Yucca Queretaroensis ANACARDIACEAE Operculicarya

Total Page:16

File Type:pdf, Size:1020Kb

Yucca Queretaroensis ANACARDIACEAE Operculicarya EC Species / Genus Common Name Appendix Annex AGAVACEAE Yucca queretaroensis II ANACARDIACEAE Operculicarya decaryi II ARAUCARIACEAE Araucaria araucana Monkey Puzzle I A CARYOCARACEAE Caryocar costaricense #4 Costus II B Patagonian CUPRESSACEAE Fitzroya cupressoides I A cypress Pilgerodendron uviferum Ciprès I A CYATHEACEAE Cyathea spp. #4 Tree ferns II B CYCADACEAE spp. #4 (Except the species CYCADACEAE Cycads II B included in Appendix I) Cycas beddomei Cycad I A Diospyros spp.#5 (populations of EBENACEAE Ebony II Madagascar) FABACEAE Senna meridionalis II JUGLANDACEAE Oreomunnea pterocarpa #4 Gavilán II B Brazilian LAURACEAE Aniba rosaeodora #12 II B rosewood LEGUMINOSAE Caesalpinia echinata #10 Brasileto II B Dalbergia spp.#5 (populations of II Madagascar) Thailand Dalbergia cochinchinensis #5 II rosewood Dalbergia dariensis #2(population of Panama) III Dalbergia granadillo #6 II D Brazilian Dalbergia nigra I A rosewood Dalbergia retusa #6 Cocobolo II C/D Honduras Dalbergia stevensonii #6 II C/D rosewood Dipteryx panamensis (Costa Rica, Nicaragua) Almendro III C Pericopsis elata #5 African teak II B Platymiscium pleiostachyum #4 Cristóbal II B Pterocarpus santalinus #7 Red Sandalwood II B MAGNOLIACEAE Magnolia liliifera var. obovata #1 (Nepal) Magnolia III C Cedrela odorata #5 (Brazil and the Plurinational State of Bolivia. In addition, the MELIACEAE Spanish cedar III C following countries have listed their national populations: Colombia, Guatemala and Peru) Cedrela fissilis #5 (Plurinational State of III Bolivia) Cedrela lilloi #5 (Plurinational State of Bolivia) III Mexican Swietenia humilis #4 II B mahogany Swietenia macrophylla #6 (Populations of the Big-Leaf II B Neotropics) Mahogany Swietenia mahagoni #5 American II B mahogany PALMAE Becariophoenix madagascariensis #4 Manarano palm II B Chrysalidocarpus decipiens Butterfly palm II B Lemurophoenix halleuxii Red-lemur palm II B Lodoicea maldivica #13 (Seychelles) III Marojejya darianii Ravimbe palm II B Neodypsis decaryi #4 Feather palm II B Ravenea louvelii Lakamarefo palm II B Ravenia rivularis Gora palm II B Satranala decussilvae Satranabe palm II B Voanioala gerardii Voanioala palm II B PINACEAE Abies guatemalensis Pinabete I A Pinus koraiensis #5 (Russian Federation) III PODOCARPACEAE Podocarpus neriifolius #1 (Nepal) III C Parlatore's Podocarpus parlatorei I A podocarp ROSACEAE Prunus africana #4 African Cherry II B RUBIACEAE Balmea stormiae Ayugue I A Osyris lanceolata (Populations of Burundi, African SANTALACEAE Ethiopia, Kenya, Rwanda, Uganda and the II Sandalwood United Republic of Tanzania.) Taxus chinensis and infraspecific taxa of this TAXACEAE Chinese yew II B species #2 Taxus cuspidata and infraspecific taxa of this Japanese yew II B species 9 #2 Taxus fuana and infraspecific taxa of this II B species #2 Taxus sumatrana and infraspecific taxa of II B this species #2 Taxus wallichiana and infraspecific taxa of Himalayan yew II B this species #2 THYMELEACEAE Aquilaria spp. #14 Agarwood II B Gonystylus spp. #4 Ramin II B Gyrinops spp. #14 II B C TROCHENDRACEAE Tetracentron sinense #1 (Nepal) III ZAMIACEAE spp.#4 (Except the species ZAMIACEAE Cycads II B included in Appendix I) Ceratozamia spp. Cycads I A Chigua spp. Cycads I A Encephalartos spp. Cycads I A Microcycas calocoma Cycad I A Holywood, Palo ZYGOPHYLLACEAE Bulnesia sarmientoi #11 santo, Lignum II B vitae Holywood, Guaiacum spp. #2 II B Lignum vitae 9 Artificially propagated hybrids and cultivars of Taxus cuspidata, live, in pots or other small containers, each consignment being accompanied by a label or document stating the name of the taxon or taxa and the text 'artificially propagated', are not subject to the provisions of the Convention. #1 All parts and derivatives, except: a) seeds, spores and pollen (including pollinia); b) seedling or tissue cultures obtained in vitro, in