupfin Sharks and California Sea Lions. Fishery: Sheephead support both a popular recreational and a commercial fishery in southern California. Area fished: Sheephead are fished primarily south of Point Conception (Santa Barbara County) in nearshore waters around the offshore islands and along the mainland shore over rocky reefs and in kelp forests. Fishing season: Recreational anglers can fish for Sheephead from March 1through December 31 onboard boats south of Point Conception and May 1 through December 31 between Pigeon Point and Point Conception. Recreational divers and shore-based anglers can fish for Sheephead year round.
    [Show full text]
  • The Underwater Life Off the Coast of Southern California
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2005 The underwater life off the coast of Southern California Kathie Lyn Purkey Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Education Commons, Environmental Studies Commons, and the Marine Biology Commons Recommended Citation Purkey, Kathie Lyn, "The underwater life off the coast of Southern California" (2005). Theses Digitization Project. 2752. https://scholarworks.lib.csusb.edu/etd-project/2752 This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. THE UNDERWATER LIFE OFF THE COAST OF SOUTHERN CALIFORNIA A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Education: Environmental Education 1 by Kathie Lyn Purkey June 2005 THE UNDERWATER LIFE OFF THE COAST OF SOUTHERN CALIFORNIA A Project Presented to the Faculty of California State University, San Bernardino by Kathie Lyn Purkey June 2005 Approved by: ABSTRACT This project reviews the basic chemical and geological features of the ocean, biological classification of marine life, background of the ocean's flora and fauna, and the ocean's environment. These facts are presented through an underwater documentary filmed at various sites along California's coast in San Diego County and Santa Catalina Island. The documentary was filmed and written by the author.
    [Show full text]
  • California Spiny Lobster Used to Take Lobster
    What You Need to Know to “Stay Legal” How to Measure Lobster Basic Sport Fishing Regulations for Spiny Lobster A California sport fishing retrieving their net, and any license with ocean enhancement undersized lobster must be stamp is required to take lobster released immediately. south of Point Arguello. The The lobster daily bag license must be displayed by and possession limit is seven hoop netters, and divers must (7) lobsters. This includes keep their fishing license either any lobster stored at home CDFG aboard the vessel or, if beach or elsewhere; at no time may diving, with their gear within more than seven lobsters be in 500 yards from shore. anyone’s possession. D. Stein \ CDFG Stein D. To determine whether the lobster you’ve just caught A Spiny Lobster Report A legal-sized lobster carapace is as large or A maximum of five (5) Card is required for every larger than the fixed gap of the measuring gauge. hoop nets may be fished by is large enough to keep, you must measure the person fishing for or taking an individual, except on piers, length of the body shell, or carapace, along the mid- spiny lobster. This includes jetties, and other shore-based line from the rear edge of the eye socket (between persons who are not required to have a sport fishing structures where each angler is limited to two (2) the horns) to the rear edge of the carapace with a license, such as children under the age of 16, persons hoop nets. No more than 10 hoop nets may be lobster gauge (see diagram above).
    [Show full text]
  • Spatial Vision in the Purple Sea Urchin Strongylocentrotus Purpuratus (Echinoidea)
    249 The Journal of Experimental Biology 213, 249-255 Published by The Company of Biologists 2010 doi:10.1242/jeb.033159 Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea) D. Yerramilli and S. Johnsen* Biology Department, Duke University, Durham, NC 27708, USA *Author for correspondence ([email protected]) Accepted 14 October 2009 SUMMARY Recent evidence that echinoids of the genus Echinometra have moderate visual acuity that appears to be mediated by their spines screening off-axis light suggests that the urchin Strongylocentrotus purpuratus, with its higher spine density, may have even more acute spatial vision. We analyzed the movements of 39 specimens of S. purpuratus after they were placed in the center of a featureless tank containing a round, black target that had an angular diameter of 6.5deg. or 10deg. (solid angles of 0.01sr and 0.024sr, respectively). An average orientation vector for each urchin was determined by testing the animal four times, with the target placed successively at bearings of 0deg., 90deg., 180deg. and 270deg. (relative to magnetic east). The urchins showed no significant unimodal or axial orientation relative to any non-target feature of the environment or relative to the changing position of the 6.5deg. target. However, the urchins were strongly axially oriented relative to the changing position of the 10deg. target (mean axis from –1 to 179deg.; 95% confidence interval ± 12deg.; P<0.001, Moore’s non-parametric Hotelling’s test), with 10 of the 20 urchins tested against that target choosing an average bearing within 10deg. of either the target center or its opposite direction (two would be expected by chance).
