Finally Connected Turkey’S Marmaray Subway Tunnel Fulfills a 150-Year-Old Dream for Istanbul

Total Page:16

File Type:pdf, Size:1020Kb

Finally Connected Turkey’S Marmaray Subway Tunnel Fulfills a 150-Year-Old Dream for Istanbul Feature BUILDING TOMORROW'S INFRASTRUCTURE Finally Connected Turkey’s Marmaray Subway Tunnel Fulfills a 150-Year-old Dream for Istanbul 1 NOAM KATZ from the Japanese government, Tokyo-headquartered Taisei Corporation entered a joint venture with ITUATED at the crossroads between Europe Turkish companies that began work on the tunnel in and Asia, Istanbul is divided by the waters of August 2004. Sthe Bosphorus Strait. Yet on October 29, 2013, The Marmaray tunnel claims two world firsts: a railway tunnel underneath the strait finally linked the deepest undersea immersed tube tunnel (an the two sides, a century and a half after railway underwater tunnel composed of concrete segments engineers first envisioned steam trains crossing and steel plates, constructed elsewhere and then the gap. Before the Marmaray tunnel, people either sunk into place on the seabed), and the first successful spent up to two hours crossing by car on congested docking between a rectangular immersed tunnel and suspension bridges or took a thirty-minute ferry conventional round tunnels being extended from ride. By contrast, trains on the new underwater rail land. For the undersea tunnel, since depth restrictions conduit make the crossing in just four minutes. for the train stations at both ends precluded the The Turkish government embarked on the use of tunnel-boring machines, a ship battled the ambitious Marmaray Project in the late eighties to tricky currents of the Bosphorus to lower sections of alleviate traffic congestion and reduce air pollution prefabricated tunnel into trenches in the ocean floor caused by car emissions. The goals were to upgrade sixty meters below the surface. After the sections twenty kilometers of tracks on Istanbul’s European were submerged, engineers carefully joined the side and forty kilometers on the Asian side, introduce 1.4-kilometer undersea tunnel to the tunnels above new rolling stock and control systems, and construct the ground, maintaining maximum differences of just a tunnel under the strait. With financial assistance ten centimeters. 10 | highlighting japan 1 The bright and shining environs at Yenkapi Station 2 A look at the construction site on the surface 3 The Marmaray tunnel is the world’s deepest immersed tube tunnel 4 The tunnel completion ceremony 2 3 4 Takashi Imaishi, the acting general manager in the five years. Nevertheless, “we learned new things about Civil Engineering Department of Taisei Corporation’s Istanbul’s history,” says Imaishi, citing the remains of a international operations headquarters, was directly cargo ship from the Roman period found intact, which involved in the project. The demanding technical provided historians with valuable clues to historical requirements notwithstanding, what Imaishi trade routes. Some of these artifacts are now showcased remembers the most are the challenges that cultural in Yenikapı Station’s open museum. norms presented. According to Imaishi, Japanese construction “This was the first time we’d done business in companies like Taisei are well-suited for these kinds Turkey, and the regulations and business sense were of projects because they possess in-house research completely different from Japan,” he says, explaining laboratories and designers, in contrast to foreign how the local approach to work in accordance with construction companies that typically contract out for Turkish religious customs meant that “we couldn’t research and design. He says this allowed for a more proceed on a Japanese schedule.” flexible response to unexpected requests during the The project’s location posed significant headaches as Marmaray Project. Expertise in earthquake-resistant well. Istanbul’s lengthy history has led to excavations construction was also an asset, since the undersea that unearthed historical sites from the Ottoman, tunnel had to be built to last a hundred years. Byzantine, Roman and Grecian periods, along with Imaishi says ridership on the new subway is high and even older artifacts dating back up to 8,500 years. passengers appreciate the savings in both time and cost, Archeological surveys performed each time ruins were although operation is still limited. The tunnel already discovered brought construction to a standstill, and represents not only better access in Istanbul, but also a ultimately delayed the project’s completion by nearly testament to the power of Japanese technology. DECEMBER 2014 | 11.