solid or liquid media, transported in sterile containers; c) cut flowers of artificially propagated plants; and d) fruits, and parts and derivatives thereof, of artificially propagated plants of the genus Vanilla. #2 All parts and derivatives except: a) seeds and pollen; and b) finished products packaged and ready for retail trade. #4 All parts and derivatives except: a) seeds (including seedpods of Orchidaceae), spores and pollen (including pollinia). The exemption does not apply to seeds from Cactaceae spp. exported from Mexico, and to seeds from Beccariophoenix madagascariensis and Neodypsis decaryi exported from Madagascar; b) seedling or tissue cultures obtained in vitro, in solid or liquid media, transported in sterile containers; c) cut flowers of artificially propagated plants; d) fruits, and parts and derivatives thereof, of naturalized or artificially propagated plants of the genus Vanilla (Orchidaceae) and of the family Cactaceae; e) stems, flowers, and parts and derivatives thereof, of naturalized or artificially propagated plants of the genera Opuntia subgenus Opuntia and Selenicereus (Cactaceae); and f) finished products of Euphorbia antisyphilitica packaged and ready for retail trade. #5 Logs, sawn wood and veneer sheets. #6 Logs, sawn wood, veneer sheets and plywood. #7 Logs, wood-chips, powder and extracts. #10 Logs, sawn wood, veneer sheets, including unfinished wood articles used for the fabrication of bows for stringed musical instruments. #11 Logs, sawn wood, veneer sheets, plywood, powder and extracts. #12 Logs, sawn wood, veneer sheets, plywood and extracts. Finished products containing such extracts as ingredients, including fragrances, are not considered to be covered by this annotation #13 The kernel (also known as 'endosperm', 'pulp' or 'copra') and any derivative thereof. #14 All parts and derivatives except: a) seeds and pollen; b) seedling or tissue cultures obtained in vitro, in solid or liquid media, transported in sterile containers; c) fruits; d) leaves; e) exhausted agarwood powder, including compressed powder in all shapes; and f) finished products packaged and ready for retail trade, this exemption does not apply to beads, prayer beads and carvings .
Recommended publications
  • Heterodichogamy.Pdf
    Research Update TRENDS in Ecology & Evolution Vol.16 No.11 November 2001 595 How common is heterodichogamy? Susanne S. Renner The sexual systems of plants usually Heterodichogamy differs from normal (Zingiberales). These figures probably depend on the exact spatial distribution of dichogamy, the temporal separation of underestimate the frequency of the gamete-producing structures. Less well male and female function in flowers, in heterodichogamy. First, the phenomenon known is how the exact timing of male and that it involves two genetic morphs that is discovered only if flower behavior is female function might influence plant occur at a 1:1 ratio. The phenomenon was studied in several individuals and in mating. New papers by Li et al. on a group discovered in walnuts and hazelnuts5,6 natural populations. Differential of tropical gingers describe differential (the latter ending a series of Letters to movements and maturation of petals, maturing of male and female structures, the Editor about hazel flowering that styles, stigmas and stamens become such that half the individuals of a began in Nature in 1870), but has gone invisible in dried herbarium material, population are in the female stage when almost unnoticed7. Indeed, its recent and planted populations deriving from the other half is in the male stage. This discovery in Alpinia was greeted as a vegetatively propagated material no new case of heterodichogamy is unique new mechanism, differing ‘from other longer reflect natural morph ratios. The in involving reciprocal movement of the passive outbreeding devices, such as discovery of heterodichogamy thus styles in the two temporal morphs. dichogamy…and heterostyly in that it depends on field observations.
