Application of the Scalable Coherent Interface to Data Acquisition at LHC

Total Page:16

File Type:pdf, Size:1020Kb

Application of the Scalable Coherent Interface to Data Acquisition at LHC RD24 Status Report 1994 EUR0PEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN/DRDC/ 94-23 RD24 Status Report 9 May 1994 RD24 Status Report Application of the Scalable Coherent Interface to Data Acquisition at LHC A. Bogaerts1,R.Keyser,H.Müller1, G. Mugnai, P. Ponting, D. Samyn, P.Werner CERN, Geneva, Switzerland B. Skaali, E.H.Kristiansen2,H.Golparian,J.Wikne,B.Wu University of Oslo, Department of Physics,Norway S.Gjessing University of Oslo, Departement of Informatics,Norway S. Falciano, F. Cesaroni, G. Medici INFN Sezione di Roma and University of Rome, La Sapienza, Italy P. Creti, M. Panareo INFN Sezione di Lecce, Italy A. Sytin, A. Ivanov, A. Ekimov IHEP, Protvino, Russia E. Sanchis-Peris, V. Gonzalez-Millan, J.M. Lopez-Amengual, A.Sebastia, J. Ferrer-Prieto IFIC, Valencia, Spain F.J.Wickens, D.R.Boterill, R.W.Hatley, J.L.Leake, R.P.Middleton Rutherford Appleton Laboratory, Didcot, UK R.Hughes-Jones, S.Kolya, R.Marshall, D.Mercer University of Manchester, UK K. Løchsen, S.E. Johansen, H. Kohmann, E. Rongved Dolphin Interconnect Solutions A.S., Oslo,Norway A. Guglielmi, A. Pastore Digital Equipment Corporation (DEC), Joint Project at CERN F-H. Worm, J. Bovier, A.Lounis Creative Electronic Systems (CES), Geneva, Switzerland R.Hon, D. North, G. Stone Apple Computer, Inc. Cupertino USA E. Perea Thomson-TCS Semiconducteurs Specifiques, Orsay, France 1. joint spokesmen 2 RD24 Status Report 1994 Motivation for SCI RD24 2nd Phase Activities and Milestones Previous activities and milestones of the RD24 collaboration are reported in the DRDC reports with the same title, referenced as CERN/DRDC/91-45 (Proposal P33), CERN/DRDC/ 92-06 (Addendum to Proposal P33), CERN/DRDC/93-20 (First RD24 Status Report May 93). These documents and many others are available on the public ftp server rd24.cern.ch in the directories sci/RD24_Info/Status_92, Status_93 and Status_94. Chapter 1. Motivation for SCI The goals and motivation of the RD24 first phase remain unchanged. The Scalable Coherent Interface (SCI) IEEE standard [3]after demonstrating an impressive 500 Mbyte/s link operation (Figure 1) during RD24’s first phase [1][2], has now low-cost CMOS chips and plug- SCI Link Signals: FLAG 4 16xDATA 18 SCI CLOCK Signals 4ns 16 bit DATA * 4ns = 1/2 GB/s SCI Packets: HEADER CRC DATA 0, 16, 64, 256 bytes ADDRESS (64 bits) + COMMAND Figure 1: 1993: SCI packets at 500 Mbyte/s in boards for SBus and VMEbus available. Technology independence from low cost CMOS to high performance GaAs implementations, all conforming to the same standard, now becomes visible. The options for caching and cache coherency though not at present available, me be added in the future without affecting present investment in applications. SCI has proven existence and now awaits implementations of further VLSI components and board level products to fill a range of compatible building blocks. These products will provide bus-like services between memories and processors over high speed, optimally terminated point-to point links. SCI is not designed for wide area communication, where ATM will have its dominant role, nor for very low latency environments like a 1st level trigger, nor for massive channel electronics environments where packaging, power and cooling plays an important role. In order to interface SCI to these boundary areas a variety of general purpose and specialized bridges are needed, some of which are soon expected to become commercially available such as SCI-ATM and SCI-VME bridges. Special bridges to the ATLAS 2nd level DSPs and the CMS DPM readout units are being designed or planned in RD24. The most suitable area for SCI is to provide high speed interconnections between front end data acquisition units and event builders, and between event builders and computer farms. This also means simplification by introducing a uniform, scalable and standard system between the application (the physicist) and the data buffers after the 1st level trigger. Simplification is also due to the support SCI provides in transparently accessing memory over SCI: the application software is not concerned whether the memory is local or remote. 