Recommended publications
  • Feasibility Study of Submerged Floating Crossing
    CIE4061-09 Multidisciplinary Project Feasibility Study of Submerged Floating Crossing SFC Group Daniil Popov Fahad Pervaiz Mazen Alqadi Nauman Raza Sung-Soo Lim 13th June 2018 Multidisciplinary Project Feasibility Study of a Submerged Floating Crossing By Daniil Popov 4771346 Fahad Pervaiz 4767926 Mazen Alqadi 4765478 Nauman Raza 4767918 Sung-Soo Lim 4764633 CIE4061-09 Multidisciplinary Project at Delft University of Technology, to be submitted on Wednesday June 13, 2018. Instructor: Ir. Erik van Berchum Dr. Ir. Dirk Jan Peters Dr. Ir. Xuexue Chen Table of Contents 1 INTRODUCTION ......................................................................................................................... 10 BACKGROUND ............................................................................................................................. 10 E39 FERRY-FREE PROJECT .............................................................................................................. 10 OBJECTIVE ................................................................................................................................. 10 MAIN DEFINITION ........................................................................................................................ 11 SUBMERGED FLOATING CROSSING (SFC) ................................................................................................. 11 FAILURE ............................................................................................................................................. 11
    [Show full text]
  • Hele Rapporten Og Dens Enkelte Deler
    TØI rapport 1542/2016 Tor-Olav Nævestad Karen Ranestad Beate Elvebakk Sunniva Meyer Kartlegging av kjøretøybranner i norske vegtunneler 2008-2015 TØI-rapport 1542/2016 Kartlegging av kjøretøybranner i norske vegtunneler 2008-2015 Transportøkonomisk institutt (TØI) har opphavsrett til hele rapporten og dens enkelte deler. Innholdet kan brukes som underlagsmateriale. Når rapporten siteres eller omtales, skal TØI oppgis som kilde med navn og rapportnummer. Rapporten kan ikke endres. Ved eventuell annen bruk må forhåndssamtykke fra TØI innhentes. For øvrig gjelder åndsverklovens bestemmelser. ISSN 0808-1190 ISBN 978-82-480-1823-0 Papirversjon ISBN 978-82-480-1821-6 Elektronisk versjon Oslo, desember 2016 Tittel: Kartlegging av kjøretøybranner i norske Title: Vehicle fires in Norwegian road tunnels vegtunneler 2008-2015 2008-2015 Forfattere: Tor-Olav Nævestad Authors: Tor-Olav Nævestad Karen Ranestad Karen Ranestad Beate Elvebakk Beate Elvebakk Sunniva Meyer Sunniva Meyer Dato: 12.2016 Date: 12.2016 TØI-rapport 1542/2016 TØI Report: 1542/2016 Sider: 96 Pages: 96 ISBN papir: 978-82-480-1823-0 ISBN Paper: 978-82-480-1823-0 ISBN elektronisk: 978-82-480-1821-6 ISBN Electronic: 978-82-480-1821-6 ISSN: 0808-1190 ISSN: 0808-1190 Finansieringskilde: Statens vegvesen, Financed by: Norwegian Public Roads Vegdirektoratet Administration Prosjekt: 4398 – Vegtunnelbrann2016 Project: 4398 – Vegtunnelbrann2016 Prosjektleder: Tor-Olav Nævestad Project Manager: Tor-Olav Nævestad Kvalitetsansvarlig: Rune Elvik Quality Manager: Rune Elvik Fagfelt: 24 Sikkerhet og organisering Research Area: 24 Safety and organisation Emneord: Vegtunnel Keywords: Road tunnels Branner Fires Undersjøiske vegtunnel Undersea tunnel Tunge kjøretøy Heavy vehicles Sammendrag: Summary: Det er godt over 1100 vegtunneler i Norge.
