Signalling Products Such As TCC, TSRS and RBC

Total Page:16

File Type:pdf, Size:1020Kb

Signalling Products Such As TCC, TSRS and RBC > Unified systems • MACS-ATS (ATS & SCADA): Good performance and high efficiency for dispatching and reduction of implementation and life cycle cost, centralized control, decentralized back up • CBI & ZC: High performance and good expandability, proven track record for high speed railway signalling products such as TCC, TSRS and RBC > Energy efficiency > Configuration oriented design > Reduces data configuration work and data validation process of the original station REFERENCE – BEIJING CHANGPING LINE As a system integration contractor, HollySys has successfully implemented Beijing Subway Changping Line Phase 1 which has been in revenue service since 2010. And the Phase 2 of Changping is currently under construction and expected to be integrated with Phase 1 opening for service in 2015. Phase 1 Chengnan Station to Xi’er Qi Station, 7 stations and full length of 21.42 Km with 15.5km elevated section, 2.92km underground section and 3.0 km ground section. Phase 2 Ming Tombs Station to Chengnan Station, 4 stations and full length of 10.28 Km all underground section. The complete double track 31.7 Km long Changping line consists of 1 Control Center, 1 Back-up Control Center, 11 Stations, 27 of 6-set trains, 2 depots with 1 training center and 1 maintenance center. HollySys (Asia Pacific) Pte Ltd 200 Pandan Loop, #08-01 Pantech 21, Singapore 128388 Tel: +65 6777 0950 Fax: +65 6777 2730 [email protected] Urban Railway SIGNALLINGSIGNALLING All Rights Reserved. Copyright © 2014 by HollySys International. SedSed QuiaQuia NonNon DoloreDolore NequeNeque porro porro quisquam quisquam est, est, qui qui dolorem dolorem ipsum ipsum quia quia dolor dolor sit sit amet, amet, consectetu consectetur,r ,adipisci adipisci velit, velit, sed sed quia quia nonnon numquam numquam eius eius modi modi tempora tempora incidunt incidunt ut ut labore labore et et dolore dolore magnam magnam aliquam aliquam quaerat quaerat voluptatem. voluptatem. UtUt enim enim ad ad minima minima veniam, veniam, quis quis nostrum nostrum exercitationem exercitationem ullam ullam corporis corporis suscipit suscipit laboriosam, laboriosam, nisi nisi ut ut ali ali-- quidquid ex ex ea ea commodi commodi consequatur consequatur CBTC SOLUTION FOR URBAN RAILWAY KEY FEATURES AND BENEFITS > High performance, High safety & reliability , Advanced, economical FUTURE CHALLENGES OF MODERN URBAN RAILWAY • Complete system for signalling, including ATP, ATO, CBI, ATS, DCS Due to the fast growing population and economy in the big cities around the world, the municipal authorities • Support Non-CBTC train operations and urban rail mass transportation operators are faced with the challenges of capacity, safety, efficiency, ZC ZC and environmental impact. Wayside Wayside Radio CBI Radio CBI Powered by advanced automation and signalling technologies with over 15 years of high speed railway AP AP AP AP AP AP industrial experience, HollySys has developed and implemented its own Communication Based Train Control Non CBTC Train VOBC VOBC (CBTC) Solution, aimed at continuously meeting the fast growing demand of urban mass transportation for VOBC WCU WCU WCU today and tomorrow. Train A Train B Train A TrainTrainB B Compatibility with Non-CBTC Equipped Trains SYSTEM COMPONENTS • Support bidirectional train-ground operations • Automatic operation adjustment CBI ATS ZC • Automatic train turn back • Solid state interlocking and remote point machine control • Providing headway of 90 seconds or less DCS > Multi-redundancy & self-diagnosis technology Wayside Radio Wireless System A/B Internal Scheme Access Channel-1 CPU Memory Point Input Communication Controller Output Data Sync Voter Exchange CoP Optical Optical Coupling Coupling VOBC WCU CoP LEU Radio Data Sync Voter Signal Exchange BTM Antenna Odometer Input Communication Controller Output Switch Antenna CPU Memory Channel-2 nd 2 Train Active Passive Hot Standby (2 oo 2) System Structure Location Balise Balise Detection • Operational environment applied a combination of Subsystem SIL Certification information synchronization and data synchronization VOBC SIL 4 Overall System Structure of HollySys CBTC Solution in a hot standby mode ZC SIL 4 • Self-diagnostic applied techniques down to board level HollySys CBTC System consists of the following subsystems: to locate failures for quick maintenance response CBI SIL 4 • SIL certified by TÜV SÜD ATS SIL 2 GROUND SYSTEM ONBOARD SYSTEM DATA COMMUNICATION • Automatic Train Supervision (ATS) • Vehicle Onboard Controller (VOBC) SYSTEM (DCS) • Computer Based Interlocking (CBI) • Wireless Communication Unit (WCU) • Wayside Radio > Excellent adaptability for customization • Wireless Access Point • Zone Controller (ZC) • Balise Transponder Module (BTM) • Flexible system architecture • Wayside Equipment • Strong R&D team for required modifications within - Lineside Electric Unit (LEU) different layers of the system - Secondary Train-Detection System (E.g.: Axle Counter) • Different system architectures can be selected during engineering phase, and different operation control - Signal & Point Machine modes can be selected anytime during operation Support five train operation modes.