3 RD24 Status Report 1994 CERN RD24 Milestones and activity report Another notable feature is the natural possibility of supporting bi-directional data streams within the same SCI system. The same chips support a data driven architecture to move the data from a second level trigger processor as well as supporting a DMA type broadcast to download streams of calibration constants from the processor farms. In addition to scaling, SCI is also adaptable to changes in data acquisition and trigger architectures. SCI bandwidth starts off with a potential of 125 MByte/s link rate available today across SCSI-2 like cable assemblies or Gbit optical fiber links. Performance enhancements by factors between 2 to 8 are expected soon for coming SCI components. SCI starts where buses become ineffective due to bandwidth limitations for long distances. SCI however is implemented over thin, cheap and flexible links (Fig 2) currently 18 signals for the parallel implementation. A 16 DATA +1Clock +1FLAG -> 18 pairs + _ 2 bytes @ 62.5 MHz => 125 Mbyte/s 4.2 V 2Bytesat each Transition 3.0 V 16-19 ns DIFFERENTIAL Pseudo-ECL ( ECL + 5Volt) Connector: 50 pin Cables 18 pairs 50 OHM Nodechip A 3V Nodechip B 18 pairs 50 OHM 3V Figure 2: SCI’s thin signal path between nodechips ringlet connection between two SCI nodes requires, apart from the node chips, two SCI cable assemblies and termination resistors for one outgoing and one incoming connection. SCI chips with 4 ns clocking (1993) required very high quality cables whereas the 16 ns clocking on low cost CMOS chips allows the use of low priced and popular SCSI-2 cable assemblies. Such small and robust 50 pin connectors proposed by RD24 have been adopted by the first European vendors. AMP, a world leader in cable assemblies, considers producing these specialized for SCI. Future SCI chips will probably use the SCI LVDS [4] (Low Voltage Differential Signaling) standard running at 2ns clock rate. LVDS, due to low current and low voltage swing allows the chip manufacturers to put the link termination inside the link controllers. LVDS has been used by National Semiconductors for Quickring chips at 300 MHz over 3 m cables. Chapter 2. CERN RD24 Milestones and activity report Several activities of RD24’s 1st phase [2] in particular design work on the SCI DMA node have largely contributed to today’s commercial European starter systems using the CMOS node chips from LSI Logic.[5] These chips became available only early 1994 and then required 4 RD24 Status Report 1994 CERN RD24 Milestones and activity report revision due to a problem in the bypass FiFo. RD24 had the first corrected chips available on SBUS and VME cards at CERN in May 1994 allowing us to test functionality and performance of a first two-ringlet system in a VMEbus based test setup in the ECP Division at CERN. Our download, login and test Old GaAS tests on single Sbus ringlet RIO in 1993 PT-SBS915 VMEbus REQUESTER FIC 8234 Os/9 REQUESTER RESPONDER RESPONDER SCI 8224 DMA SBUS Interface SBUS Sun/SPARC Sun/SPARC Cbus Link Diagnosis: 3 m SCI Node Node cables for different, chipNode chip single or multiple ringlet tests. Back-Back Bridge SCI test ringlets State Analyzer HP 1661 Functionality tests SCI-SCI bridge ( 16 Id’s passed to far-side ringlet) Waveform Analyzer Lecroy 9450 Figure 3: RD24’s 1994 multi-ringlet SCI test setup at CERN previously reported tests [2] were performed in 1993 using a VME -SBUS connection and software downloaded into the RIO Interface which had a GaAS node chip connected to the R3000 bus. In 1994 the laboratory setup (Fig 3) was extended to include: • Two SCI -SBus interfaces (Dolphin) with CMOS node chips for single and multiple ringlet and node tests between two Sun Workstations • A protoptype of an SCI-SCI bridge based on two CMOS node chips • One FIC8234 VMEbus processor equipped with the CES 8224 SCI-DMA card • Two 1.2 Gbit/s Glink interfaces (Lasertron) with adapters to the Sun SCI-connector and an optical fiber SCI ringlet (not shown) • Diagnostic instruments, power supplies and VME crates from the CERN pool A second laboratory for software developments (OS9, CASCADE) has been equipped with two SUN Workstations connected into an SCI ringlet. 2.1 SCI CMOS Node chip tests (CERN) We measured latencies for all SCI subactions which make up a complete SCI transaction (Fig 4). Using a requester and responder on the same SCI node and a diagnostic software set from Dolphin [6] installed on a SPARC IPC workstation, we measured latencies for read, write 5 RD24 Status Report 1994 CERN RD24 Milestones and activity report Requester A TEST CONCEPT Requester B Responder A Responder B SCI TRACER TEST TARGET REQUESTER RESPONDER T=0 request ∆ 5 ns/m + N * bypass delays ( t1) ∆t1 = echo latency T=1 request echo Performance limit for responseless ∆ Move transactions t2= access latency T=3 response Performance limit for transactions with 1 outstanding request capability only T=3 Performance response echo ∆ t3 =∆ t1 limit for responder Figure 4: Timing measurement concept on SCI subactions and move transactions both in a closed loop and between two node chips. We used an HP 1661 state analyzer which was connected via probes to both the input and output links of the node chip under test. The probe voltage levels were adapted to Pseudo-ECL switching levels, i.e. 3.7 V. 2.1.1 Viewing of packets and performance measurements First packets (Fig. 5) from a CMOS SCI node chip on a two node ringlet show that data on the link are clocked at every transition of the clock (NCLK) whilst on the Cbus application bus, the CCLK works at 1/4 speed.
