Medicinal Plants of Asia and the Pacific

Total Page:16

File Type:pdf, Size:1020Kb

Medicinal Plants of Asia and the Pacific Medicinal Plants of Asia and the Pacific Copyright © 2006 Taylor & Francis Group, LLC Medicinal Plants of Asia and the Pacific Christophe Wiart, Pharm.D. Ethnopharmacologist Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business Copyright © 2006 Taylor & Francis Group, LLC 7245_Discl.fm Page 1 Wednesday, December 21, 2005 2:07 PM Published in 2006 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10987654321 International Standard Book Number-10: 0-8493-7245-3 (Hardcover) International Standard Book Number-13: 978-0-8493-7245-2 (Hardcover) Library of Congress Card Number 2005036199 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Wiart, Christophe. Medicinal plants of Asia and the Pacific / Christophe Wiart. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-0-8493-7245-2 (hardcover : alk. paper) ISBN-10: 0-8493-7245-3 (hardcover : alk. paper) 1. Medicinal plants--Asia. 2. Medicinal plants--Pacific Area. 3. Ethnopharmacology--Asia. 4. Ethnopharmacology--Pacific Area. 5. Traditional medicine--Asia. 6. Traditional medicine--Pacific Area. [DNLM: 1. Plants, Medicinal--Asia--Handbooks. 2. Plants, Medicinal--Pacific Islands--Handbooks. 3. Ethnopharmacology--Asia--Handbooks. 4. Ethnopharmacology--Pacific Islands--Handbooks. 5. Medicine, Oriental Traditional--Asia--Handbooks. 6. Medicine, Oriental Traditional--Pacific Islands--Handbooks. QV 735 W631m 2006] I. Title. RS179.W53 2006 615’.321--dc22 2005036199 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com Taylor & Francis Group and the CRC Press Web site at is the Academic Division of Informa plc. http://www.crcpress.com Copyright © 2006 Taylor & Francis Group, LLC 7245_book.fm Page v Saturday, May 6, 2006 12:26 PM Dedication I owe a special thanks to my family for their generosity in creating and sustaining a domestic milieu conducive to my work. Copyright © 2006 Taylor & Francis Group, LLC 7245_book.fm Page vii Saturday, May 6, 2006 12:26 PM Preface When I began thinking about this book, I was guided by the wish to solve a dilemma. After 10 years of carefully conducted ethnopharmacological research, I could not help but conclude that the hundreds of molecules of clinical value awaiting discovery in the Pacific Rim might never be discovered while the global prevalence of cancers, cardiovascular diseases, and microbial infections continued to grow. One possible reason for the slow rate of discovery of drugs from plants is the fact that there are a few researchers who master and rationally interconnect botany, pharmacology, traditional medicines, pharmacy, and modern medicine. One can perhaps envision the creation of a new discipline of science which would encompass all these disciplines. For the time being most drugs that are discovered from plants result from enormous strikes of good luck. The idea to shed some light on the pharmacological potentials of medicinal flora of the Pacific Rim was thus born, and I undertook the laborious task of writing this extensive work on 36 families of medicinal plants of great topicality. Each of the 173 medicinal plants described in this book is of particular interest and should be viewed as a starting point for further research, which may result in the discovery of drugs. Each plant in this book is described as accurately as possible, which allows nonbotanists to recognize the samples, which are accompanied by personally made botanical plates. The traditional uses of each plant are provided and the rationality of these uses is described and explained using chemotaxonomy, pharmacology, and medicinal chemistry. In addition, detailed chemical structures and indications for further fruitful investigations are provided. This book is written for all who are interested in participating in the task to find cures from the medicinal plants of the Pacific Rim. My hope is that the readers of this book will appreciate the wealth of knowledge and information that is available in the field of drug research from medicinal plants. First, this book will allow the active researcher to examine his or her own work in light of detailed accounts by scientists engaged in similar fields of research. Second, the researcher will profit from the hundreds of references to pertinent publications summarized and critically com- mented upon in this book. Third, a vast number of readers in the fields of pharmacology, medicine, biotechnology, veterinary medicine, and biochemistry, as well as nonscientists, will have the oppor- tunity to undertake a pleasant and colorful journey through the medicinal flora of the Pacific Rim. I am most indebted to the individuals who have contributed to the production of this book and who have done so much to guarantee its success. Christophe Wiart Kuala Lumpur, Malaysia Copyright © 2006 Taylor & Francis Group, LLC 7245_book.fm Page ix Saturday, May 6, 