Recommended publications
  • CONTRACT T-8000-1415 AUTOMATIC TRAIN CONTROL TECHNICAL SPECIFICATION THIS PAGE INTENTIONALLY LEFT BLANK Contents
    ATTACHMENT C PART 2 – ATC SYSTEM MARYLAND TRANSIT ADMINISTRATION CONTRACT T-8000-1415 AUTOMATIC TRAIN CONTROL TECHNICAL SPECIFICATION THIS PAGE INTENTIONALLY LEFT BLANK Contents 1 GENERAL REQUIREMENTS 2 COMMUNICATIONS BASED TRAIN CONTROL REQUIREMENTS 3 MAIN LINE AND STORAGE YARD SOLID STATE INTERLOCKING REQUIREMENTS 4 AUTOMATIC TRAIN SUPERVISION REQUIREMENTS 5 DATA COMMUNICATIONS SYSTEM REQUIREMENTS 6 AUXILIARY WAYSIDE EQUIPMENT REQUIREMENTS 7 ENVIRONMENTAL AND EMC 8 SYSTEM SAFETY REQUIREMENTS 9 RELIABILITY, AVAILABILITY, AND MAINTAINABILITY REQUIREMENTS 10 INSTALLATION CUTOVER AND CONSTRUCTION REQUIREMENTS 11 ATC TESTING 12 QUALITY ASSURANCE AND CONTROL 13 TECHNICAL SUPPORT 14 TRAINING Attachment C, Part 2, ATC System T-8000-1415 i September 2015 THIS PAGE INTENTIONALLY LEFT BLANK Attachment C, Part 2, ATC System T-8000-1415 ii September 2015 SECTION 1 GENERAL REQUIREMENTS Contents 1.1 GENERAL..................................................................................................................................1-1 1.2 PROJECT OBJECTIVES ...............................................................................................................1-2 1.2.1 PROVEN DESIGN......................................................................................................1-3 1.2.2 COMMISSIONING ON A REVENUE SYSTEM...............................................................1-3 1.2.3 DESIGN LIFE.............................................................................................................1-3 1.3 SCOPE OF WORK......................................................................................................................1-3
    [Show full text]
  • Rehabilitation and Improvement of the Arkansas River Lift Bridge, Mp 410.6
    REHABILITATION AND IMPROVEMENT OF THE ARKANSAS RIVER LIFT BRIDGE, MP 410.6 JOB SPECIAL PROVISIONS FY2017 TIGER GRANT NO. 157600102 FRA GRANT AGREEMENT NO. 69A36520401680TIIAR July 23, 2021 Arkansas River Lift Bridge, MP 410.6 Table of Contents Page General Special Provisions ........................................................................................... 1 Maintaining Railroad Operations ...................................................................................... 1 Coordination of Marine Navigation ................................................................................... 4 Electrical Special Provisions ........................................................................................ 7 Electrical Rehabilitation .................................................................................................... 8 Mechanical Special Provisions .................................................................................... 59 M100 – General Mechanical Specifications ..................................................................... 60 M101 – Sheaves, Trunnions, Bearings ........................................................................... 81 M102 – Counterweight Wire Ropes ................................................................................. 84 M103 – Counterweight Balancing.................................................................................... 89 M104 – Machinery Bearing Liners ................................................................................... 93
    [Show full text]
  • Beijing Subway Map