    [Show full text]
  • Descargar Archivo
    Instituto de Investigaciones de la Amazonía Peruana - IIAP MEMORIA INSTITUCIONAL 2010 Aprobado por del Directorio en su Sesión Ordinaria N° 554 del 26 de mayo de 2011 MMeemmoorriiaa IInnssttiittuucciioonnaall 22001100 CONTENIDO 5 Consejo Superior 2010 6 Directorio 2010 7 Personal Ejecutivo e Investigadores 2010 9 Presentación PARTE I 11 EL IIAP Visión - Misión - Filosofía y Cultura Institucional PARTE II 13 SISTEMA DE INVESTIGACIÓN 14 Programa de Investigación para el Uso y Conservación del Agua y sus Recursos – AQUAREC 37 Programa de Investigación en Manejo Integral del Bosque y Servicios Ambientales – PROBOSQUES 57 Programa de Investigación en Biodiversidad Amazónica – PIBA 69 Programa de Investigación en Cambio Climático, Desarrollo Territorial y Ambiental – PROTERRA 77 Programa de Investigación de la Diversidad Cultural y Economía Amazónicas – SOCIODIVERSIDAD 85 Programa de Investigación en Información de la Biodiversidad Amazónica – BIOINFO PARTE III 91 SISTEMA DE DIFUSIÓN Y TRANSFERENCIA DE TECNOLOGÍA 92 Programa de Investigación para el Uso y Conservación del Agua y sus Recursos – AQUAREC 100 Programa de Investigación en Manejo Integral del Bosque y Servicios Ambientales – PROBOSQUES 109 Programa de Investigación en Biodiversidad Amazónica – PIBA 115 Programa de Investigación en Cambio Climático, Desarrollo Territorial y Ambiental – PROTERRA 120 Programa de Investigación de la Diversidad Cultural y Economía Amazónicas – SOCIODIVERSIDAD 127 Programa de Investigación en Información de la Biodiversidad Amazónica - BIOINFO Instituto de Investigaciones de la Amazonía Peruana - Memoria 2010 | 3 Memoria Institucional 2010 PARTE IV 129 GESTIÓN INSTITUCIONAL 130 Proyección institucional: Regional PARTE V 151 GESTIÓN PRESUPUESTARIA-FINANCIERA 152 5.1. Presupuesto institucional global (PIG) 152 a) Presupuesto institucional global (PIG) 152 b) Transferencia y recaudación de ingresos global (TRIG) 153 c) Ejecución del gasto global (EGG) 154 d) Saldos de balance global 155 5.2.
    [Show full text]
  • Analysis of Phylogenetic Relationships in the Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2)
    Analysis of Phylogenetic Relationships in The Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2) Zhongzhong Guo Tarim University Qiang Jin Tarim University Zhenkun Zhao Tarim University Wenjun Yu Tarim University Gen Li Tarim University Yunjiang Cheng Tarim University Cuiyun Wu Tarim University rui Zhang ( [email protected] ) Tarim University https://orcid.org/0000-0002-4360-5179 Research Article Keywords: Base sequence, Evolution, Juglandaceae, Ribosomal spacer, Secondary structure Posted Date: May 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-501634/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract This study aims to investigate the phylogenetic relationships within the Juglandaceae family based on the Internal Transcribed Spacer's primary sequence and secondary structures (ITS2). Comparative analysis of 51 Juglandaceae species was performed across most of the dened seven genera. The results showed that the ITS2 secondary structure's folding pattern was highly conserved and congruent with the eukaryote model. Firstly, Neighbor-joining (N.J.) analysis recognized two subfamilies: Platycaryoideae and Engelhardioideae. The Platycaryoideae included the Platycaryeae (Platycarya+ (Carya+ Annamocarya)) and Juglandeae (Juglans-(Cyclocarya + Pterocarya)). The Engelhardioideae composed the (Engelhardia+Oreomunnea+Alfaroa)). The Rhoiptelea genus was generally regarded as an outgroup when inferring the phylogeny of Juglandaceae. However, it is clustered into the Juglandaceae family and showed a close relationship with the Platycaryoideae subfamily. Secondly, the folded 3-helices and 4-helices secondary structure of ITS2 were founded in the Juglandaceae family. Therefore, these ITS2 structures could be used as formal evidence to analyze Juglandaceae's phylogeny relationship.