2006 12:26 PM About the Author Christophe Wiart was born in Saint Malo, France. He earned a Doctorate of Pharmacy from the University of Rennes in 1996 and is currently an associate professor of pharmacognosy at the University of Malaya, Kuala Lumpur, Malaysia. Dr. Wiart has been studying medicinal plants of the Pacific Rim for the last 10 years. His activities and accomplishments include patenting, con- ferences, plenary lectures, and the publication of several peer-reviewed research articles and aca- demic books. Contact: [email protected] Copyright © 2006 Taylor & Francis Group, LLC 7245_book.fm Page xi Saturday, May 6, 2006 12:26 PM Contents Chapter 1 Introduction ...............................................................................................................1 Chapter 2 Medicinal Plants Classified in the Family Annonaceae ...........................................5 2.1 General Concept ...................................................................................................................5 2.2 Fissistigma lanuginosum (Hk. f. et Th.) Merr. ....................................................................5 2.2.1 Botany ......................................................................................................................6 2.2.2 Ethnopharmacology .................................................................................................7 2.3 Fissistigma manubriatum (Hk. f. et Th.) .............................................................................7 2.3.1 Botany ......................................................................................................................7 2.3.2 Ethnopharmacology .................................................................................................7 2.4 Phaeanthus ebracteolatus (Presl.) Merr. ..............................................................................7 2.4.1 Botany ......................................................................................................................8 2.4.2 Ethnopharmacology .................................................................................................8 References .........................................................................................................................................8 Chapter 3 Medicinal Plants Classified in the Family Myristicaceae ........................................9 3.1 General Concept ...................................................................................................................9 3.2 Knema glaucescens Jack ....................................................................................................10 3.2.1 Botany ....................................................................................................................10 3.2.2 Ethnopharmacology ...............................................................................................10 3.3 Knema globularia (Lamk.) Warb. ......................................................................................10 3.3.1 Botany ....................................................................................................................11
Recommended publications
  • Annual Report
    Darwin Initiative Annual Report 1. Darwin Project Information Project Ref. Number 14-013 Project Title Community Management of NTFPs in Kangchenjunga Conservation Area, Nepal Country(ies) Nepal UK Contractor WWF UK Partner Organisation(s) WWF Nepal Program Darwin Grant Value GBP 170,100 Start/End dates April 2005-March 2008 Reporting period and 1 April 2005-31 March 2006 annual report number Annual report 1 Project website Author(s), date Suresh K. Ghimire, Bal Krishna Nepal, Parag Bijukchhe, Yeshi Lama, Jennifer Headley & Ros Coles 23 May 2006 2. Project Background • Briefly describe the location and circumstances of the project and the problem that the project aims to address. Situated in the remote, north-east corner of Nepal, bordering Sikkim (India) and Tibet Autonomous Region (China), Kangchenjunga Conservation Area (KCA) is characterized by great variations in elevation, climate, landscape, habitat, vegetation, and cultural diversity. Phyto-geographically, it forms the meeting ground of the Indo- Malaysian (S.E. Asian) and Sino-Japanese (E. Asian) floras. KCA has been declared as a “Gift to the Earth” in 1997. In 1998, WWF initiated the Kangchenjunga Conservation Area Project (KCAP) to conserve its rich biodiversity and promote community-based management of natural resources. About 1500 species of flowering plants have been documented thus far in KCA (Shrestha and Ghimire 1996), including over 150 species of non-timber forest products (Shrestha and Ghimire 1996; Sherpa 2001, Oli and Nepal 2003). NTFPs play an important role in supporting the livelihood of about 5000 people living in the four village development committees (VDCs) of Lelep, Tapethok, Yamphudin, and Walangchung Gola.
