Anne Kox JAPES 1..216
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Fluids Unmix. Discoveries by the School of Van Der Waals and Kamerlingh Onnes, , ---
4671 Sengers Voorwerkb 23-09-2002 09:17 Pagina I How fluids unmix 4671 Sengers Voorwerkb 23-09-2002 09:17 Pagina II History of Science and Scholarship in the Netherlands, volume The series History of Science and Scholarship in the Netherlands presents studies on a variety of subjects in the history of science, scholarship and academic insti- tutions in the Netherlands. Titles in this series . Rienk Vermij, The Calvinist Copernicans. The reception of the new astronomy in the Dutch Republic, -. , --- . Gerhard Wiesenfeldt, Leerer Raum in Minervas Haus. Experimentelle Natur- lehre an der Universität Leiden, -. , --- . Rina Knoeff, Herman Boerhaave (-). Calvinist chemist and physician. , --- . Johanna Levelt Sengers, How fluids unmix. Discoveries by the School of Van der Waals and Kamerlingh Onnes, , --- Editorial Board K. van Berkel, University of Groningen W.Th.M. Frijhoff, Free University of Amsterdam A. van Helden, Utrecht University W.E. Krul, University of Groningen A. de Swaan, Amsterdam School of Sociological Research R.P.W. Visser, Utrecht University 4671 Sengers Voorwerkb 23-09-2002 09:17 Pagina III How fluids unmix Discoveries by the School of Van derWaals and Kamerlingh Onnes Johanna Levelt Sengers , Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam 4671 Sengers Voorwerkb 23-09-2002 09:17 Pagina IV © Royal Netherlands Academy of Arts and Sciences No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photo- copying, recording or otherwise, without the prior written permission of the publisher. Edita , P.O. BOX , Amsterdam, the Netherlands [email protected], www.knaw.nl/edita --- The paper in this publication meets the requirements of « -norm () for permanence This study was undertaken with the support of the Koninklijke Hollandsche Maatschappij der Wetenschappen (‘Royal Holland Society of Sciences and Humanities’) as part of its 250th anniver- sary celebrations in 2002. -
Otto Stern Annalen 22.9.11
September 22, 2011 Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental determination of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Konrad Röntgen, Ernest Rutherford, Max von Laue, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern. -
One Hundred Years of Chemical Warfare: Research
Bretislav Friedrich · Dieter Hoffmann Jürgen Renn · Florian Schmaltz · Martin Wolf Editors One Hundred Years of Chemical Warfare: Research, Deployment, Consequences One Hundred Years of Chemical Warfare: Research, Deployment, Consequences Bretislav Friedrich • Dieter Hoffmann Jürgen Renn • Florian Schmaltz Martin Wolf Editors One Hundred Years of Chemical Warfare: Research, Deployment, Consequences Editors Bretislav Friedrich Florian Schmaltz Fritz Haber Institute of the Max Planck Max Planck Institute for the History of Society Science Berlin Berlin Germany Germany Dieter Hoffmann Martin Wolf Max Planck Institute for the History of Fritz Haber Institute of the Max Planck Science Society Berlin Berlin Germany Germany Jürgen Renn Max Planck Institute for the History of Science Berlin Germany ISBN 978-3-319-51663-9 ISBN 978-3-319-51664-6 (eBook) DOI 10.1007/978-3-319-51664-6 Library of Congress Control Number: 2017941064 © The Editor(s) (if applicable) and The Author(s) 2017. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncom- mercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. -
Arxiv:0710.5227V1 [Physics.Hist-Ph] 27 Oct 2007
