THE BLACK BOX of BIOLOGY a History of the Molecular Revolution

Total Page:16

File Type:pdf, Size:1020Kb

THE BLACK BOX of BIOLOGY a History of the Molecular Revolution THE BLACK BOX OF BIOLOGY A History of the Molecular Revolution Michel Morange Translated by Matthew Cobb Cambridge, Massachusetts, and London, England 2020 Copyright © 2020 by Éditions La Découverte, Paris, France This volume is revised and expanded from the first English-language edition, published as A History of Molecular Biology by Harvard University Press. Copyright © 1998 by the President and Fellows of Harvard College First French Edition published as Histoire de la biologie moléculaire Copyright © 1994, 2003 Éditions La Découverte, Paris, France All rights reserved Cover design: Tim Jones Cover artwork: Courtesy of Getty Images 978-0-674-28136-3 (hardcover) 978-0-674-24525-9 (EPUB) 978-0-674-24527-3 (MOBI) 978-0-674-24528-0 (PDF) The Library of Congress has cataloged the printed edition as follows: Names: Morange, Michel, author. | Cobb, Matthew, translator. Title: The black box of biology : a history of the molecular revolution / Michel Morange, translated by Matthew Cobb. Other titles: Histoire de la biologie moléculaire. English Description: Cambridge, Massachusetts : Harvard University Press, 2020. | This volume is revised and expanded from the first English-language edition, published as A History of Molecular Biology by Harvard University Press. Originally published (in French) as Histoire de la biologie moléculaire—Title page verso. | Includes bibliographical references and index. Identifiers: LCCN 2019040562 Subjects: LCSH: Molecular biology—History. Classification: LCC QH506 .M7313 2020 | DDC 572.8—dc23 LC record available at https://lccn.loc.gov/2019040562 Contents Introduction PART ONE THE BIRTH OF MOLECULAR BIOLOGY 1 The Roots of the New Science 2 The One Gene–One Enzyme Hypothesis 3 The Chemical Nature of the Gene 4 The Phage Group 5 The Birth of Bacterial Genetics 6 The Crystallization of the Tobacco Mosaic Virus 7 Enter the Physicists 8 The Influence of the Rockefeller Foundation 9 Physical Techniques in Molecular Biology 10 The Role of Physics PART TWO THE DEVELOPMENT OF MOLECULAR BIOLOGY 11 The Discovery of the Double Helix 12 Deciphering the Genetic Code 13 The Discovery of Messenger RNA 14 The French School PART THREE THE EXPANSION OF MOLECULAR BIOLOGY 15 Normal Science 16 Genetic Engineering 17 Split Genes and Splicing 18 The Discovery of Oncogenes 19 From DNA Polymerase to the Amplification of DNA PART FOUR BEYOND MOLECULAR BIOLOGY? 20 The Molecularization of Biology and Medicine 21 Protein Structure 22 The Rise of Developmental Biology 23 Molecular Biology and Evolution 24 Gene Therapy 25 The Central Place of RNA 26 Epigenetics 27 Sequencing the Human Genome 28 Systems Biology and Synthetic Biology 29 Images, Representations, and Metaphors in Molecular Biology General Conclusion Appendix: Definition of Terms Notes Index Introduction TWO DECADES AGO, when I published A History of Molecular Biology, the predecessor of this book, barely a day went by without the media highlighting another new development in biology—gene therapy, the human genome project, the creation of new varieties of animals and plants by genetic engineering, and even the possibility of cloning a human being. Naturally enough, the public was fascinated. Back then, everyone knew that these developments were the products of molecular biology, which had appeared in the middle of the twentieth century. The endless cycle of new discoveries still continues, but the public is less fascinated and more anxious, and it is not always clear that these developments are the results of the rise of the new science in the middle of the twentieth century. All these advances—such as those enabled by the genome editing system CRISPR—reignite hopes and debates that first emerged decades ago, while all the progress in gene and cell therapies, and new treatments for cancer, are still the more or less direct consequences of the development of molecular biology. Faced with the immense discoveries of the last two decades, and their promised—or threatened—future, I felt it was time to produce a new book. Although this is based on my original History—in particular the first three parts—this is much more than a new edition. The entirely new fourth section deals with developments that were only dreamed of in the late twentieth century, and I have taken the opportunity to extensively revise and update the analysis in the earlier sections. Molecular biology is not the description of biology in terms of molecules —if this were the case, it would include not only biochemistry, but also all those nineteenth century studies in chemistry and physiology that led to the characterization of biological molecules. With such a broad definition, even Pasteur would have been a molecular biologist!1 Rather, molecular biology consists of those techniques and discoveries that make it possible to carry out molecular analyses of the most fundamental biological processes— those involved in the stability, survival, and reproduction of organisms. It is not only a level of observation and