    [Show full text]
  • GENERA REPRESENTED in THIS NUMBER Acer Amygdalus
    GENERA REPRESENTED IN THIS NUMBER Page Page Acer 1925 Edgeworthia 1922 Amygdalus 1926, 1927 Gladiolus 1922 Buddleia 1921, 1927 Haematoxylum 1927 Cassia 1927 Musa 1922 Chamaedorea 1927 Quercus 1922 Citrus 1921 Veronica 1923 Crotalaria 1921, 1922 Notes and Comments The Favorita pear (S. P. I. No. 33207). 339. The Chilean strawberry as marketed in Colombia (Fragaria chiloensis). 340. A nitrogen * gathering shrub from the Comoro Islands {Psychotria bacteriophila). EXPLANATORY NOTE PLANT IMMIGRANTS is designed principally to call the attention of plant breeders and experimenters to the arrival of interesting plant material. It should not be viewed as an announcement of plants available for distribution, since most introductions have to be propagated before they can be sent to experimenters. This requires from one to three years, depending upon the nature of the plant and the quantity of live material received. As rapidly as stocks are available, the plants described in this circular will be included in the Annual List of Plant Introductions, which is sent to experimenters in late autumn. Introductions made for a special purpose (as for example to supply Department and other specialists with material needed in their experiments) are not propagated by this Office and will not appear in the Annual List. Descriptions appearing here are revised and later published in the Inventory of Seed,s and Plants Imported, -the permanent record of plant in- troductions made by this Office. Plant breeders and experimenters who desire plants not available in this country are invited to correspond with this Office which will endeavor to secure the required material through its agricultural ex- plorers, foreign collaborators, or correspondents.
    [Show full text]
  • Β-Phenylethylamines and the Isoquinoline Alkaloids
    -Phenylethylamines and the isoquinoline alkaloids Kenneth W. Bentley Marrview, Tillybirloch, Midmar, Aberdeenshire, UK AB51 7PS Received (in Cambridge, UK) 28th November 2000 First published as an Advance Article on the web 7th February 2001 Covering: July 1999 to June 2000. Previous review: Nat. Prod. Rep., 2000, 17, 247. 1 Introduction 2 -Phenylethylamines 3 Isoquinolines 4 Naphthylisoquinolines 5 Benzylisoquinolines 6 Bisbenzylisoquinolines 7 Pavines and isopavines 8 Berberines and tetrahydoberberines 9 Protopines 10 Phthalide-isoquinolines 11 Other modified berberines 12 Emetine and related alkaloids 13 Benzophenanthridines 14 Aporphinoid alkaloids 14.1 Proaporphines 14.2 Aporphines 14.3 Aporphine–benzylisoquinoline dimers 14.4 Phenanthrenes 14.5 Oxoaporphines 14.6 Dioxoaporphines 14.7 Aristolochic acids and aristolactams 14.8 Oxoisoaporphines 15 Alkaloids of the morphine group 16 Colchicine and related alkaloids 17 Erythrina alkaloids 17.1 Erythrinanes 17.2 Cephalotaxine and related alkaloids 18 Other isoquinolines 19 References 1 Introduction Reviews of the occurrence of isoquinoline alkaloids in some plant species 1,2 and of recent developments in the chemistry and synthesis of alkaloids of these groups 3–6 have been published. 2 -Phenylethylamines β-Phenylethylamine, tyramine, N-methyltyramine, hordenine, mescaline, N-methylmescaline and N,N-dimethylmescaline 1, which is reported as an alkaloid for the first time, have been isolated from an unspecified species of Turbinocarpus 7 and N-trans-feruloyltyramine has been isolated from Cananga odorata.8 The N-oxides of the known alkaloid culantraramine 2 and the unknown culantraraminol 3, together with the related avicennamine 4 have been isolated as new alkaloids from Zanthoxylum avicennae.9 Three novel amides of dehydrotyr- leucine and proline respectively.