Recommended publications
  • Gigaplane-XB: Extending the Ultra Enterprise Family
    Gigaplane-XB: Extending the Ultra Enterprise Family Alan Charlesworth ([email protected]), Andy Phelps, Ricki Williams, Gary Gilbert Sun Microsystems, Inc. Abstract The Gigaplane-XB interconnect of the Starfire system extends the range of Sun’s Ultra Enterprise SMP server family by 4x. It uses multi-level address and data routers to provide 167 million global snoops per second, and 10,667 MBps of uniform-memory-access band- width. The use of point-to-point routers allows the system to be dynamically reconfigured into multiple hardware-protected operating system domains, with hot-swappable boards. Comparisons are made with the bus-based technology of the smaller family members. 1. Introduction Table 1 compares the memory-port architectures of cur- rent microprocessors. A combination of a 16-byte wide When a new processor debuts, we hear mostly about its data path, a 100 MHz system clock, and separate address SPECint95 and SPECfp95 performance. It is probably and data paths has made Sun’s Ultra Port Architecture more important to know how well a processor’s power is (UPA) among the highest-bandwidth memory ports. The balanced its memory bandwidth and latency. From a sys- UPA is used across all Sun’s UltraSPARC systems: from tem designer’s perspective, the main reason to have an desktop workstations to the 64-processor Starfire instruction set architecture is to get the opportunity to (UltraEnterprise/High Performance Computing 10000) engineer into the processor chip a good interconnect server. architecture. Table 1. Memory-port characteristics. Max Data Separate Data Peak data Instruction set Interconnect Current CPU Port width address duty bandwidth architecture architecture model MHz (bytes) and data? factor (MBps) SPARC UPA [9] UltraSPARC-II 100 16 Yes 100% 1,600 Alpha See [3] 21164 88 16 Yes 100% 1,408 Mips Avalanche [18] R10000 100 8 No 84% 840 PA-RISC Runway [1] PA-8000 120 8 No 80% 768 PowerPC See [2] PPC 604 67 8 Yes 100% 533 Pentium Pro/II See [5] Pentium Pro/II 67 8 Yes 100% 533 2.
    [Show full text]
  • Allgemeines Abkürzungsverzeichnis
    Allgemeines Abkürzungsverzeichnis L.
    [Show full text]
  • Sun Ultratm 5 Workstation Just the Facts
    Sun UltraTM 5 Workstation Just the Facts Copyrights 1999 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun logo, Ultra, PGX, PGX24, Solaris, Sun Enterprise, SunClient, UltraComputing, Catalyst, SunPCi, OpenWindows, PGX32, VIS, Java, JDK, XGL, XIL, Java 3D, SunVTS, ShowMe, ShowMe TV, SunForum, Java WorkShop, Java Studio, AnswerBook, AnswerBook2, Sun Enterprise SyMON, Solstice, Solstice AutoClient, ShowMe How, SunCD, SunCD 2Plus, Sun StorEdge, SunButtons, SunDials, SunMicrophone, SunFDDI, SunLink, SunHSI, SunATM, SLC, ELC, IPC, IPX, SunSpectrum, JavaStation, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, SunVIP, SunSolve, and SunSolve EarlyNotifier are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OpenGL is a registered trademark of Silicon Graphics, Inc. Display PostScript and PostScript are trademarks of Adobe Systems, Incorporated, which may be registered in certain jurisdictions. Netscape is a trademark of Netscape Communications Corporation. DLT is claimed as a trademark of Quantum Corporation in the United States and other countries. Just the Facts May 1999 Positioning The Sun UltraTM 5 Workstation Figure 1. The Ultra 5 workstation The Sun UltraTM 5 workstation is an entry-level workstation based upon the 333- and 360-MHz UltraSPARCTM-IIi processors. The Ultra 5 is Sun’s lowest-priced workstation, designed to meet the needs of price-sensitive and volume-purchase customers in the personal workstation market without sacrificing performance.