    [Show full text]
  • Arcadius 8; (Column
    index INDEX 319 Arcadius 8; (column of) 184 Balat 213–14 Archaeological Museum 93ff Baldwin, Count of Flanders 15 Argonauts, myth of 259, 263, 276 Balıklı Kilisesi 197–98 Major references, in cases where many are listed, are given in bold. Numbers in italics Armenian, Armenians 25, 189, 192, Balkapanı Han 132 are picture references. 193, 241–42, 258, 278; (Cemetery) Baltalimanı 258 268; (Patriarchate) 192 Balyan family of architects 34, 161, 193; Arnavutköy 255 (burial place of) 268 A Alexander, emperor 67 Arsenal (see Tersane) Balyan, Karabet 34, 247 Abdülaziz, sultan 23, 72, 215, 251; Alexander the Great 7; (sculptures of) 96 Ashkenazi Synagogue 228 Balyan, Kirkor 34, 234 (burial place of) 117 Alexander Sarcophagus 94, 95 Astronomer, office of 42 Balyan, Nikoğos 34, 246, 247, 249, Abdülhamit I, sultan 23, 118; (burial Alexius I, emperor 13, 282 At Meydanı (see Hippodrome) 252, 255, 274, 275 place of) 43 Alexius II, emperor 14 Atatürk 24, 42, 146, 237, 248; Balyan, Sarkis 34, 83, 247, 258, 272, Abdülhamit II, sultan 23, 251, 252, Alexius III, emperor 14 (Cultural Centre) 242; (Museum) 243; 267 278; (burial place of) 117 Alexius IV, emperor 15 (statue of) 103 Bank, Ottoman 227 Abdülmecit I, sultan 71, 93, 161, 164, Alexius V, emperor 15 Atik Ali Pasha 171; (mosque of) 119 Barbarossa, pirate and admiral 152, 247; (burial place of) 162 Ali Pasha of Çorlu, külliye of 119–20 Atik Mustafa Paşa Camii 216 250, 250; (burial place of) 250; Abdülmecit II, last caliph 24 Ali Sufi, calligrapher 157, 158 Atik Sinan, architect 130, 155, 212; (ensign
    [Show full text]
  • Exports: the Heart of Nep
    How to Export to 2018 Turkey This report includes all the information related to trade basics and detailed data regarding export from Brazil to Turkey. This report is for information purposes only and Tumer Eng. will not be liable to any direct, indirect, incidental, special, consequential or exemplary damages, including but not limited to, damages for loss of profits, goodwill, use, data, or other intangible losses. Ver:1.0 2018 1 Contents 1 Why Turkey.................................................................................................................................... 12 1.1 General Information .............................................................................................................. 12 1.2 Geography ............................................................................................................................. 13 1.2.1 Distances ....................................................................................................................... 18 1.2.2 Climate of Turkey .......................................................................................................... 19 1.2.2.1 Air temperature changes until now .......................................................................... 20 1.2.2.2 Precipitation changes until now ................................................................................ 21 1.2.2.3 Air temperature changes in the 21st century ........................................................... 21 1.2.2.4 Precipitation changes in the 21st century ................................................................