    [Show full text]
  • Ardisia Humilis Vahl.) Planting Condition Toward the Alpha-Glucosidase Inhibition Activity in Vitro
    Pharmacogn J. 2020; 12(2): 377-385 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Research Article www.phcogj.com Study of the Effect of Lampeni (Ardisia humilis Vahl.) Planting Condition toward the Alpha-glucosidase Inhibition Activity In vitro Sri Ningsih1,*, Fifit Juniarti1, Idah Rosidah1, Adam Arditya Fajriawan1, Kurnia Agustini1, Syofi Rosmalawati2, Agung Eru Wibowo2, Erliana Sasikirana3, Wahono Sumaryono3 ABSTRACT Background: The quality of a medicinal plant is influenced by agronomic conditions and harvesting time. Objective: This study aimed to evaluate the effect of planting method (open- air (OA) and shedding house (SH)) and harvesting time (2, 4, 6 months) of Lampeni (Ardisia Sri Ningsih1,*, Fifit Juniarti1, humilis Vahl.) toward the inhibitory activity of alpha-glucosidase. Methods: The Lampeni Idah Rosidah1, Adam Arditya seedling were placed under controlled light conditions (SH) and on direct sun exposure (OA). Fajriawan1, Kurnia Agustini1, Harvesting of the leaves was carried out at the age of 2, 4, and 6 months after plantation Syofi Rosmalawati2, Agung Eru (2m, 4m, and 6m). Each leaves dry powder was refluxed with methanol 70% and followed Wibowo2, Erliana Sasikirana3, by liquid-liquid partition using n-hexane, ethyl acetate (EtOAc), and water. All samples were Wahono Sumaryono3 evaluated toward inhibition of the alpha-glucosidase enzyme in vitro. Total phenol levels were determined using Folin-Ciocalteu reagent. Results: The results showed that EtOAc fractions 1Center for Pharmaceutical and Medical Technology, Agency for the Assessment and of both plantation techniques exhibited the highest inhibition of alpha-glucosidase. The highest Application of Technology. Laptiab building, activity was demonstrated by the 4m-OA-EtOAc fraction (IC50, 93.50 ppm) and followed by Puspiptek Serpong Area, South Tangerang, the 6m-OA-EtOAc fraction (IC50, 98.13 ppm).
    [Show full text]
  • Determination of Cytotoxic Activity of Sanguinaria Canadensis Extracts
    molecules Article Determination of Cytotoxic Activity of Sanguinaria canadensis Extracts against Human Melanoma Cells and Comparison of Their Cytotoxicity with Cytotoxicity of Some Anticancer Drugs Tomasz Tuzimski 1,* , Anna Petruczynik 2,* , Tomasz Plech 3 , Barbara Kapro ´n 4, Anna Makuch-Kocka 3 , Małgorzata Szultka-Mły ´nska 5 , Justyna Misiurek 2 and Bogusław Buszewski 5 1 Department of Physical Chemistry, Medical University of Lublin, Chod´zki4a, 20-093 Lublin, Poland 2 Department of Inorganic Chemistry, Medical University of Lublin, Chod´zki4a, 20-093 Lublin, Poland; [email protected] 3 Department of Pharmacology, Medical University of Lublin, Chod´zki4a, 20-093 Lublin, Poland; [email protected] (T.P.); [email protected] (A.M.-K.) 4 Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; [email protected] 5 Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland; [email protected] (M.S.-M.); [email protected] (B.B.) * Correspondence: [email protected] (T.T.); [email protected] (A.P.) Abstract: Melanoma is an enormous global health burden, and should be effectively addressed with Citation: Tuzimski, T.; Petruczynik, A.; better therapeutic strategies. Therefore, new therapeutic agents are needed for the management of Plech, T.; Kapro´n,B.; Makuch-Kocka, this disease. The aim of this study was the investigation of cytotoxic activity of some isoquinoline A.; Szultka-Mły´nska,M.; Misiurek, J.; alkaloid standards and extracts obtained from Sanguinaria canadensis—collected before, during, Buszewski, B. Determination of and after flowering—against three different human melanoma cells (A375, G361, SK-MEL-3).