THE COLLABORATION BETWEEN KORTEWEG AND DE VRIES | AN ENQUIRY INTO PERSONALITIES BASTIAAN WILLINK Abstract. In the course of the years the names of Korteweg and de Vries have come to be closely associated. The equation which is named after them plays a fundamental role in the theory of non- linear partial differential equations. What are the origins of the doc- toral dissertation of De Vries and of the Korteweg-de Vries paper? Bastiaan Willink, a distant relative of both of these mathemati- cians, has sought to answer these questions. This article is based on a lecture delivered by the author at the symposium dedicated to Korteweg and de Vries at University of Amsterdam in September 2003. Since its rediscovery by Zabusky and Kruskal in 1965, an extensive literature has come to exist on the Korteweg-de Vries equation (KdV equation) which de- scribes the behavior of long-wavelength waves in shallow water. It is not the aim of this paper to add to the discussions concerning the contents of this equation or regarding the genesis of the theory of non-linear partial differential equations. Hereto Eduard de Jager has recently added two papers [1] Earlier Robert Pego and others questioned the originality of the work by De Vries and Korteweg, especially in relation to the work by Boussinesq [2]. De Jager has however made it plausible that although the KdV equation can be deduced from an equation of Boussinesq [Joseph Valentin Boussinesq (1842-1929)] by means of a relatively simple substi- tution, nonetheless Korteweg and De Vries arrived at new and important results through treading a different path than Boussinesq. -
Chapter 2 Telecardiology
Chapter 2 Telecardiology Among the clinical disciplines, the widest use of telemedicine in the twentieth century has been in cardiology. The main reason for this is the necessity of urgent diagnosis of acute pathology of the cardiovascular system, especially with the involvement of high-level experts. At the other hand, telemetry of electrocardiosignals (ECS or ECG) for the remote interpretation and analysis was most consistent with the technical capabilities of electrical engineering in the last century. 2.1. Early Stage of Telecardiology (Contributing co-authors O. Stadnyk, M. Karlinska) Most researchers consider March 22, 1905 as the birthday of telemedicine. On this day, in The Netherlands, Wilhelm Einthoven, professor of physiology at Leiden University, and Professor Johannes Bosscha, Director of the Delft University of Technology, transmitted a regular electrocardiogram Fig. 2.1. Wilhelm Einthoven and Johannes Bosscha and phonocardiogrammes via an protected telephone cable at a distance of about 1500 meters from the University Hospital to the physiological laboratory at W. Einthoven’s house (Fig. 2.1) (Einthoven, 1906). Einthoven is considered one of the main founders of electrocardiography. For this invention he was awarded the Nobel Prize in 1924. The basic technological component of Einthoven's electrocardiograph was the so-called string galvanometer. It was a very accurate and qualitative, but rather cumbersome device mounted in his home laboratory (Fig. 2.2 - 2.3). As technology developed, the ECG registrations of patients with various diseases became of greater interest, but to move the string galvanometer to the clinic was an almost impossible task. Then Professor Johannes Bosscha suggested using a remote broadcasting, which enabled to examine patients in the clinic with a device that was physically located at a distance of 1.5 kilometres (Barold, 2003; Einthoven, 1906; Miami Fire Department’s First 57 Paramedic Program 1967; Taylor et al. -
The Gibbs Paradox: Early History and Solutions
entropy Article The Gibbs Paradox: Early History and Solutions Olivier Darrigol UMR SPHere, CNRS, Université Denis Diderot, 75013 Paris, France; [email protected] Received: 9 April 2018; Accepted: 28 May 2018; Published: 6 June 2018 Abstract: This article is a detailed history of the Gibbs paradox, with philosophical morals. It purports to explain the origins of the paradox, to describe and criticize solutions of the paradox from the early times to the present, to use the history of statistical mechanics as a reservoir of ideas for clarifying foundations and removing prejudices, and to relate the paradox to broad misunderstandings of the nature of physical theory. Keywords: Gibbs