    [Show full text]
  • L-G-0008366837-0017086142.Pdf
    Nuh Bilgin Hanifi Copur Cemal Balci TBM Excavation in Difficult Ground Conditions TBM Excavation in Difficult Ground Conditions Case Studies from Turkey Nuh Bilgin Hanifi Copur Cemal Balci Prof. Dr. Nuh Bilgin Prof. Dr. Hanifi Copur Prof. Dr. Cemal Balci Istanbul Technical University Faculty of Mines, Mining Engineering Department 34469 Maslak/Istanbul Turkey Cover: Methane Explosion in the Pressure Chamber of a Tunnel Boring Machine Photo: Bilgin/Copur Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>. © 2016 Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Rotherstraße 21, 10245 Berlin, Germany All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Coverdesign: Sonja Frank, Berlin Production Management: pp030 – Produktionsbüro Heike Praetor, Berlin Typesetting: Reemers Publishing Services
    [Show full text]
  • Introduction to SDUST and the Academic Tel: Programs We Offer
    Shandong University of Science and Technology 2019 SDUST Our Location SDUST is located in Qingdao West Coast New Beijing-Tianjin-Hebei Urban Circle Area which connects the Korea Beijing-Tianjin-Hebei urban Japan circle with the Yangtze We're located in Qingdao River Delta region. The New Silk Road Economic Belt West Coast New Area Area is the main access of Yangtze River Delta the Yellow River Basin to Yangtze River Basin Economic Belt Economic Belt the sea and an important terminal in the east part of Eurasia Land Bridge, facing Korea and Japan across the sea, which forms a strategic location of radiating the inland, connecting northern and southern China and facing the Pacific Ocean. ASEAN Free Trade Zone A beautiful coastal city and a major tourist destination in China. A noted historic and cultural city. A key transportation hub for East China. One of the fastest growing economies in China with a GDP ranking 12th. Ranks 79th in the Global Financial Centers Index of 2016. The home of extensive investments from 126 of the World Top 500 enterprises. One of China's Most Livable Cities and a National Garden City. THE CITY OF An important seaport city with the world's second longest cross-sea bridge and the world's Top 5 longest undersea QINGDAO tunnel. Hosts the Qingdao International Beer Festival annually, the second largest beer festival in the world. Co-hosted the 29th Olympic Games with Beijing. About the Region Qingdao West Coast New Area New Area Basics On June 3, 2014, Qingdao West New Area was approved by the State Council as the 9th national level new area.
    [Show full text]
  • Marmaray Tunnel Under the Sea: Public Safety, Cellular and GSMR Coverage in the Marmaray Tunnel
    Cobham Wireless Case Study Marmaray tunnel Under the sea: public safety, cellular and GSMR Coverage in the Marmaray Tunnel Overview The project involved providing public safety, cellular and GSM-R connectivity for the Marmaray underground tunnel, a 13.6km long section of the Marmaray rail project. The tunnel connects Europe to Asia via an undersea tunnel crossing the Bosphorus strait. It is of significant strategic importance to Turkey, so a solution was required which would deliver reliable connectivity to the rail operator, the emergency services and commuters. Challenge Undersea tunnels are a challenging environment to provide coverage. Users of the network should The Challenge also not experience loss of communication while The Marmaray tunnel is a 13.6km long undersea tunnel, with three underground entering or exiting the tunnel, which provides an stations along the route. The tunnel connects Europe to Asia via the Bosphorus strait. additional challenge. A solution was required that would be capable of providing consistent and The project required providing public safety services and critical communications to the reliable public safety, cellular and GSM-R emergency services (police, fire service and ambulance service). connectivity throughout the tunnel. With such a critical project, it was also important Cellular connectivity was also required to connect rail passengers using three Turkish that the deployment was completed in time for operator networks, and GSM-R connectivity needed to be provided for the rail operator. the official opening of the tunnel. Therefore, a system was needed that could accommodate multiple radio technologies such as TETRA, UHF and VHF analogue (later migrated to VHF APCO), GSM, UMTS and The Tech GSM-R.