    [Show full text]
  • SIS4100 VME to FASTBUS Interface User Manual
    SIS Documentation SIS4100 FASTBUS Master SIS4100 VME to FASTBUS Interface User Manual SIS GmbH Moorhof 2d 22399 Hamburg Germany Phone: ++49 (0) 40 60 87 305 0 Fax: ++49 (0) 40 60 87 305 20 email: [email protected] http://www.struck.de Version: 1.01 as of 27.07.99 Page 1 of 57 SIS Documentation SIS4100 FASTBUS Master Revision Date Modification 0.1 01.02.99 Generation 1.0 26.07.99 First official release 1.01 27.07.99 some additions Copyright note: You are welcome to copy or reproduce this manual in part or whole as long as SIS GmbH is clearly indicated as originator (by the SIS GmbH FASTBUS icon on the top of the page e.g.). Page 2 of 57 SIS Documentation SIS4100 FASTBUS Master Table of contents 1 Introduction..................................................................................................................................................... 5 2 NGF Working Principle .................................................................................................................................. 6 3 Design ............................................................................................................................................................. 7 3.1 Features ................................................................................................................................................... 7 3.2 Mechanical concept................................................................................................................................. 7 3.3 VME properties......................................................................................................................................
    [Show full text]
  • Publication Title 1-1962
    publication_title print_identifier online_identifier publisher_name date_monograph_published_print 1-1962 - AIEE General Principles Upon Which Temperature 978-1-5044-0149-4 IEEE 1962 Limits Are Based in the rating of Electric Equipment 1-1969 - IEEE General Priniciples for Temperature Limits in the 978-1-5044-0150-0 IEEE 1968 Rating of Electric Equipment 1-1986 - IEEE Standard General Principles for Temperature Limits in the Rating of Electric Equipment and for the 978-0-7381-2985-3 IEEE 1986 Evaluation of Electrical Insulation 1-2000 - IEEE Recommended Practice - General Principles for Temperature Limits in the Rating of Electrical Equipment and 978-0-7381-2717-0 IEEE 2001 for the Evaluation of Electrical Insulation 100-2000 - The Authoritative Dictionary of IEEE Standards 978-0-7381-2601-2 IEEE 2000 Terms, Seventh Edition 1000-1987 - An American National Standard IEEE Standard for 0-7381-4593-9 IEEE 1988 Mechanical Core Specifications for Microcomputers 1000-1987 - IEEE Standard for an 8-Bit Backplane Interface: 978-0-7381-2756-9 IEEE 1988 STEbus 1001-1988 - IEEE Guide for Interfacing Dispersed Storage and 0-7381-4134-8 IEEE 1989 Generation Facilities With Electric Utility Systems 1002-1987 - IEEE Standard Taxonomy for Software Engineering 0-7381-0399-3 IEEE 1987 Standards 1003.0-1995 - Guide to the POSIX(R) Open System 978-0-7381-3138-2 IEEE 1994 Environment (OSE) 1003.1, 2004 Edition - IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R)) - 978-0-7381-4040-7 IEEE 2004 Base Definitions 1003.1, 2013
    [Show full text]
  • Sun Ultratm 2 Workstation Just the Facts
    Sun UltraTM 2 Workstation Just the Facts Copyrights 1999 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun Logo, Ultra, SunFastEthernet, Sun Enterprise, TurboGX, TurboGXplus, Solaris, VIS, SunATM, SunCD, XIL, XGL, Java, Java 3D, JDK, S24, OpenWindows, Sun StorEdge, SunISDN, SunSwift, SunTRI/S, SunHSI/S, SunFastEthernet, SunFDDI, SunPC, NFS, SunVideo, SunButtons SunDials, UltraServer, IPX, IPC, SLC, ELC, Sun-3, Sun386i, SunSpectrum, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, SunVIP, SunSolve, and SunSolve EarlyNotifier are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. OpenGL is a registered trademark of Silicon Graphics, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. Display PostScript and PostScript are trademarks of Adobe Systems, Incorporated. DLT is claimed as a trademark of Quantum Corporation in the United States and other countries. Just the Facts May 1999 Sun Ultra 2 Workstation Figure 1. The Sun UltraTM 2 workstation Sun Ultra 2 Workstation Scalable Computing Power for the Desktop Sun UltraTM 2 workstations are designed for the technical users who require high performance and multiprocessing (MP) capability. The Sun UltraTM 2 desktop series combines the power of multiprocessing with high-bandwidth networking, high-performance graphics, and exceptional application performance in a compact desktop package. Users of MP-ready and multithreaded applications will benefit greatly from the performance of the Sun Ultra 2 dual-processor capability.