    Beijing Subway Map Ming Tombs North Changping Line Changping Xishankou 十三陵景区 昌平西山口 Changping Beishaowa 昌平 北邵洼 Changping Dongguan 昌平东关 Nanshao南邵 Daoxianghulu Yongfeng Shahe University Park Line 5 稻香湖路 永丰 沙河高教园 Bei'anhe Tiantongyuan North Nanfaxin Shimen Shunyi Line 16 北安河 Tundian Shahe沙河 天通苑北 南法信 石门 顺义 Wenyanglu Yongfeng South Fengbo 温阳路 屯佃 俸伯 Line 15 永丰南 Gonghuacheng Line 8 巩华城 Houshayu后沙峪 Xibeiwang西北旺 Yuzhilu Pingxifu Tiantongyuan 育知路 平西府 天通苑 Zhuxinzhuang Hualikan花梨坎 马连洼 朱辛庄 Malianwa Huilongguan Dongdajie Tiantongyuan South Life Science Park 回龙观东大街 China International Exhibition Center Huilongguan 天通苑南 Nongda'nanlu农大南路 生命科学园 Longze Line 13 Line 14 国展 龙泽 回龙观 Lishuiqiao Sunhe Huoying霍营 立水桥 Shan’gezhuang Terminal 2 Terminal 3 Xi’erqi西二旗 善各庄 孙河 T2航站楼 T3航站楼 Anheqiao North Line 4 Yuxin育新 Lishuiqiao South 安河桥北 Qinghe 立水桥南 Maquanying Beigongmen Yuanmingyuan Park Beiyuan Xiyuan 清河 Xixiaokou西小口 Beiyuanlu North 马泉营 北宫门 西苑 圆明园 South Gate of 北苑 Laiguangying来广营 Zhiwuyuan Shangdi Yongtaizhuang永泰庄 Forest Park 北苑路北 Cuigezhuang 植物园 上地 Lincuiqiao林萃桥 森林公园南门 Datunlu East Xiangshan East Gate of Peking University Qinghuadongluxikou Wangjing West Donghuqu东湖渠 崔各庄 香山 北京大学东门 清华东路西口 Anlilu安立路 大屯路东 Chapeng 望京西 Wan’an 茶棚 Western Suburban Line 万安 Zhongguancun Wudaokou Liudaokou Beishatan Olympic Green Guanzhuang Wangjing Wangjing East 中关村 五道口 六道口 北沙滩 奥林匹克公园 关庄 望京 望京东 Yiheyuanximen Line 15 Huixinxijie Beikou Olympic Sports Center 惠新西街北口 Futong阜通 颐和园西门 Haidian Huangzhuang Zhichunlu 奥体中心 Huixinxijie Nankou Shaoyaoju 海淀黄庄 知春路 惠新西街南口 芍药居 Beitucheng Wangjing South望京南 北土城
    [Show full text]
  • Signature Redacted Sianature Redacted
    The Restructure of Amenities in Beijing's Peripheral Residential Communities By Meng Ren Bachelor of Architecture Master of Architecture Tsinghua University, 2011 Tsinghua University, 2013 Submitted to the Department of Urban Studies and Planning in Partial fulfillment of the requirement for the degree of ARGHNE8 Master in City Planning MASSACHUSETTS INSTITUTE OF TECHNOLOLGY at the JUN 29 2015 MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIBRARIES June 2015 C 2015 Meng Ren. All Rights Reserved The author hereby grants to MIT the permission to reproduce and to distribute publicly paper and electronic copies of the thesis document in whole or in part in any medium now known or hereafter created. Signature redacted Author Department of U an Studies and Planning May 21, 2015 'Signature redacted Certified by Associate Professor Sarah Williams Department of Urban Studies and Planning A Thesis Supervisor Sianature redacted Accepted by V Professor Dennis Frenchman Chair, MCP Committee Department of Urban Studies and Planning The Restructure of Amenities in Beijing's Peripheral Residential Communities Evaluation of Planning Interventions Using Social Data as a Major Tool in Huilongguan Community By Meng Ren Submitted in May 21 to the Department of Urban Studies and Planning in Partial fulfillment of the requirement for the degree of Master in City Planning Abstract China's rapid urbanization has led to many big metropolises absorbing their fringe rural lands to expand their urban boundaries. Beijing is such a metropolis and in its urban peripheral, an increasing number of communities have emerged that are comprised of monotonous housing projects. However, after the basic residential living requirements are satisfied, many other problems (including lack of amenities, distance between home and workplace which is particularly concerned with long commute time, traffic congestion, and etc.) exist.