    [Show full text]
  • High Tree Endemism Recorded in Kanana Kanda Isolated Forest Fragment in Wet Zone of Sri Lanka
    International Journal of Agriculture, Forestry and Plantation, Vol. 2 (February.) ISSN 2462-1757 2 01 6 HIGH TREE ENDEMISM RECORDED IN KANANA KANDA ISOLATED FOREST FRAGMENT IN WET ZONE OF SRI LANKA P.K.J. De Mel Department of Agricultural and Plantation Engineering Open University of Sri Lanka, P.O. Box 21, Nawala, Nugegoda (10250), Sri Lanka Email: [email protected] K.A.J.M. Kuruppuarachchi Department of Botany Open University of Sri Lanka, P.O. Box 21, Nawala, Nugegoda (10250), Sri Lanka Email: [email protected] ABSTRACT Kanana Kanda is an isolated lowland hill with an altitude of 115m covered by natural forest with an extent of 13ha. The forest fragment located in wet zone of Sri Lanka where much species diversity and endemism is found. The forest is disappearing fast due to anthropogenic influences. Therefore the present study was carried out with the objective of assessment of existing tree flora. Reconnaissance survey was first conducted in the forest in order to gather basic information on vegetation types and floristic characteristics. Four transects with a size of 100m x 5m each were laid for sampling trees. A woody plant with a dbh equal or greater than 5cm considered as a tree. A total number of 464 trees were enumerated in the forest. Field identification of species performed with the consultation of personnel who have sufficient knowledge, skills and experience on similar vegetation. Herbarium specimens were prepared from each tree unidentified in the field and later identified those comparing with the specimens preserved in the National Herbarium. Present study, recorded a total number of 50 different species belongs to 29 families.
    [Show full text]
  • Taxanomic Composition and Conservation Status of Plants in Imbak Canyon, Sabah, Malaysia
    Journal of Tropical Biology and Conservation 16: 79–100, 2019 ISSN 1823-3902 E-ISSN 2550-1909 Short Notes Taxanomic Composition and Conservation Status of Plants in Imbak Canyon, Sabah, Malaysia Elizabeth Pesiu1*, Reuben Nilus2, John Sugau2, Mohd. Aminur Faiz Suis2, Petrus Butin2, Postar Miun2, Lawrence Tingkoi2, Jabanus Miun2, Markus Gubilil2, Hardy Mangkawasa3, Richard Majapun2, Mohd Tajuddin Abdullah1,4 1Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu 2Forest Research Centre, Sabah Forestry Department, Sandakan, Sabah, Malaysia 3 Maliau Basin Conservation Area, Yayasan Sabah 4Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu *Corresponding authors: [email protected] Abstract A study of plant diversity and their conservation status was conducted in Batu Timbang, Imbak Canyon Conservation Area (ICCA), Sabah. The study aimed to document plant diversity and to identify interesting, endemic, rare and threatened plant species which were considered high conservation value species. A total of 413 species from 82 families were recorded from the study area of which 93 taxa were endemic to Borneo, including 10 endemic to Sabah. These high conservation value species are key conservation targets for any forested area such as ICCA. Proper knowledge of plant diversity and their conservation status is vital for the formulation of a forest management plan for the Batu Timbang area. Keywords: Vascular plant, floral diversity, endemic, endangered, Borneo Introduction The earth as it is today has a lot of important yet beneficial natural resources such as tropical forests. Tropical forests are one of the world’s richest ecosystems, providing a wide range of important natural resources comprising vital biotic and abiotic components (Darus, 1982).
