Phd Dissertation, 2008
Total Page:16
File Type:pdf, Size:1020Kb
Prospects for probing the structure of the proton with low-mass Drell-Yan events in ATLAS by Tayfun Ince M.Sc. (Physics), University of Victoria, Victoria, Canada, 2005 B.Ed. (Physics), Marmara University, Istanbul, Turkey, 1999 A dissertation submitted in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Physics and Astronomy. © Tayfun Ince, 2009 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-66848-1 Our file Notre référence ISBN: 978-0-494-66848-1 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author’s permission. In compliance with the Canadian Conformément à la loi canadienne sur la Privacy Act some supporting forms protection de la vie privée, quelques may have been removed from this formulaires secondaires ont été enlevés de thesis. cette thèse. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n’y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. ii Prospects for probing the structure of the proton with low-mass Drell-Yan events in ATLAS by Tayfun Ince M.Sc. (Physics), University of Victoria, Victoria, Canada, 2005 B.Ed. (Physics), Marmara University, Istanbul, Turkey, 1999 Supervisory Committee Dr. Richard K. Keeler, Supervisor (Department of Physics and Astronomy) Dr. Alan Astbury, Departmental Member (Department of Physics and Astronomy) Dr. Michel Lefebvre, Departmental Member (Department of Physics and Astronomy) Dr. Robert A. McPherson, Departmental Member (Department of Physics and Astronomy) Dr. David A. Harrington, Outside Member (Department of Chemistry) iii Supervisory Committee Dr. Richard K. Keeler, Supervisor (Department of Physics and Astronomy) Dr. Alan Astbury, Departmental Member (Department of Physics and Astronomy) Dr. Michel Lefebvre, Departmental Member (Department of Physics and Astronomy) Dr. Robert A. McPherson, Departmental Member (Department of Physics and Astronomy) Dr. David A. Harrington, Outside Member (Department of Chemistry) Abstract The biggest scientific experiment in history will begin taking data in late 2009 using the Large Hadron Collider (LHC) at CERN near Geneva, Switzerland. The LHC is designed to collide protons at an unprecedented 14 TeV centre of mass energy, enabling physicists to ex- plore the constituents of matter at smaller scales than ever before. The Parton Distribution Functions (PDFs) are parametrizations of the proton structure and are best determined from experimental data. The PDFs are needed to calculate cross-sections or in other words the likelihood of observed physical processes, which are crucial in exploiting the discov- ery potential of the LHC. The prospects for measuring the Drell-Yan (DY) spectrum are assessed in the low invariant mass region below the Z boson resonance using e+e− pairs from the initial LHC data in order to probe the proton structure and further constrain the PDFs. The analysis is based on the full simulation of the ATLAS detector response to DY electrons and background processes. Assuming 100 pb−1 of LHC data, the total DY cross- section in the invariant mass range from 10 GeV to 60 GeV is expected to be measured as = 5.90 0.24(stat) 0.18(syst) nb. The result predicts an improvement over a current DY ± ± theoretical uncertainty of 7.6% and indicates that the PDF uncertainties can be reduced significantly with the early LHC data. iv Contents Supervisory Committee ii Abstract iii Contents iv List of Figures vii List of Tables x Glossary of Abbreviations xi Acknowledgments xiii Dedication xiv 1 Introduction 1 1.1 The Standard Model ............................... 4 1.2 Experimental program .............................. 6 2 Theory 8 2.1 Proton-proton collisions ............................. 8 2.1.1 The Parton Model with QCD ...................... 9 CONTENTS v 2.1.2 QCD corrections to the Parton Model . 15 2.2 Drell-Yan physics ................................. 17 2.2.1 Introduction ............................... 17 2.2.2 Tree level process ............................. 19 2.2.3 Higher order corrections ......................... 22 2.3 Backgrounds to the Drell-Yan process ..................... 24 3 Experimental setup 26 3.1 The Large Hadron Collider ........................... 26 3.2 The ATLAS detector ............................... 29 3.2.1 Coordinate system ............................ 29 3.2.2 Tracking .................................. 30 3.2.3 Calorimetry ................................ 33 3.2.4 Muon spectrometer ............................ 37 3.2.5 Trigger system .............................. 37 3.2.6 Observables ................................ 40 4 The ATLAS Monte Carlo 41 4.1 Generation .................................... 42 4.2 Simulation ..................................... 44 4.3 Reconstruction .................................. 45 5 Analysis method and event selection 47 5.1 Data samples ................................... 47 5.2 Electron reconstruction ............................. 49 5.3 Electron identification .............................. 53 5.4 Di-electron selection criteria ........................... 61 CONTENTS vi 5.5 QCD background estimation .......................... 63 5.6 Reduction of the QCD background ....................... 74 6 Determination of experimental limitations 81 6.1 Acceptance .................................... 81 6.2 Efficiency ..................................... 84 7 Calculation of differential cross-section 93 7.1 Expected spectrum ................................ 93 7.2 Corrected spectrum ............................... 96 8 Assessment of systematic uncertainties 99 8.1 Acceptance uncertainty ............................. 99 8.2 Efficiency uncertainty .............................. 102 8.3 QCD background uncertainty . 106 9 Discussion 111 9.1 PDF uncertainty on the cross-section . 112 9.2 Comparison with the previous measurements . 114 9.3 Drell-Yan electron identification for early running . 115 10 Conclusions 117 References 119 A Kinematics of the Parton Model and the Drell-Yan process 125 vii List of Figures 1.1 The elementary particles of the Standard Model ............... 5 2.1 Schematic diagram of a proton-proton collision . 10 2.2 Kinematic range of partons at the LHC .................... 12 2.3 Feynman diagram of the lowest order Drell-Yan process. 19 2.4 Feynman diagrams for corrections to the lowest order Drell-Yan process. 23 3.1 Schematic layout of the LHC complex ..................... 27 3.2 Geometrical layout of the ATLAS detector ................... 30 3.3 Geometrical layout of the ATLAS inner detector . 31 3.4 Geometrical layout of the ATLAS calorimetry system . 34 3.5 Geometrical layout of the ATLAS muon system . 38 3.6 Schematic diagram of the ATLAS trigger system. 39 4.1 Schematic diagram of a MC event ....................... 43 5.1 Schematic view of an electron signature in the ATLAS detector . 50 5.2 Distributions of the top six standard electron identification variables . 60 5.3 Schematic view of typical signatures of jets in the ATLAS detector . 64 5.4 Classification of inclusive jet events and background electrons . 68 5.5 Change in shape of the inclusive jet background after loose selection . 71 LIST OF FIGURES viii 5.6 Fraction of background electrons passing loose identification . 72 5.7 Validation of the inclusive jet background estimation method . 73 5.8 Mass distributions of signal and background after tight selection . 74 5.9 Classification of background electrons passing tight selection . 75 5.10 Distributions of the additional tighter electron identification variables . 77 5.11 Correlation matrix of the tighter electron identification variables . 78 5.12 Classification of background electrons passing tighter selection . 79 5.13 Mass distributions of signal and background after tighter selection . 80 6.1 Energy resolution for electrons in the EM barrel calorimeter . 83 6.2 Drell-Yan event acceptance as a function of pair mass . 84 6.3 Drell-Yan electron reconstruction efficiency . 85 6.4 Comparison of tag & probe method with MC truth . 88 6.5 Drell-Yan