    [Show full text]
  • EUROPEAN COMMISSION DG RESEARCH STADIUM D2.1 State
    EUROPEAN COMMISSION DG RESEARCH SEVENTH FRAMEWORK PROGRAMME Theme 7 - Transport Collaborative Project – Grant Agreement Number 234127 STADIUM Smart Transport Applications Designed for large events with Impacts on Urban Mobility D2.1 State-of-the-Art Report Project Start Date and Duration 01 May 2009, 48 months Deliverable no. D2.1 Dissemination level PU Planned submission date 30-November 2009 Actual submission date 30 May 2011 Responsible organization TfL with assistance from IMPACTS WP2-SOTA Report May 2011 1 Document Title: State of the Art Report WP number: 2 Document Version Comments Date Authorized History by Version 0.1 Revised SOTA 23/05/11 IJ Version 0.2 Version 0.3 Number of pages: 81 Number of annexes: 9 Responsible Organization: Principal Author(s): IMPACTS Europe Ian Johnson Contributing Organization(s): Contributing Author(s): Transport for London Tony Haynes Hal Evans Peer Rewiew Partner Date Version 0.1 ISIS 27/05/11 Approval for delivery ISIS Date Version 0.1 Coordination 30/05/11 WP2-SOTA Report May 2011 2 Table of Contents 1.TU UT ReferenceTU DocumentsUT ...................................................................................................... 8 2.TU UT AnnexesTU UT ............................................................................................................................. 9 3.TU UT ExecutiveTU SummaryUT ....................................................................................................... 10 3.1.TU UT ContextTU UT ........................................................................................................................
    [Show full text]
  • Mitsubishi Electric and Zhuzhou CSR Times Electronic Win Order for Beijing Subway Railcar Equipment
    FOR IMMEDIATE RELEASE No. 2496 Product Inquiries: Media Contact: Overseas Marketing Division, Public Utility Systems Group Public Relations Division Mitsubishi Electric Corporation Mitsubishi Electric Corporation Tel: +81-3-3218-1415 Tel: +81-3-3218-3380 [email protected] [email protected] http://global.mitsubishielectric.com/transportation/ http://global.mitsubishielectric.com/news/ Mitsubishi Electric and Zhuzhou CSR Times Electronic Win Order for Beijing Subway Railcar Equipment Tokyo, January 13, 2010 – Mitsubishi Electric Corporation (TOKYO: 6503) announced today that Mitsubishi Electric and Zhuzhou CSR Times Electronic Co., Ltd. have received orders from Beijing MTR Construction Administration Corporation for electric railcar equipment to be used on the Beijing Subway Changping Line. The order, worth approximately 3.6 billion yen, comprises variable voltage variable frequency (VVVF) inverters, traction motors, auxiliary power supplies, regenerative braking systems and other electric equipment for 27 six-coach trains. Deliveries will begin this May. The Changping Line is one of five new subway lines scheduled to start operating in Beijing this year. The 32.7-kilometer line running through the Changping district of northwest Beijing will have 9 stops between Xierqi and Ming Tombs Scenic Area stations. Mitsubishi Electric’s Itami Works will manufacture traction motors for the 162 coaches. Zhuzhou CSR Times Electronic will make the box frames and procure certain components. Zhuzhou Shiling Transportation Equipment Co., Ltd, a joint-venture between the two companies, will assemble all components and execute final testing. Mitsubishi Electric already has received a large number of orders for electric railcar equipment around the world. In China alone, orders received from city metros include products for the Beijing Subway lines 2 and 8; Tianjin Metro lines 1, 2 and 3; Guangzhou Metro lines 4 and 5; and Shenyang Metro Line 1.