    [Show full text]
  • Analyses of the Proposals to Amend the CITES Appendices at the 14Th Meeting of the Conference of the Parties
    IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices at the 14th Meeting of the Conference of the Parties The Hague, Netherlands 3–15 June 2007 Prepared by IUCN Species Programme and Species Survival Commission and TRAFFIC ANALYSES IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices at the 14th Meeting of the Conference of the Parties The Hague, Netherlands 3–15 June 2007 Prepared by IUCN Species Programme and Species Survival Commission and TRAFFIC Production of the 2007 IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices was made possible through the support of: • The Commission of the European Union • Ministry of Agriculture, Nature and Food Quality, Department for Nature, Netherlands • Ministère de l'écologie et du développement durable, Direction de la nature et des paysages, France • Ministerio de Medio Ambiente, Dirección General para la Biodiversidad, Spain • Office vétérinaire fédéral, Switzerland • Ministero dell’Ambiente e della Tutela del Territorio, Direzione Protezione della Nature, Italy • Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Germany • Department for Environment, Food and Rural Affairs (DEFRA), UK • Danish Ministry of the Environment, Forest and Nature Agency • Ministry of Agriculture and Forestry, Environment and Water Management, Division for Nature Conservation and Species Protection, Austria IUCN -The World Conservation Union brings together states, government agencies and a diverse range of non-governmental organizations in a unique global partnership - over 1,000 members in some 181 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable.
    [Show full text]
  • CYCADACEAE Palm-Like Dioecious Plants, the Caudex Bulb
    CYCADACEAE Palm-like dioecious plants, the caudex bulb-like, tuber­ like or columnar, simple or branched, few or several leaves borne from the apex; leaves spirally arranged, often a dense crown on the apex of the stem, coriaceous, pinnate or bipinnate, the leaflets usually linear or lanceolate, entire or dentate; inflo­ rescence borne at the apex of the caudex or lateral, cone-like, the pistillate eones broader than the staminate ones. Three genera native in Central America and about nine in the tropics of the world. Ceratozamia mexicana Brongn. is an attractive plant of Mexico and Guatemala that should be in cultivation. Dioon mejiae Standl. & L. Wms. Ceiba 1: 37. 1950. Teosinte, palma teosinte. The Indians of Olancho, Honduras, where the plant is native, boil and grind the large chestnut-like seeds and make of them a kind of tortilla of good flavor and agreeable to eat. The leaves are in demand for decorating altars and for funeral wreaths. Becoming widely distributed as an ornamental. The common name given for this plant is usually that applied to Euchlaena mexicana. Zamia loddigesii Miq. Tijdschr. Nat. Geschied. 10: 73. 1843. Camotillo, cocalito, teosinte, chacuhua. The large starchy roots are said to be used in poisoning rodents in Petén. There are reports of their use in criminal poisonings which may be or not based on fact. Standley reports that "It is stated, further, that if the root has been out of the ground three days, they cause death in three days; if dug ten days, they kill in ten days, and so on." The coastal Caribs have used the roots as food, after cooking.
    [Show full text]
  • Notice to the Wildlife Import/Export Community
    NOTICE TO THE WILDLIFE IMPORT/EXPORT COMMUNITY June 8, 2010 Subject: Changes to CITES Species Listings Background: Party countries of the Convention on International Trade in Endangered Species (CITES) meet approximately every two years for a Conference of the Parties. During these meetings, countries review and vote on amendments to the listings of protected species in CITES Appendix I and Appendix II. Such amendments become effective 90 days after the last day of the meeting unless Party countries agree to delay implementation. The most recent Conference of the Parties (CoP 15) was held in Doha, Qatar, March 13-15, 2010. Action: The amendments to CITES Appendices I and II that appear below (which were adopted at CoP 15) will be effective on June 23, 2010. Any specimens of these species imported into, or exported from, the United States on or after June 23, 2010 will require CITES documentation as specified under the amended listings. The import, export, or re-export of shipments of these species that are accompanied by CITES documents reflecting a pre-June 23 listing status or that lack CITES documents because no listing was previously in effect must be completed by midnight (local time at the point of import/export) on June 22, 2010. Importers and exporters can find the official revised CITES appendices on the CITES website at http://www.cites.org. Species Added to Appendix I Neurergus kaiseri (Kaiser’s spotted newt) Species Added to Appendix II Adenia olaboensis (Adenia) Agalychnis annae (Blue-sided tree frog) Agalychnis callidryas
    [Show full text]
  • PC11 Doc. 13.3
    PC11 Doc. 13.3 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Eleventh meeting of the Plants Committee Langkawi (Malaysia), 3-7 September 2001 Review of the Appendices TREE SPECIES (DECISION 11.116) 1. This document has been prepared by the Scientific Authority of the Netherlands. 2. At its ninth meeting (Darwin, Australia, June 1999), the CITES Plants Committee considered a document Contribution to an evaluation of tree species using the new CITES Listing Criteria, prepared by the UNEP World Conservation Monitoring Centre on behalf of the CITES Management Authority of the Netherlands. 3. It was decided that the document provided a good basis for the discussion on tree species listed, or not listed in the various Appendices. 4. The key information on these species, available today through the above-mentioned document, on tree species actually included in Appendices I, II and III, is included in the Annex to this document. PC11 Doc. 13.3 – p. 1 PC11 Doc. 13.3 – p. 2 PC11 Doc. 13.3 Annex Araucariaceae; Araucaria araucana Appendix I (Chile and Argentine) Distribution: Argentina (Neuquén), Chile. Ranges from the Coastal Cordillera of Chile to the Andes in Argentina. Population status and trends:The populations on the coast are restricted and highly threatened. Andean populations are severely fragmented. Chile holds the largest population, some of which are being illegally felled in and outside national park boundaries. A rough estimate in 1981 suggested that 600,000 acres of Araucaria forest remain in Chile, yielding a possible 1215 million ft3. Most of the trees are scattered or in inaccessible places.