    [Show full text]
  • The Talsinki Tunnel Channelling Chinese Interests Into the Baltic Sea
    Analysis The Talsinki Tunnel Channelling Chinese Interests into the Baltic Sea December 2019 | Frank Jüris | Title: The Talsinki Tunnel: Channelling Chinese Interests into the Baltic Sea Author(s): Jüris, Frank Publication date: December 2019 Category: Analysis Cover page photo: A giant panda (ailuropoda melanoleuca) is pictured at the Moscow zoo in central Moscow early on July 13, 2019. Kirill KUDRYAVTSEV/AFP Keywords: Talsinki Tunnel, Estonia, Finland, China, security, Belt and Road Initiative, Arctic Silk Road Disclaimer: The views and opinions contained in this paper are solely those of its author(s) and do not necessarily represent the official policy or position of the International Centre for Defence and Security or any other organisation. ISSN 2228-2076 ©International Centre for Defence and Security 63/4 Narva Rd., 10152 Tallinn, Estonia [email protected], www.icds.ee I The Talsinki Tunnel I infrastructure projects are one day linked with the European connectivity project Rail Baltic, Introduction China’s Polar Silk Road could stretch from the Arctic as far as Warsaw and Berlin. On 3 September 2019 at the Party School of the Central Committee of China’s Polar Silk Road could stretch from the Communist Party of China (CPC), the party’s General Secretary, Xi the Arctic as far as Warsaw and Berlin Jinping, gave a speech titled “Struggle” (douzheng, 斗争), in which he referred to This paper will look at the Talsinki tunnel recent history: under Mao, the Chinese people project from a broad strategic perspective had stood up (zhan qilai, 站起来); under Deng related to China’s assertive foreign policy in the and his successors they became rich (fu qilai, 富 framework of the BRI.
    [Show full text]
  • Port of Bergen
    Cruise Norway The complete natural experience A presentation of Norwegian destinations and cruise ports Cruise Norway Manual 2007/2008 ANGEN R W NNA : GU OTO H Index P Index 2 Presentation of Cruise Norway 2-3 Cruise Cruise Destination Norway 4-5 Norwegian Cruise Ports 6 wonderful Norway Distances in nautical miles 7 The “Norway Cruise Manual” gives a survey of Norwegian harbours Oslo Cruise Port 8 providing excellent services to the cruise market. This presentation is edited in a geographical sequence: It starts in the North - and finishes Drammen 10 in the South. Kristiansand 12 The presentation of each port gives concise information about the most 3 Small City Cruise 14 important attractions, “day” and “halfday” excursions, and useful, practical information about harbour conditions. The amount of information is limited Stavanger 16 due to space. On request, more detailed information may be obtained from Eidfjord 18 Cruise Norway or from the individual ports. The “Norway Cruise Manual” is the only comprehensive overview of Ulvik 20 Norwegian harbours and the cooperating companies that have the Bergen 22 international cruise market as their field of activity. The individual port authorities / companies are responsible for the information which Vik 24 appears in this presentation. Flåm 26 An Early Warning System (EWS) for Norwegian ports was introduced in 2004 Florø 28 - go to: www.cruise-norway.no Olden/Nordfjord 30 T D Geirangerfjord 32 N Y BU Ålesund 34 NANC : Molde/Åndalsnes 36 OTO PH Kristiansund 38 Narvik 40 Møre and Romsdal Lofoten 42 Vesterålen 44 Y WA R NO Harstad 46 ation Tromsø 48 Presenting V INNO Alta 50 .
    [Show full text]
  • Kanal İstanbul: Pipedream Or Politics? Actuelles De L‟Ifri
    Actuelles de l‟Ifri Kanal İstanbul: This paper examines Kanal İstanbul, a plan proposed Pipedream or Politics? by recently re-elected Turkish Prime Minister Christian Keller Recep Tayyip Erdoğan to bypass the Bosphorus Strait by creating a canal west of Istanbul. stanbul has a history of grandeur. From the Byzantines to the Ottomans, Christian Keller, a recipient of the I the city of Istanbul has been designed as, in the words used by Emperor 2011 James A. Baker III Institute for Napoleon, the capital of the world. There was a sense of grandeur, too, when Public Policy / Leadership Rice Summer Mentorship Experience Prime Minister Recep Tayyip Erdoğan announced the construction of a canal Fellowship, is an intern at Ifri in the Energy Program. He studies Political to bypass the Bosphorus Straits, the maritime highway that bisects the City of Science and Policy Studies, with a concentration in urban politics and Istanbul and brings ships from the Mediterranean to the Black Sea and vice public policy, at Rice University. versa. Named Kanal İstanbul, Erdoğan proposed the project during his re- Ifri is a research center and a election campaign less than two months before the general election as a way forum for debate on the major to relieve stress from Turkey‟s prized city and solve some of the nation‟s most international political and economic issues. Headed by pressing issues. Thierry de Montbrial since its founding in 1979, Ifri is a non governemental and non profit organization. As an indepen- dent think tank, Ifri sets its own The Bosphorus agenda, publishing its findings regurlarly for an international audience.