    [Show full text]
  • Streets of Olsztyn
    THE INTERNATIONAL LIGHT RAIL MAGAZINE www.lrta.org www.tautonline.com MARCH 2016 NO. 939 TRAMS RETURN TO THE STREETS OF OLSZTYN Are we near a future away from the overhead line? Blizzards cripple US transit lines Lund begins tram procurement plan Five shortlisted for ‘New Tube’ stock ISSN 1460-8324 £4.25 BIM for light rail Geneva 03 DLR innovation cuts Trams meeting the both cost and risk cross-border demand 9 771460 832043 “On behalf of UKTram specifically Voices from the industry… and the industry as a whole I send V my sincere thanks for such a great event. Everything about it oozed quality. I think that such an event shows any doubters that light rail in the UK can present itself in a way that is second to none.” Colin Robey – Managing Director, UKTram 27-28 July 2016 Conference Aston, Birmingham, UK The 11th Annual UK Light Rail Conference and exhibition brings together over 250 decision-makers for two days of open debate covering all aspects of light rail operations and development. Delegates can explore the latest industry innovation within the event’s exhibition area and Innovation Zone and examine LRT’s role in alleviating congestion in our towns and cities and its potential for driving economic growth. Topics and themes for 2016 include: > Safety and security in street-running environments > Refurbishment vs renewal? Book now! > Low Impact Light Rail > Delivering added value from construction and modernisation To secure your place > Managing timetable change and passenger disruption please call > Environmental considerations for LRT construction > Selling light rail: Who? When? How? +44 (0) 1733 367600 > What the Luxembourg Rail Protocol means for light rail or visit > Tram-Train: Alternative perspectives > Where next for UK LRT? www.mainspring.co.uk > Major project updates SUPPORTED BY ORGANISED BY 100 CONTENTS The official journal of the Light Rail Transit Association MARCH 2016 Vol.
    [Show full text]
  • Chapter 5 Signals
    CALTRAIN DESIGN CRITERIA CHAPTER 5 – SIGNALS CHAPTER 5 SIGNALS A. GENERAL When the Southern Pacific Railroad (SP) owned and operated the Caltrain corridor, the signal system had been designed based on the mixed operation of freight and passenger trains. The signal system spacing was based upon single direction running, with braking distances for 80 Ton per Operative Brake (TPOB) freight trains at 60 MPH (miles per hour). The Santa Clara, College Park, Fourth Street, and San Jose operators' positions were consolidated into a single dispatch center, with Centralized Traffic Control (CTC) from Santa Clara (Control Point or CP Coast) to CP Tamien. San Francisco Control Points, namely Fourth Street, Potrero, Bayshore, and Brisbane were operated as Manual Interlockings under the control of the San Jose Dispatcher with bi-directional automatic block signaling between Fourth Street and Potrero, and single direction running between control points from Potrero southward. After State Department of Transportation (Caltrans) completed the freeway I-280 retrofit, bi- directional CTC was in effect between Fourth Street and Bayshore. Between 1992 and 1997, signal design was performed by various designers, as a by product of third party contracts on the railroad. There was little consistency between projects, and little overview as to how the projects tied together, and how they would fare with future projects. In 1997, the Caltrain's two signal engineering designers, and the contract operator developed the Caltrain Signal Engineering Design Standards. The new standards have become one of migration. 1.0 SIGNAL SYSTEM MIGRATION The migration of the Caltrain Signal System was defined as follows: a.
    [Show full text]
  • P020160825659207952288.Pdf
    Table of Content I. Introduction to the Project....................................................................................................................................... 1 II. Introduction to CUPL..............................................................................................................................................4 III. Introduction to the Second Training Session...................................................................................................... 5 III.A. Venue............................................................................................................................................................5 III.B. Curriculum.................................................................................................................................................. 5 III.C. Introduction to Speakers and Title of the Courses.................................................................................6 III.D. Name List of the Participants of the Second Training Session............................................................ 7 III.E. Opening Ceremony.................................................................................................................................... 8 III.F. Closing Ceremony....................................................................................................................................... 9 III.G. Note on Attendance..................................................................................................................................