paradox; mixing; entropy; irreversibility; thermochemistry 1. Introduction The history of thermodynamics has three famous “paradoxes”: Josiah Willard Gibbs’s mixing paradox of 1876, Josef Loschmidt reversibility paradox of the same year, and Ernst Zermelo’s recurrence paradox of 1896. The second and third revealed contradictions between the law of entropy increase and the properties of the underlying molecular dynamics. They prompted Ludwig Boltzmann to deepen the statistical understanding of thermodynamic irreversibility. The Gibbs paradox—first called a paradox by Pierre Duhem in 1892—denounced a violation of the continuity principle: the mixing entropy of two gases (to be defined in a moment) has the same finite value no matter how small the difference between the two gases, even though common sense requires the mixing entropy to vanish for identical gases (you do not really mix two identical substances). Although this paradox originally belonged to purely macroscopic thermodynamics, Gibbs perceived kinetic-molecular implications and James Clerk Maxwell promptly followed him in this direction. -
James, Steinhauser, Hoffmann, Friedrich One Hundred Years at The
James, Steinhauser, Hoffmann, Friedrich One Hundred Years at the Intersection of Chemistry and Physics Published under the auspices of the Board of Directors of the Fritz Haber Institute of the Max Planck Society: Hans-Joachim Freund Gerard Meijer Matthias Scheffler Robert Schlögl Martin Wolf Jeremiah James · Thomas Steinhauser · Dieter Hoffmann · Bretislav Friedrich One Hundred Years at the Intersection of Chemistry and Physics The Fritz Haber Institute of the Max Planck Society 1911–2011 De Gruyter An electronic version of this book is freely available, thanks to the support of libra- ries working with Knowledge Unlatched. KU is a collaborative initiative designed to make high quality books Open Access. More information about the initiative can be found at www.knowledgeunlatched.org Aut ho rs: Dr. Jeremiah James Prof. Dr. Dieter Hoffmann Fritz Haber Institute of the Max Planck Institute for the Max Planck Society History of Science Faradayweg 4–6 Boltzmannstr. 22 14195 Berlin 14195 Berlin [email protected] [email protected] Dr. Thomas Steinhauser Prof. Dr. Bretislav Friedrich Fritz Haber Institute of the Fritz Haber Institute of the Max Planck Society Max Planck Society Faradayweg 4–6 Faradayweg 4–6 14195 Berlin 14195 Berlin [email protected] [email protected] Cover images: Front cover: Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry, 1913. From left to right, “factory” building, main building, director’s villa, known today as Haber Villa. Back cover: Campus of the Fritz Haber Institute of the Max Planck Society, 2011. The Institute’s his- toric buildings, contiguous with the “Röntgenbau” on their right, house the Departments of Physical Chemistry and Molecular Physics. -
Història De La Física Quàntica a Través Dels Experiments
Història de la Física Quàntica a través dels experiments semestre de tardor, curs 2017-2018 Apunts provisionals Enric Pérez Canals Apunts en procés de redacció. S’agrairan comentaris, crítiques, suggeriments, etc. Índex 1 La Física de l’electró 1 1.1 Introducció a la Història de la Física Moderna . 1 1.1.1 Algunes precaucions historiogràfiques . 3 1.2 L’experiment de J.J. Thomson . 4 1.2.1 Física del segle XX . 4 1.2.2 Èter i electromagnetisme de Maxwell . 5 1.2.3 Raigs catòdics . 7 1.2.3.1 Cathode Rays, de J.J. Thomson . 7 1.2.4 Descobriments i Positivisme . 10 1.2.4.1 L’experiment de Thomson i l’atomisme . 11 1.2.5 Anàlisi . 11 1.3 L’experiment de Millikan . 12 1.3.1 De corpuscles a electrons ......................... 12 1.3.2 L’atomisme químic . 13 1.3.2.1 Mesures (relatives) de la massa. Pesos atòmics . 13 1.3.2.2 Mesures (relatives) de la càrrega. Electròlisi . 15 1.3.3 Les mesures absolutes . 16 1.3.4 L’experiment de la gota d’oli . 17 1.3.5 Anàlisi . 19 Apèndixs 20 1.A L’aparició de la quantització . 20 1.B L’aïllament de l’electró (i de l’àtom) . 20 1.C Metàfores . 21 Bibliografia . 21 2 Els quanta de llum 25 2.1 La llei de radiació de Planck . 25 2.1.1 Calor radiant: la radiació del Sol . 25 2.1.2 La llei de radiació . 28 2.1.2.1 La llei de Planck i els elements d’energia de Planck, 1900 . -