    [Show full text]
  • Microgram Journal, Vol 3, Number 2
    MICROGRAM Laboratory Operations Division Office Of Science And Drug Abuse Prevention BUREAU OF NARCOTICS & DANGEROUS DRUGS / U.S. DEPARTMENT OF JUSTICE / WASHINGTION, D.C. 20537 Vol.III, No. 2 March-April, 1970 STP (4-Methyl-2,5-dimethoxyamphetamine) hydrochloride was found coating the inside of capsules sent to BNDDfrom Germany. The capsules were clear, hard gelatin, standard shape size No. o. Average weight was 114 milligrams. Each capsule had a white crystalline coating on inner surface of capsule body. Apparently a measu~ed amount of solution had been placedin the cap·sule body, after which it was rotated to spread the solution on the inner surface. The substance contained 8. 7 milli­ grams STP (DOM)HCl per ca·psule. · These were the first STP capsules of this type seen by our laboratory. A few years ago, capsules were ob­ tained in the U.S. similarly coated with LSD. STP (Free Base) on laboratory filter paper, also from Germany, was seen for the first time in our laboratory. The STP spots, containing approxi­ mately 8 miliigrams STP base each, were 5/8 to 3/4 inch in diameter. The paper was 1\ inches square. Phencyclidine (Free Base) was recently analyzed on parsley leaves. Called "Angel DUst, 11 the phencyclidine on two samples of leaves was 2.6% and 3.6%. Approximately thirty pounds of 94% pure powder was also analyzed. (For identification of phencyclidine base, see Microgram, II, 1, p.3 (Jan 1969). IMITATIONSof well-known drug products are examined frequently in our Special Testing and Research Laboratory. Many of these are well made preparations and closely resemble the imitated product.
    [Show full text]
  • WO 2007/098873 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 7 September 2007 (07.09.2007) WO 2007/098873 Al (51) International Patent Classification: (74) Agent: LINHART, Angela; c/o Bayer Healthcare AG, A61Q 19/02 (2006.01) A61K 8/97 (2006.01) Law and Patents, Patents and Licensing, 51368 Leverkusen A61K 8/49 (2006.01) A61K 35/00 (2006.01) (DE). A61K 8/60 (2006.01) A61K 36/00 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/EP2007/001459 AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FT, (22) International Filing Date: GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, 2 1 February 2007 (21.02.2007) JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV,LY,MA, MD, MG, MK, MN, MW, MX, MY, (25) Filing Language: English MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (30) Priority Data: 06290343.0 28 February 2006 (28.02.2006) EP (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): BAYER GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, CONSUMER CARE AG [CWCH]; Peter Merian-Str.
    [Show full text]
  • An in Silico Study of the Ligand Binding to Human Cytochrome P450 2D6
    AN IN SILICO STUDY OF THE LIGAND BINDING TO HUMAN CYTOCHROME P450 2D6 Sui-Lin Mo (Doctor of Philosophy) Discipline of Chinese Medicine School of Health Sciences RMIT University, Victoria, Australia January 2011 i Declaration I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at RMIT university or any other educational institution, except where due acknowledgment is made in the thesis. Any contribution made to the research by others, with whom I have worked at RMIT university or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project‘s design and conception or in style, presentation and linguistic expression is acknowledged. PhD Candidate: Sui-Lin Mo Date: January 2011 ii Acknowledgements I would like to take this opportunity to express my gratitude to my supervisor, Professor Shu-Feng Zhou, for his excellent supervision. I thank him for his kindness, encouragement, patience, enthusiasm, ideas, and comments and for the opportunity that he has given me. I thank my co-supervisor, A/Prof. Chun-Guang Li, for his valuable support, suggestions, comments, which have contributed towards the success of this thesis. I express my great respect to Prof. Min Huang, Dean of School of Pharmaceutical Sciences at Sun Yat-sen University in P.R.China, for his valuable support.