    [Show full text]
  • Research Article Spawning and Larval Rearing of Red Sea Urchin Salmacis Bicolor (L
    Iranian Journal of Fisheries Sciences 19(6) 3098-3111 2020 DOI: 10.22092/ijfs.2020.122939 Research Article Spawning and larval rearing of red sea urchin Salmacis bicolor (L. Agassiz and Desor, 1846;Echinodermata: Echinoidea) Gobala Krishnan M.1; Radhika Rajasree S.R.2*; Karthih M.G.1; Aranganathan L.1 Received: February 2019 Accepted: May 2019 Abstract Gonads of sea urchin attract consumers due to its high nutritional value than any other seafood delicacies. Aquaculturists are also very keen on developing larval culture methods for large-scale cultivation. The present investigation systematically examined the larval rearing, development, survival and growth rate of Salmacis bicolor fed with various microalgal diets under laboratory condition. Fertilization rate was estimated as 95%. The blastula and gastrula stages attained at 8.25 h and 23.10 h post-fertilization. The 4 - armed pluteus larvae were formed with two well - developed post-oral arms at 44.20 h following post-fertilization. The 8 - armed pluteus attained at 9 days post fertilization. The competent larva with complete rudiment growth was developed on 25th days post - fertilization. Monodiet algal feed - Chaetoceros calcitrans and Dunaliella salina resulted medium (50.6 ± 2.7%) and low survival rate (36.8 ± 1.7%) of S. bicolor larvae. However, combination algal feed – Isochrysis galbana and Chaetoceros calcitrans has promoted high survival rate (68.3 ± 2.5%) which was significantly different between the mono and combination diet. From the observations of the study, combination diet could be adopted as an effective feed measure to promote the production of nutritionally valuable roes of S.
    [Show full text]
  • Multiple Factors Explain the Covering Behaviour in the Green Sea Urchin, Strongylocentrotus Droebachiensis
    ARTICLE IN PRESS ANIMAL BEHAVIOUR, 2007, --, --e-- doi:10.1016/j.anbehav.2006.11.008 Multiple factors explain the covering behaviour in the green sea urchin, Strongylocentrotus droebachiensis CLE´ MENT P. DUMONT*†,DAVIDDROLET*, ISABELLE DESCHEˆ NES* &JOHNH.HIMMELMAN* *De´partement de Biologie, Que´bec-Oce´an, Universite´ Laval yCEAZA, Departamento de Biologia Marina, Universidad Catolica del Norte (Received 26 March 2006; initial acceptance 29 August 2006; final acceptance 13 November 2006; published online ---; MS. number: A10403) Although numerous species of sea urchins often cover themselves with small rocks, shells and algal fragments, the function of this covering behaviour is poorly understood. Diving observations showed that the degree to which the sea urchin Strongylocentrotus droebachiensis covers itself in the field decreases with size. We performed laboratory experiments to examine how the sea urchin’s covering behaviour is affected by the presence of predators, sea urchin size, wave surge, contact with moving algae blades and sunlight. The presence of two common sea urchin predators did not influence the degree to which sea ur- chins covered themselves. Covering responses of sea urchins that were exposed to a strong wave surge and sweeping algal blades were significantly greater than those of individuals that were maintained under still water conditions. The degree to which sea urchins covered themselves in the laboratory also tended to decrease with increasing size. Juveniles showed stronger covering responses than adults, possibly because they are more vulnerable to dislodgement and predation. We found that UV light stimulated a covering response, whereas UV-filtered sunlight and darkness did not, although the response to UV light was much weaker than that to waves and algal movement.