explanation of living phenomena, it also provides a method for intervening into those systems in order to understand and manipulate them. Although it is not the only possible level at which biological research should be carried out—sometimes it is not even the best one—it clearly represents an important approach to our understanding of the living world. Molecular biology is a result of the meeting of genetics and biochemistry, two branches of biology that developed at the beginning of the twentieth century, each of which had clearly defined research objects: the gene for genetics, and proteins and enzymes for biochemistry. Molecular biology emerged when the relation between these two objects became clearer; scientists identified the gene as a macromolecule (DNA), determined its structure, and described its role in protein synthesis. Strictly speaking, molecular biology is not a new discipline but rather a new way of looking at organisms as reservoirs and transmitters of information.2 This new vision opened up possibilities of action and intervention that were first revealed during the early years of genetic engineering. The techniques necessary for the study of macromolecules were developed between 1920 and 1940, and the new conceptual tools for analyzing biological phenomena were forged between 1940 and 1965. The consequent operational control was acquired between 1972 and 1980 with the development of genetic engineering. In the subsequent decades, molecular biology has completely transformed our understanding of biological phenomena. This book covers the molecular revolution in its entirety, from its earliest days right up to tomorrow. Molecular biology and genetic engineering are too intimately linked for their histories to be separated; genetic engineering cannot be understood without molecular biology, but it was genetic engineering that highlighted the importance of the conceptual changes that molecular biology had produced. The discovery in 1983 of a technique for amplifying DNA, called the polymerase chain reaction (PCR), had its origins in the theoretical framework developed in the 1950s and in the experimental tools devised in the 1970s. Better than any other example, it shows the effectiveness of the theoretical and practical tools forged by biologists in the second half of the twentieth century. Molecular biology was born when geneticists, no longer satisfied with an abstract view of the role of genes, focused their attention on the nature of genes and their mechanism of action. It was also a result of biochemists trying to understand how proteins and enzymes—essential agents of organic specificity—are synthesized and how genes intervene in this process. The end of this history is more difficult to discern. At various points over recent decades, a number of biologists, historians, and philosophers have announced the death of molecular biology. In the last part of this book I briefly describe the key changes that have occurred in the last forty years, exploring how deeply they have affected the framework created by molecular biologists. My conclusion is that we still live within the molecular paradigm,3 and that contemporary biologists use the same conceptual framework that was established more than fifty years ago. Despite the repeated announcements of its demise, molecular biology is still alive and kicking. Parts 1, 2, and 3 contain very detailed descriptions of the experiments that underpinned the development and consolidation of molecular biology. That approach could not be repeated in Part 4 because each new development would have required a book in itself. The chapters in the final part therefore address this recent history in a more synthetic way. This also allows a more direct focus on the major issue that lies at the core of the whole book: whether the “molecularization” of so many biological subdisciplines has transformed molecular biology itself, up to the point where it has disappeared as a discrete subject and been replaced by the emergence of a new form of biology. These final chapters also deal with the key participants in a rather different way. Although the construction of scientific knowledge is always the result of a collective effort, in the first three parts I tried to outline major individual contributions. This was not possible in the fourth part of the book —thousands of researchers would have deserved to be mentioned. The individuals who are named are the authors of articles or experiments that can be seen as landmarks of the transformation of all branches of biology that occurred over the last forty years. A major problem in writing the history of the molecular revolution in the life sciences is the sheer mass of documentation available. Many of those who made this revolution have written their own accounts; there are also a large number of studies by scientists, historians, and philosophers.4 Four books in particular, with very different approaches, have made a major contribution to the history of molecular biology. The British historian Robert Olby wrote a detailed account of the path that led to the discovery of the double helix structure of DNA.5 Horace F.