Putting the Quantum to Work: Otto Sackur's Pioneering Exploits in The
Putting the quantum to work: Otto Sackur’s pioneering exploits in the quantum theory of gases Massimiliano Badino and Bretislav Friedrich FHI Abstract: In the wake of the First Solvay Conference (1911), many leading physicists had begun embracing the quantum hypothesis as a key to solving outstanding problems in the theory of matter. The quantum approach proved successful in tackling the solid state, resulting in the nearly definitive theories of Debye (1912) and of Born & von Karman (1912-13). However, the application of the old quantum theory to gases was hindered by serious difficulties, which were due to a lack of a straightforward way of reconciling the frequency-dependent quantum hypothesis with the aperiodic behavior of gas molecules. A breakthrough came from unlikely quarters. Otto Sackur (1880-1914) had been trained as a physical chemist and had almost no experience in the research fields traditionally associated with quantum theory (heat radiation, statistical mechanics, thermodynamics). However, in 1911, he discovered an expression for the absolute entropy of a monoatomic gas. A Dutch high-school student, Hugo Martin Tetrode, reached the same result at about the same time independently. The Sackur-Tetrode equation rendered entropy as an extensive variable (in contrast to the classical expression, cf. the Gibbs paradox) and expressed the thermodynamically undetermined constant in terms of molecular parameters and Boltzmann’s and Planck’s constants. This result was of great heuristic value because it suggested the possibility of deriving the thermodynamic variables of a gas quantum mechanically. At the same time, the Sackur-Tetrode equation offered a conventient means to evaluate the parameters of molecular gases, thus promising a grand unification of quantum theory, thermodynamics, and physical chemistry. -
The Stern-Gerlach Experiment Revisited
The Stern-Gerlach Experiment Revisited Horst Schmidt-Böcking∗1, Lothar Schmidt1, Hans Jürgen Lüdde2, Wolfgang Trageser1, Alan Templeton3, and Tilman Sauer4 1Institute for Nuclear Physics, Goethe-University Frankfurt, Frankfurt, Germany. 2Institute for Theoretical Physics, Goethe-University Frankfurt, Germany. 3Oakland, CA, USA. 4Institute of Mathematics, Johannes Gutenberg-University Mainz, Mainz, Germany. Version of September 30, 2016 Abstract The Stern-Gerlach-Experiment (SGE) performed in 1922 is a seminal benchmark experiment of quantum physics providing evidence for several fundamental properties of quantum systems. Based on the knowledge of today we illustrate the different benchmark results of the SGE for the development of modern quantum physics and chemistry. The SGE provided the first direct experimental evidence for angu- lar momentum quantization in the quantum world and therefore also for the existence of directional quantization of all angular momenta in the process of measurement. Furthermore, it measured for the first time a ground state property of an atom, it produced for the first time a fully “spin-polarized” atomic beam, and it also revealed the electron spin, even though this was not realized at the time. The SGE was the first fully suc- cessful molecular beam experiment where the kinematics of particles can be determined with high momentum-resolution by beam measurements in vacuum. This technique provided a kind of new kinematic microscope with which inner atomic or nuclear properties could be investigated. Historical facts of the original SGE are described together with early attempts by Einstein, Ehrenfest, Heisenberg, and others to reveal the physical processes creating directional quantization in the SGE. Heisen- berg’s and Einstein’s proposals of an improved multi-stage SGE are pre- sented. -