    [Show full text]
  • Sea Urchin Aquaculture
    American Fisheries Society Symposium 46:179–208, 2005 © 2005 by the American Fisheries Society Sea Urchin Aquaculture SUSAN C. MCBRIDE1 University of California Sea Grant Extension Program, 2 Commercial Street, Suite 4, Eureka, California 95501, USA Introduction and History South America. The correct color, texture, size, and taste are factors essential for successful sea The demand for fish and other aquatic prod- urchin aquaculture. There are many reasons to ucts has increased worldwide. In many cases, develop sea urchin aquaculture. Primary natural fisheries are overexploited and unable among these is broadening the base of aquac- to satisfy the expanding market. Considerable ulture, supplying new products to growing efforts to develop marine aquaculture, particu- markets, and providing employment opportu- larly for high value products, are encouraged nities. Development of sea urchin aquaculture and supported by many countries. Sea urchins, has been characterized by enhancement of wild found throughout all oceans and latitudes, are populations followed by research on their such a group. After World War II, the value of growth, nutrition, reproduction, and suitable sea urchin products increased in Japan. When culture systems. Japan’s sea urchin supply did not meet domes- Sea urchin aquaculture first began in Ja- tic needs, fisheries developed in North America, pan in 1968 and continues to be an important where sea urchins had previously been eradi- part of an integrated national program to de- cated to protect large kelp beds and lobster fish- velop food resources from the sea (Mottet 1980; eries (Kato and Schroeter 1985; Hart and Takagi 1986; Saito 1992b). Democratic, institu- Sheibling 1988).
    [Show full text]
  • 655 Appendix G
    APPENDIX G: GLOSSARY Appendix G-1. Demersal Fish Species Alphabetized by Species Name. ....................................... G1-1 Appendix G-2. Demersal Fish Species Alphabetized by Common Name.. .................................... G2-1 Appendix G-3. Invertebrate Species Alphabetized by Species Name.. .......................................... G3-1 Appendix G-4. Invertebrate Species Alphabetized by Common Name.. ........................................ G4-1 G-1 Appendix G-1. Demersal Fish Species Alphabetized by Species Name. Demersal fish species collected at depths of 2-484 m on the southern California shelf and upper slope, July-October 2008. Species Common Name Agonopsis sterletus southern spearnose poacher Anchoa compressa deepbody anchovy Anchoa delicatissima slough anchovy Anoplopoma fimbria sablefish Argyropelecus affinis slender hatchetfish Argyropelecus lychnus silver hachetfish Argyropelecus sladeni lowcrest hatchetfish Artedius notospilotus bonyhead sculpin Bathyagonus pentacanthus bigeye poacher Bathyraja interrupta sandpaper skate Careproctus melanurus blacktail snailfish Ceratoscopelus townsendi dogtooth lampfish Cheilotrema saturnum black croaker Chilara taylori spotted cusk-eel Chitonotus pugetensis roughback sculpin Citharichthys fragilis Gulf sanddab Citharichthys sordidus Pacific sanddab Citharichthys stigmaeus speckled sanddab Citharichthys xanthostigma longfin sanddab Cymatogaster aggregata shiner perch Embiotoca jacksoni black perch Engraulis mordax northern anchovy Enophrys taurina bull sculpin Eopsetta jordani
    [Show full text]
  • Assessment of Coastal Water Resources and Watershed Conditions at Channel Islands National Park, California
    National Park Service U.S. Department of the Interior Technical Report NPS/NRWRD/NRTR-2006/354 Water Resources Division Natural Resource Program Center Natural Resource Program Centerent of the Interior ASSESSMENT OF COASTAL WATER RESOURCES AND WATERSHED CONDITIONS AT CHANNEL ISLANDS NATIONAL PARK, CALIFORNIA Dr. Diana L. Engle The National Park Service Water Resources Division is responsible for providing water resources management policy and guidelines, planning, technical assistance, training, and operational support to units of the National Park System. Program areas include water rights, water resources planning, marine resource management, regulatory guidance and review, hydrology, water quality, watershed management, watershed studies, and aquatic ecology. Technical Reports The National Park Service disseminates the results of biological, physical, and social research through the Natural Resources Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of technical workshops and conferences are also disseminated through this series. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Copies of this report are available from the following: National Park Service (970) 225-3500 Water Resources Division 1201 Oak Ridge Drive, Suite 250 Fort Collins, CO 80525 National Park Service (303) 969-2130 Technical Information Center Denver Service Center P.O. Box 25287 Denver, CO 80225-0287 Cover photos: Top Left: Santa Cruz, Kristen Keteles Top Right: Brown Pelican, NPS photo Bottom Left: Red Abalone, NPS photo Bottom Left: Santa Rosa, Kristen Keteles Bottom Middle: Anacapa, Kristen Keteles Assessment of Coastal Water Resources and Watershed Conditions at Channel Islands National Park, California Dr.
    [Show full text]