Recommended publications
  • Sequencing As a Way of Work
    Edinburgh Research Explorer A new insight into Sanger’s development of sequencing Citation for published version: Garcia-Sancho, M 2010, 'A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77', Journal of the History of Biology, vol. 43, no. 2, pp. 265-323. https://doi.org/10.1007/s10739-009- 9184-1 Digital Object Identifier (DOI): 10.1007/s10739-009-9184-1 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Journal of the History of Biology Publisher Rights Statement: © Garcia-Sancho, M. (2010). A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77. Journal of the History of Biology, 43(2), 265-323. 10.1007/s10739-009-9184-1 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 THIS IS AN ADVANCED DRAFT OF A PUBLISHED PAPER. REFERENCES AND QUOTATIONS SHOULD ALWAYS BE MADE TO THE PUBLISHED VERION, WHICH CAN BE FOUND AT: García-Sancho M.
    [Show full text]
  • Spirin a S. Spektrofotometrichesloe Opredelenie Summarnogo Kolichestva
    CC/NUMBER 21 This Week’s Citation Classic MAY26,1986 ~ Spirin A S. Spektrofotometrichesloe opredelenie summarnogo kolichestva . nukleinovykh kislot (Spectrophotometric determination of total nucleic acids). Biokhimiya (USSR) 23:656-62. 1958. (A.N. Bakh Institute of Biochemistry, Academy of Sciences of the USSR, Moscow, USSR] The paper describes a simple universal cient of molar extinction ~270= 10,000 in method of determining nucleic acids in bio- hot HCIO extracts of nucleic acids re- logical materials based on the measurement gardless of4 the type (DNA or RNA) and of the difference in optical densities of the base composition of the nucleic acids hot HCIO extract at two wavelengths, 270 under investigation. m~iand 2904 mp. [The SCI® indicates that this Subsequently, a modification had to paper has been cited in over 760 publica- be made to reduce the effect of extract- tions.] ed ultraviolet-absorbing materials of a nonnucleic acid nature; instead of a di- rect measurement of optical density at 270 m~i,I suggested using the difference of optical densities at two close wave- lengths, 270 m~and 290 m~(the differ- ence in optical densities at 270 m~and Alexander Spirin 290 m~idivided by 0.19 gives the number Institute of Protein Research of nucleic acid phosphorus micrograms Academy of Sciences of the USSR per milliliter). The method proved to be 142292 Pushchino, Moscow Region very convenient and yielded precise re- USSR sults at testing on a large number of ob- jects of animal and plant origin. (Howev- er, when applied to bacteria, the meth- od in this differential variant gave some February 20, 1986 under- or overestimation in the cases of extreme GC or AT types of their DNA, respectively.) Under strong pressure from my col- In 1955.1957 I was a postgraduate stu- leagues, I sent a two-page typewritten dent in A.N.