A New Approach to Stimulate Mathematics Research in the Netherlands
A new approach to stimulate mathematics research in The Netherlands Lex Zandee Head Mathematics, NWO BCAMath meeting 12 january 2011 Netherlands Organisation for Scientific Research Mathematics in the Netherlands 16 million inhab. 420 1st year math students Free University (VU) University of Amsterdam (UvA) Centrum Wiskunde & Informatica (CWI) University of Utrecht (UU) University of Leiden (UL) Radboud University Nijmegen (RU) University of Groningen (RUG) Eindhoven University of Technology (TU/e) Delft University of Technology (TUD) University of Twente (UT) NWO NWO funds thousands of researchers at universities and institutes and steers the course of Dutch science by means of subsidies and research programmes. The organisation: - 10 divisions: e.g. chemical sciences, physics etc. - 7 institutes: e.g. CWI (Amsterdam), NIOZ etc. - Office situated in The Hague - Staff: 350 employees - Annual expenditure: 700 M€ Annual expenditure mathematics and computer science: - Mathematics: 9 M€ - CWI: 12 M€ - Computer science: 13 M€ Netherlands Organisation for Scientific Research Short history of the Dutch mathematical landscape I - 16th century: Dutch mathematical landscape took shape; Gemma Frisius, - Leiden University 1575 - 17th century: the Golden Age - Simon Stevin - Snellius 1st math. professor Leiden, 1601 - Christiaan Huygens - Van Ceulen, π - after the Golden Age: Dutch mathematics went into decline Netherlands Organisation for Scientific Research Short history of the Dutch mathematical landscape II - end of 19th century: end of stagnation: Diederik Korteweg Gustav de Vries nonlinear PDE - 20th century: second golden age Luitzen Brouwer è Johannes Burgers è Burgerscentrum Netherlands Organisation for Scientific Research Short history of the Dutch mathematical landscape III Founding fathers of field of nonlinear systems in the Netherlands: - current Dutch mathematical school in PDEs by: - Wiktor Eckhaus (pattern formation) - Bert Peletier (non-linear PDE’s) - current Dutch math. -
Motion Mountain La Montaña Del Movimiento
Christoph Schiller MOTION MOUNTAIN La Montaña del Movimiento LA AVENTURA DE LA FÍSICA - VOLUMEN IV EL CUANTO DEL CAMBIO Christoph Schiller Traducción de Jerónimo Hurtado Pérez Motion Mountain La Montaña del Movimiento La Aventura de la Física Volumen IV El Cuanto del Cambio Edicion 25.40, disponible libre como pdf en www.motionmountain.net Editio vicesima quinta. Proprietas scriptoris © Chrestophori Schiller secundo anno Olympiadis trigesimae. Omnia proprietatis iura reservantur et vindicantur. Imitatio prohibita sine auctoris permissione. Non licet pecuniam expetere pro aliqua, quae partem horum verborum continet; liber pro omnibus semper gratuitus erat et manet. Twenty-fifth edition. Copyright © 2012 by Christoph Schiller, the second year of the 30th Olympiad. This pdf file is licensed under the Creative Commons Attribution-Noncommercial-No DerivativeWorks 3.0 Germany Licence, whose full text can be found on thewebsite creativecommons.org/licenses/by-nc-nd/3.0/de, with the additional restriction that reproduction, distribution and use, in whole or in part, in any product or service, be it commercial or not, is not allowed without the written consent of the copyright owner.The pdf file was and remains free for everybody to read, store and print for personal use, and to distribute electronically, but only in unmodified form and at no charge. - 1 - To Britta, Esther and Justus Aaron τῷ ἐµοὶ δαὶµονι Fortalecer a las personas, aclarar las cosas - 2 - Christoph Schiller Mountain Moton La Montaña del Movimiento La aventura de la Física PREFACIO Primum movere, deinde docere.** Antigüedad Primero mover, luego enseñar Este libro está escrito para cualquiera que tenga curiosidad sobre la naturaleza y el movimiento.