    [Show full text]
  • New Cytotoxic Pregnane-Type Steroid from the Stem Bark of Aglaia Elliptica (Meliaceae)
    ORIGINAL ARTICLE Rec. Nat. Prod. 12:2 (2018) 121-127 New Cytotoxic Pregnane-type Steroid from the Stem Bark of Aglaia elliptica (Meliaceae) Kindi Farabi 1, Desi Harneti 1, Nurlelasari 1, Rani Maharani 1, Ace Tatang Hidayat 1,2, Khalijah Awang 3, Unang Supratman 1,2,* and Yoshihito Shiono 4 1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Sumedang, Indonesia 2Central Laboratory of Universitas Padjadjaran, Jatinangor 45363, Sumdeang, Indonesia 3Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 59100, Malaysia 4Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan (Received July 5, 2017; Revised September 13, 2017; Accepted September 13, 2017) Abstract: A new pregnane-type steroid, 2α-hydroxy-3α-methoxy-5α-pregnane (1), together with three known dammarane-type triterpenoid, 3β-acetyl-20S,24S-epoxy-25-hydroxydammarane (2), 20S,24S-epoxy-3α,25- dihydroxydammarane (3), and eichlerianic acid (4) have been isolated from the stem bark of Aglaia elliptica. The structures were determined by spectroscopic methods including the 2D-NMR techniques. Compound 1-4 showed moderate cytotoxic activity against P-388 murine leukemia cells. Keywords: Pregnane-type steroid; Aglaia elliptica; cytotoxic activity; Meliaceae. © 2018 ACG Publications. All rights reserved. 1. Introduction Aglaia is the largest genus belong to Meliaceae family contain about 150 species, and more than 65 species of them were grown in Indonesia [1,2]. Recently, Aglaia genus used traditionally for treatment some desease. In Thailand, A. odorata used for the treatment of traumatic injury, bruises, febrifuge, heart disease and toxin by causing vomiting [3] and the bark of A.
    [Show full text]
  • Molecular Structure and Phylogenetic Analyses of Complete Chloroplast Genomes of Two Aristolochia Medicinal Species
    International Journal of Molecular Sciences Article Molecular Structure and Phylogenetic Analyses of Complete Chloroplast Genomes of Two Aristolochia Medicinal Species Jianguo Zhou 1, Xinlian Chen 1, Yingxian Cui 1, Wei Sun 2, Yonghua Li 3, Yu Wang 1, Jingyuan Song 1 and Hui Yao 1,* ID 1 Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; [email protected] (J.Z.); [email protected] (X.C.); [email protected] (Y.C.); [email protected] (Y.W.); [email protected] (J.S.) 2 Institute of Chinese Materia Medica, China Academy of Chinese Medicinal Sciences, Beijing 100700, China; [email protected] 3 Department of Pharmacy, Guangxi Traditional Chinese Medicine University, Nanning 530200, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-5783-3194 Received: 27 July 2017; Accepted: 20 August 2017; Published: 24 August 2017 Abstract: The family Aristolochiaceae, comprising about 600 species of eight genera, is a unique plant family containing aristolochic acids (AAs). The complete chloroplast genome sequences of Aristolochia debilis and Aristolochia contorta are reported here. The results show that the complete chloroplast genomes of A. debilis and A. contorta comprise circular 159,793 and 160,576 bp-long molecules, respectively and have typical quadripartite structures. The GC contents of both species were 38.3% each. A total of 131 genes were identified in each genome including 85 protein-coding genes, 37 tRNA genes, eight rRNA genes and one pseudogene (ycf1).
    [Show full text]