    [Show full text]
  • Towards the Construction of Escherichia Coli Cell-Free Protein Synthesis System Platform
    Towards the construction of Escherichia coli cell-free protein synthesis system platform Sara Alexandra Peça de Sousa Rosa Thesis to obtain the Master of Science Degree in Biotechnology Supervisor(s): Professor Luís Joaquim Pina da Fonseca Examination Committee Chairperson: Professor Arsénio do Carmo Sales Mendes Fialho Supervisor: Professor Luís Joaquim Pina da Fonseca Member of the Committee: Professor Gabriel António Amaro Monteiro July 2015 ii Acknowledgments I would like to express my gratitude to professor Lu´ıs Fonseca, for giving me the opportunity to work in a subject that I fell in love with. I would like to thank to all my colleges of 7th and 8th floor, for all the help, advice, and support. Without all of you I would not be able to finish my work. I would also like to thank to Doctor Ana Azevedo and Sofia Duarte, for all the help and tips. I would like to give a special thanks to Ana, Andreia, Catia,´ Elsa, Pedro, Rita and Ricardo, for help and support during the best and worst times. I also want to thank to Claudia,´ for the time spent inside IST walls. Most of all, I would like to thank my mom and dad for all the support. I also want to thank to my grandmother, for all the concern, and to my nieces, Beatriz and Margarida. Finally, I want to thank Davide, for always being there. My words will be never enough to express my gratitude towards you. Thank you all. iii iv Resumo Sistemas produtores de prote´ınas livres de celulas´ sao˜ descritos como a expressao˜ in vitro de prote´ınas recombinantes sem o recurso a celulas´ vivas.
    [Show full text]
  • The Nobel Prize Sweden.Se
    Facts about Sweden: The Nobel Prize sweden.se The Nobel Prize – the award that captures the world’s attention The Nobel Prize is considered the most prestigious award in the world. Prize- winning discoveries include X-rays, radioactivity and penicillin. Peace Laureates include Nelson Mandela and the 14th Dalai Lama. Nobel Laureates in Literature, including Gabriel García Márquez and Doris Lessing, have thrilled readers with works such as 'One Hundred Years of Solitude' and 'The Grass is Singing'. Every year in early October, the world turns Nobel Day is 10 December. For the prize its gaze towards Sweden and Norway as the winners, it is the crowning point of a week Nobel Laureates are announced in Stockholm of speeches, conferences and receptions. and Oslo. Millions of people visit the website At the Nobel Prize Award Ceremony in of the Nobel Foundation during this time. Stockholm on that day, the Laureates in The Nobel Prize has been awarded to Physics, Chemistry, Physiology or Medicine, people and organisations every year since and Literature receive a medal from the 1901 (with a few exceptions such as during King of Sweden, as well as a diploma and The Nobel Banquet is World War II) for achievements in physics, a cash award. The ceremony is followed a magnificent party held chemistry, physiology or medicine, literature by a gala banquet. The Nobel Peace Prize at Stockholm City Hall. and peace. is awarded in Oslo the same day. Photo: Henrik Montgomery/TT Henrik Photo: Facts about Sweden: The Nobel Prize sweden.se Prize in Economic Sciences prize ceremonies.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • 2016 VISPA Newsletter
    Physics and Astronomy VISPA 2016 NEWSLETTER VICTORIA SUBATOMIC PHYSICS AND ACCELERATOR RESEARCH CENTRE Photo credit: CERN ATLAS candidate event for the production of a Higgs boson decaying into two Z bosons that each decay into a muon-antimuon pair. In this issue: ATLAS and the Higgs Discovery ......2 ARIEL and the Accelerator Physics The Future is Here: Research Graduate Program at VISPA ..........8 Training in VISPA. .10 VISPA members of T2K awarded 2016 Breakthrough Prize in Dark Energy and ALTAIR: Experimental Remembering Alan Astbury and Fundamental Physics ................4 Particle Astrophysics in VISPA ........9 the Inaugural Astbury Lecture ......11 Flavour Physics in VISPA ..............6 Research Computing in High Perspectives on New Physics Energy Physics. .10 at the Intensity Frontier .............12 MEMBER LIST FACULTY Name Research Area Justin Albert Experimental particle and astroparticle physics Dean Karlen Experimental particle physics ATLAS and the Higgs Discovery Richard Keeler Experimental particle physics Pavel Kovtun Theoretical physics Robert Kowalewski Experimental particle physics The Large Hadron Collider (LHC) at the CERN laboratory is the highest energy particle Michel Lefebvre Experimental particle physics collider in operation. The ATLAS detector is one of two multipurpose detectors Robert McPherson Experimental particle physics designed to record high energy collisions at the LHC. The UVic ATLAS group has been Maxim Pospelov Theoretical physics Adam Ritz Theoretical physics a member of the ATLAS Collaboration since its foundation in 1992, and contributed J. Michael Roney Experimental particle physics to the design and construction of the ATLAS detector. The LHC started operation in Randy Sobie Experimental particle physics 2010 with proton-proton collisions at 7 TeV centre of mass energy; the energy was EMERITUS FACULTY increased to 8 TeV in 2012.