    [Show full text]
  • Mandatory Requirements for Signalling Safeworking Procedures Version 2.0 Issued Date: 26 May 2015
    T HR SC 02000 ST Standard Mandatory Requirements for Signalling Safeworking Procedures Version 2.0 Issued date: 26 May 2015 Important Warning This document is one of a set of standards developed solely and specifically for use on public transport assets which are vested in or owned, managed, controlled, commissioned or funded by the NSW Government, a NSW Government agency or a Transport Agency (as defined in the Asset Standards Authority Charter). It is not suitable for any other purpose. You must not use or adapt it or rely upon it in any way unless you are authorised in writing to do so by a relevant NSW Government agency. If this document forms part of a contract with, or is a condition of approval by a NSW Government agency, use of the document is subject to the terms of the contract or approval. This document may not be current. Current standards are available for download from the Asset Standards Authority website at Superseded by T HR SC 02000 ST v3.0 www.asa.transport.nsw.gov.au. © State of NSW through Transport for NSW T HR SC 02000 ST Mandatory Requirements for Signalling Safeworking Procedures Version 2.0 Issued date: 26 May 2015 Standard governance Owner: Lead Signals and Control Systems Engineer, Asset Standards Authority Authoriser: Chief Engineer Rail, Asset Standards Authority Approver: Director, Asset Standards Authority on behalf of the ASA Configuration Control Board Document history Version Summary of Changes 1.0 First issue. 2.0 Minor technical changes to the following topics: • treatment of trainstop failures in
    [Show full text]
  • Media Release Keppel Land China Deepens Presence in Beijing
    Media Release Keppel Land China deepens presence in Beijing with second commercial property in Haidian District Singapore, 2 September 2019 – Keppel Land China Limited (Keppel Land China) has entered into an equity transfer agreement with Ningbo Jiasheng Yuecheng Investment Management Center (LP) and Beijing Hanhe Investment Management Co., Ltd. to acquire 100% of the equity interest in Beijing Shunxiangren Enterprise Management Co., Ltd. (Beijing Shunxiangren). Beijing Shunxiangren indirectly owns a completed commercial property, Shangdi Neo, in Zhongguancun, Haidian District, Beijing. Keppel Land China will be paying an aggregate amount of approximately RMB178.6 million (approximately S$35.1 million), of which approximately RMB20.9 million (approximately S$4.1 million) will be paid for the acquisition of 100% equity interest in Beijing Shunxiangren, which is subject to completion adjustments. The remaining amount of about RMB157.7 million (approximately S$31 million) will be extended as a loan to Beijing Shunxiangren to repay its outstanding debts. Mr Ben Lee, President of Keppel Land China, said, "Following the acquisition of a commercial property in Beijing’s Haidian District earlier this year, we are pleased to secure another prime commercial property in the same area. Keppel Land China will continue our strategy to grow our commercial portfolio in China, with a focus on high-growth cities such as Beijing. “With the low vacancy rate of offices in Zhongguancun, which stood at 1.5% as at end-2018, coupled with rapid growth of the technology sector, we are confident that our commercial development will meet the strong demand for quality office space in the Zhongguancun area.” Shangdi Neo is located in the Shangdi Information Industry Park, which is part of the expanded Zhongguancun, widely known as China’s Silicon Valley.
    [Show full text]
  • Download Special Issue
    Discrete Dynamics in Nature and Society Advanced Dynamic Simulations in Transportation Guest Editors: Wei Guan, Xuedong Yan, Essam Radwan, Sze Chun Wong, and Xiaoliang Ma Advanced Dynamic Simulations in Transportation Discrete Dynamics in Nature and Society Advanced Dynamic Simulations in Transportation Guest Editors: Wei Guan, Xuedong Yan, Essam Radwan, Sze Chun Wong, and Xiaoliang Ma Copyright © 2015 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Discrete Dynamics in Nature and Society.” All articles are open access articles distributed underthe Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Pedro Albertos, Spain Lawrence P.Horwitz, Israel Morteza Rafei, The Netherlands Douglas R. Anderson, USA Abderrahman Iggidr, France Mustapha A. Rami, Spain Ivan Area, Spain Giuseppe Izzo, Italy Aura Reggiani, Italy David Arroyo, Spain Sarangapani Jagannathan, USA Pavel Rehak, Czech Republic Viktor Avrutin, Germany Jun Ji, USA Paolo Renna, Italy Stefan Balint, Romania Jorge J. Julvez,´ Spain Marko Robnik, Slovenia Kamel Barkaoui, France Govindan Kannan, Denmark Yuriy Rogovchenko, Norway Gian I. Bischi, Italy Nikos I. Karachalios, Greece Silvia Romanelli, Italy Jean-Louis Boimond, France Eric R. Kaufmann, USA Ventsi G. Rumchev, Australia Gabriele Bonanno, Italy Candace M. Kent, USA Josep Sardanyes, Spain Driss Boutat, France Ryusuke Kon, Japan Leonid Shaikhet, Ukraine Gabriella Bretti, Italy Victor S. Kozyakin, Russia Peng Shi, Australia Filippo Cacace, Italy Mustafa Kulenovic,´ USA Seenith Sivasundaram, USA Pasquale Candito, Italy Jurgen¨ Kurths, Germany Charalampos Skokos, South Africa Cengiz C¸inar,Turkey Kousuke Kuto, Japan Michael Sonis, Israel Carmen Coll, Spain Aihua Li, USA Piergiulio Tempesta, Spain Alicia Cordero, Spain Xiaohui Liu, UK Tetsuji Tokihiro, Japan Daniel Czamanski, Israel Jean J.
    [Show full text]