    [Show full text]
  • Tr Eball Fin Al D E G R Au
    Submerged Floating Tunnels: A review and study of their use for GRAU strait crossing. Treball realitzat per: Victor Carbassé Mumbrú Dirigit per: Gonzalo Ramos Schneider Grau en: Enginyeria Civil Barcelona, 23 de Setembre del 2019 Departament d’Enginyeria Civil i Ambiental TREBALL TREBALL FINAL DE SUBMERGED FLOATING TUNNELS: A REVIEW AND STUDY OF THEIR USE FOR STRAIT CROSSING. SUBMERGED FLOATING TUNNELS: A REVIEW AND STUDY OF THEIR USE FOR STRAIT CROSSING. Acknowledgements Foremost, I would like to express my sincere gratitude to my advisor, Prof. Gonzalo Ramos Schneider for the continuous support on my thesis study and research, for his patience guidance, encouragement, advice and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. Besides my advisor, I would like to thank my family, for their unconditional support and advice all along my life, without them this thesis would not have been possible. Finally, I would like to thank my friends in the Polytechnic University of Catalonia where it has been a pleasure to study this last four years, for their support, encouragement and camaraderie. Thank you. SUBMERGED FLOATING TUNNELS: A REVIEW AND STUDY OF THEIR USE FOR STRAIT CROSSING. SUBMERGED FLOATING TUNNELS: A REVIEW AND STUDY OF THEIR USE FOR STRAIT CROSSING. Abstract Submerged floating tunnels (SFTs) are innovative structural solutions to waterway crossings, such as sea-straits. As the width and depth of straits increase, the conventional structures such as cable-supported bridges, underground tunnels or immersed tunnels become uneconomical alternatives. In this thesis, we will understand how Submerged Floating Tunnels work, how they are designed and constructed, find advantages and disadvantages and, finally, when all that is clear, we will evaluate the possible application of this type of crossing on the Chacao Channel.
    [Show full text]
  • Eiganes Tunnel Gunnar Eiterjord, Norwegian Roads Administration
    © 2014, Svenska Bergteknikföreningen och författarna/Swedish Rock Engineering Association and authors 9. RV 13 Ryfast, world’s longest subsea road tunnel combined with E 39 – Eiganes Tunnel Gunnar Eiterjord, Norwegian Roads Administration Abstract The Rv.13 Ryfast project is an undersea tunnel which will connect the city of Sta- vanger to the Ryfylke region. When completed, the tunnels will replace the existing vehicle ferries which operate between Stavanger and Tau, and between Lauvvik and Oanes. Currently the combined daily traffic volume for both ferry routes is 4,000 vehicles (AADT). Ryfast consists of two dual lane, subsea tunnels - The Hundvåg tunnel (from the new E39 Eiganes tunnel to the Island of Hundvåg), and the Solbakk tunnel (which extends from the Hundvåg tunnel to Strand, in Ryfylke). Construction time will be five and a half to 6 years, with an expected opening in 2018/19. Safety issues have played a major role during the initial planning phase of the project, with focus on integrating ideas and proposals from the emergency services and experts from various fields. The tunnelling network will also reduce today’s E39 bottlenecks in Stavanger, with traffic currently routed along heavily congested local roads. The E39 Eiganes tunnel will be the new ‘North/South’ main route through Stavanger, extending the existing motorway beyond the Stavanger central business district, and significantly reducing local traffic. The primary route for the project is 5km long, comprised of dual tunnels 3.7km long, and 1.3km of ground level, two lane carriageways. In ad- dition to the primary North and South Bound tunnels, the project will also include tunnelled entry/exit ramps, and the connection to the Ryfast Hundvåg tunnel.
    [Show full text]