    [Show full text]
  • Biology, Bioinformatics, Bioengineering, Biophysics, Biostatistics, Neuroscience, Medicine, Ophthalmology, and Dentistry
    Biology, Bioinformatics, Bioengineering, Biophysics, Biostatistics, Neuroscience, Medicine, Ophthalmology, and Dentistry This section contains links to textbooks, books, and articles in digital libraries of several publishers (Springer, Elsevier, Wiley, etc.). Most links will work without login on any campus (or remotely using the institution’s VPN) where the institution (company) subscribes to those digital libraries. For De Gruyter and the associated university presses (Chicago, Columbia, Harvard, Princeton, Yale, etc.) you may have to go through your institution’s library portal first. A red title indicates an excellent item, and a blue title indicates a very good (often introductory) item. A purple year of publication is a warning sign. Titles of Open Access (free access) items are colored green. The library is being converted to conform to the university virtual library model that I developed. This section of the library was updated on 06 September 2021. Professor Joseph Vaisman Computer Science and Engineering Department NYU Tandon School of Engineering This section (and the library as a whole) is a free resource published under Attribution-NonCommercial-NoDerivatives 4.0 International license: You can share – copy and redistribute the material in any medium or format under the following terms: Attribution, NonCommercial, and NoDerivatives. https://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright 2021 Joseph Vaisman Table of Contents Food for Thought Biographies Biology Books Articles Web John Tyler Bonner Morphogenesis Evolution
    [Show full text]
  • Introduction and Historical Perspective
    Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful
    [Show full text]
  • DNA: the Timeline and Evidence of Discovery
    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
    [Show full text]
  • April at PENN Calendar, Vol. 53, No. 27, March 27, 2007
    Charles Addams Fine Arts Gallery, Now South Asia Center Film Series ACADEMIC CALENDAR Charles Addams Fine Arts Hall: free; MFA Thesis Preview Exhibition; 5 p.m.; rm. 25, Williams Hall. Mon.-Fri., 10 a.m.-5 p.m. Meyerson Gallery. Through April 4. 2 María Candelaria. 20 Spring Term Classes End. Esther M. Klein Art Gallery : free; Love, Loss & Longing: The Impact 9 Waga seishun ni kuinashi. 23 Reading Days. Through April 25. Mon.-Sat., 9 a.m.-5 p.m. of U.S. Travel Policies on Cuban-Ameri- 26 Final Exams. Through May 4. Graduate School of Education can Families; photography exhibit; Inter- 16 Zinda Laash. April (GSE) Student Lounge: free; Mon.-Fri., national House. Through April 9. CHILDREN’S ACTIVITIES 9 a.m.-5 p.m. The Art of Reinvention: Travel, MEETINGS ICA: $6, $3/artists, seniors, students Exile, and Recuperation; political exile 14 Handicraft Tradition of India; ex- over 12; free/members, children 12 & under, of artists Franz Werfel and Kinga Araya; 12 PPSA; noon-1:30 p.m.; location tbd; A T P E N N plore India’s cultural traditions and create w/PennCard; Sun., 11 a.m.-1 p.m.; Wed.- Rosenwald Gallery, Van Pelt-Dietrich RSVP: [email protected]. a decorative handicraft; ages 7+; 10 a.m.; Fri., noon-8 p.m.; Sat.-Sun., 11 a.m.-5 p.m. Library. Through April 13. 19 WPSA; noon; rm. 218, Houston Penn Museum; $10, $5/members; register International House; free; for hours Undergraduate Senior Thesis Hall. Wherever these symbols appear, more by April 7: (215) 898-4016 (Museum).