    [Show full text]
  • A Machine-Independent DMA Framework for Netbsd
    AMachine-Independent DMA Framework for NetBSD Jason R. Thorpe1 Numerical Aerospace Simulation Facility NASA Ames Research Center Abstract 1.1. Host platform details One of the challenges in implementing a portable In the example platforms listed above,there are at kernel is finding good abstractions for semantically- least three different mechanisms used to perform DMA. similar operations which often have very machine- The first is used by the i386 platform. This mechanism dependent implementations. This is especially impor- can be described as "what you see is what you get": the tant on modern machines which share common archi- address that the device uses to perform the DMA trans- tectural features, e.g. the PCI bus. fer is the same address that the host CPU uses to access This paper describes whyamachine-independent the memory location in question. DMA mapping abstraction is needed, the design consid- DMA address Host address erations for such an abstraction, and the implementation of this abstraction in the NetBSD/alpha and NetBSD/i386 kernels. 1. Introduction NetBSD is a portable, modern UNIX-likeoperat- ing system which currently runs on eighteen platforms covering nine processor architectures. Some of these platforms, including the Alpha and i3862,share the PCI busasacommon architectural feature. In order to share device drivers for PCI devices between different platforms, abstractions that hide the details of bus access must be invented. The details that must be hid- den can be broken down into twoclasses: CPU access Figure 1 - WYSIWYG DMA to devices on the bus (bus_space)and device access to host memory (bus_dma). Here we will discuss the lat- The second mechanism, employed by the Alpha, ter; bus_space is a complicated topic in and of itself, is very similar to the first; the address the host CPU and is beyond the scope of this paper.
    [Show full text]
  • FASTBUS SOFTWARE WORKSHOP Geneva, 23 and 24 September
    CERN 85-15 4 November 1985 Data Handling Division ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH FASTBUS SOFTWARE WORKSHOP Geneva, 23 and 24 September 1985 PROCEEDINGS GENBVA 1985 © Copyright CERN, Genève, 1985 Propriété littéraire et scientifique réservée pour Literary and scientific copyrights reserved in ail tous les pays du monde. Ce document ne peut countries of the world. This report, or any part of être reproduit ou traduit en tout ou en partie sans it, may not be reprinted or translated without l'autorisation écrite du Directeur général du written permission of the copyright holder, the CERN, titulaire du droit d'auteur. Dans les cas Director-General of CERN. However, permission appropriés, et s'il s'agit d'utiliser le document à will be freely granted for appropriate non• des fins non commerciales, cette autorisation commercial use. sera volontiers accordée. If any patentable invention or registrable design Le CERN ne revendique pas la propriété des is described in the report, CERN makes no claim inventions brevetables et dessins ou modèles to property rights in it but offers it for the free use susceptibles de dépôt qui pourraient être décrits of research institutions, manufacturers and dans le présent document; ceux-ci peuvent être others. CERN, however, may oppose any attempt librement utilisés par les instituts de recherche, by a user to claim any proprietary or patent rights les industriels et autres intéressés. Cependant, le in such inventions or designs as may be des• CERN se réserve le droit de s'opposer à toute cribed in the present document.