    [Show full text]
  • EMBO Facts & Figures
    excellence in life sciences Reykjavik Helsinki Oslo Stockholm Tallinn EMBO facts & figures & EMBO facts Copenhagen Dublin Amsterdam Berlin Warsaw London Brussels Prague Luxembourg Paris Vienna Bratislava Budapest Bern Ljubljana Zagreb Rome Madrid Ankara Lisbon Athens Jerusalem EMBO facts & figures HIGHLIGHTS CONTACT EMBO & EMBC EMBO Long-Term Fellowships Five Advanced Fellows are selected (page ). Long-Term and Short-Term Fellowships are awarded. The Fellows’ EMBO Young Investigators Meeting is held in Heidelberg in June . EMBO Installation Grants New EMBO Members & EMBO elects new members (page ), selects Young EMBO Women in Science Young Investigators Investigators (page ) and eight Installation Grantees Gerlind Wallon EMBO Scientific Publications (page ). Programme Manager Bernd Pulverer S Maria Leptin Deputy Director Head A EMBO Science Policy Issues report on quotas in academia to assure gender balance. R EMBO Director + + A Conducts workshops on emerging biotechnologies and on H T cognitive genomics. Gives invited talks at US National Academy E IC of Sciences, International Summit on Human Genome Editing, I H 5 D MAN 201 O N Washington, DC.; World Congress on Research Integrity, Rio de A M Janeiro; International Scienti c Advisory Board for the Centre for Eilish Craddock IT 2 015 Mammalian Synthetic Biology, Edinburgh. Personal Assistant to EMBO Fellowships EMBO Scientific Publications EMBO Gold Medal Sarah Teichmann and Ido Amit receive the EMBO Gold the EMBO Director David del Álamo Thomas Lemberger Medal (page ). + Programme Manager Deputy Head EMBO Global Activities India and Singapore sign agreements to become EMBC Associate + + Member States. EMBO Courses & Workshops More than , participants from countries attend 6th scienti c events (page ); participants attend EMBO Laboratory Management Courses (page ); rst online course EMBO Courses & Workshops recorded in collaboration with iBiology.
    [Show full text]
  • Allies and Enemies: How the World Depends on Bacteria
    Allies and Enemies This page intentionally left blank Allies and Enemies How the World Depends on Bacteria Anne Maczulak Vice President, Publisher: Tim Moore Associate Publisher and Director of Marketing: Amy Neidlinger Acquisitions Editor: Kirk Jensen Editorial Assistant: Pamela Boland Operations Manager: Gina Kanouse Senior Marketing Manager: Julie Phifer Publicity Manager: Laura Czaja Assistant Marketing Manager: Megan Colvin Cover Designer: Alan Clements Managing Editor: Kristy Hart Senior Project Editor: Lori Lyons Copy Editor: Geneil Breeze Proofreader: Apostrophe Editing Services Senior Indexer: Cheryl Lenser Compositor: Nonie Ratcliff Senior Manufacturing Buyer: Dan Uhrig © 2011 by Pearson Education, Inc. Publishing as FT Press Upper Saddle River, New Jersey 07458 FT Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact U.S. Corporate and Government Sales, 1-800-382-3419, [email protected]. For sales outside the U.S., please contact International Sales at [email protected]. Company and product names mentioned herein are the trademarks or registered trademarks of their respective owners. All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher. Printed in the United States of America First Printing July 2010 ISBN-10: 0-13-701546-1 ISBN-13: 978-0-13-701546-7 Pearson Education LTD. Pearson Education Australia PTY, Limited. Pearson Education Singapore, Pte. Ltd. Pearson Education North Asia, Ltd. Pearson Education Canada, Ltd. Pearson Educación de Mexico, S.A. de C.V. Pearson Education—Japan Pearson Education Malaysia, Pte. Ltd.
    [Show full text]