    [Show full text]
  • Force CPCI-680 Manual (Pdf)
    Full-service, independent repair center -~ ARTISAN® with experienced engineers and technicians on staff. TECHNOLOGY GROUP ~I We buy your excess, underutilized, and idle equipment along with credit for buybacks and trade-ins. Custom engineering Your definitive source so your equipment works exactly as you specify. for quality pre-owned • Critical and expedited services • Leasing / Rentals/ Demos equipment. • In stock/ Ready-to-ship • !TAR-certified secure asset solutions Expert team I Trust guarantee I 100% satisfaction Artisan Technology Group (217) 352-9330 | [email protected] | artisantg.com All trademarks, brand names, and brands appearing herein are the property o f their respective owners. Find the Emerson / Motorola / Force Computers cPCI-680 at our website: Click HERE PPC/PowerCoreCPCI-680 Reference Guide P/N 214452 Revision AB September 2001 Copyright The information in this publication is subject to change without notice. Force Computers, GmbH reserves the right to make changes without notice to this, or any of its products, to improve reliability, performance, or design. Force Computers, GmbH shall not be liable for technical or editorial errors or omissions contained herein, nor for indirect, special, incidental, or consequential damages resulting from the furnishing, performance, or use of this material. This information is pro- vided “as is” and Force Computers, GmbH expressly disclaims any and all warranties, express, implied, statutory, or otherwise, including without limitation, any express, statutory, or implied warranty of merchantability, fitness for a particular purpose, or non-infringement. This publication contains information protected by copyright. This publication shall not be reproduced, transmitted, or stored in a retrieval system, nor its contents used for any purpose, without the prior written consent of Force Computers, GmbH.
    [Show full text]
  • Microtca.4 at SIRIUS and a CLOSER LOOK INTO the COMMUNITY
    8th Int. Beam Instrum. Conf. IBIC2019, Malmö, Sweden JACoW Publishing ISBN: 978-3-95450-204-2 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2019-WEBO02 MicroTCA.4 AT SIRIUS AND A CLOSER LOOK INTO THE COMMUNITY D. O. Tavares∗, G. B. M. Bruno, S. R. Marques, L. M. Russo, H. A. Silva, LNLS, Campinas, Brazil Abstract light source facilities and demonstrators of the ILC technolo- More and more facilities have been adopting MicroTCA.4 gies, DESY soon took a prominent role in the development as the standard for new electronics. Despite the advertised of ATCA and MicroTCA standard extensions for physics. advantages in terms of system manageability, high availabil- An evaluation campaign for both standards was launched ity, backplane performance and supply of high quality COTS around 2007 [5] and reported on 2009 [6, 7], with ATCA- modules by industry, the standard still lacks a greater accep- based LLRF demonstration and an AMC timing receiver tance in the accelerators community. This paper reports on developed in collaboration with the University of Stockholm. the deployment of MicroTCA.4 systems at Sirius light source, In the following years MicroTCA.4 was fully embraced by which comprised the development and manufacturing of sev- FLASH and European XFEL projects. More recently, an eral open hardware modules, development of a generic gate- R&D and technology transfer center has been established, ware/software framework and re-implementation of MMC the MicroTCA Technology Lab [8]. IPMI firmware as an open source project. A special focus will be given to the difficulties found, unforeseen expansions CURRENT STATUS of the system and general architectural aspects.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • PMAZ-AA Turbochannel SCSI Module Functional Specification
    -- -- PMAZ-AA TURBOchannel SCSI Module Functional Specification Revision 1.2 Workstation Systems Engineering Digital Equipment Corporation 100 Hamilton Avenue Palo Alto, CA 94301 August 27, 1990 August 1990 The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibilty for any errors that may appear in this document. The software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. Digital Equipment Coporation assumes no responsibility for the use or reliability of its software on equip- ment that is not supplied by Digital or its af®liated companies. Digital Equipment Corporation 1990. All Rights reserved Printed in U.S.A. The following are trademarks of Digital Equipment Corporation: DEC DECnet DECstation DECsystem DECUS MicroVAX MicroVMS PDP TURBOchannel ULTRIX ULTRIX-32 UNIBUS VAX VAXBI VAXcluster VAXstation VMS VT i -- -- Blank Page ii -- -- Table of Contents 1. PMAZ-AA SCSI Module 2. Address Map 3. Interrupts 4. Power Estimates 5. External Interface 6. Functional Description 6.1. 53C94 ............................................................................................................................... 4 6.2. SCSI Buffer ..................................................................................................................... 4 6.3. DMA Address Register ..................................................................................................
    [Show full text]