    [Show full text]
  • Aniba Rosaeodora (Var
    antibiotics Article Aniba rosaeodora (Var. amazonica Ducke) Essential Oil: Chemical Composition, Antibacterial, Antioxidant and Antitrypanosomal Activity Amanda Mara Teles 1 , João Victor Silva-Silva 2, Juan Matheus Pereira Fernandes 2,Kátia da Silva Calabrese 2,* , Ana Lucia Abreu-Silva 3 , Silvio Carvalho Marinho 4 , Adenilde Nascimento Mouchrek 5, Victor Elias Mouchrek Filho 5 and Fernando Almeida-Souza 2,3,* 1 Pós-Graduação em Saúde do Adulto, Universidade Federal do Maranhão, 65080-805 São Luís, Brazil; [email protected] 2 Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, 21040-900 Rio de Janeiro, Brazil; [email protected] (J.V.S.-S.); [email protected] (J.M.P.F.) 3 Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, 65055-310 São Luís, Brazil; [email protected] 4 Laboratório de Óleos Essenciais, Universidade Federal do Maranhão, 65065-545 São Luís, Brazil; [email protected] 5 Laboratório de Controle de Qualidade de Alimentos e Água, Universidade Federal do Maranhão, 65065-545 São Luís, Brazil; [email protected] (A.N.M.); [email protected] (V.E.M.F.) * Correspondence: calabrese@ioc.fiocruz.br (K.d.S.C.); [email protected] (F.A.-S.) Abstract: Aniba rosaeodora is one of the most widely used plants in the perfumery industry, being used as medicinal plant in the Brazilian Amazon. This work aimed to evaluate the chemical composition of A. rosaeodora essential oil and its biological activities. A. rosaeodora essential oil presented linalool Citation: Teles, A.M.; Silva-Silva, J.V.; (93.60%) as its major compound. The A. rosaeodora essential oil and linalool showed activity against Fernandes, J.M.P.; Calabrese, K.d.S.; all the bacteria strains tested, standard strains and marine environment bacteria, with the lower Abreu-Silva, A.L.; Marinho, S.C.; minimum inhibitory concentration being observed for S.
    [Show full text]
  • The Complete Chloroplast Genome of Cinnamomum Camphora and Its Comparison with Related Lauraceae Species
    The complete chloroplast genome of Cinnamomum camphora and its comparison with related Lauraceae species Caihui Chen1,2, Yongjie Zheng2, Sian Liu1, Yongda Zhong3, Yanfang Wu2, Jiang Li2, Li-An Xu1 and Meng Xu1 1 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China 2 Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, Jiangxi, China 3 Institute of Biological Resources, Jiangxi Academy of Science, Nanchang, Jiangxi, China ABSTRACT Cinnamomum camphora, a member of the Lauraceae family, is a valuable aromatic and timber tree that is indigenous to the south of China and Japan. All parts of Cinnamomum camphora have secretory cells containing different volatile chemical compounds that are utilized as herbal medicines and essential oils. Here, we reported the complete sequencing of the chloroplast genome of Cinnamomum camphora using illumina technology. The chloroplast genome of Cinnamomum camphora is 152,570 bp in length and characterized by a relatively conserved quadripartite structure containing a large single copy region of 93,705 bp, a small single copy region of 19,093 bp and two inverted repeat (IR) regions of 19,886 bp. Overall, the genome contained 123 coding regions, of which 15 were repeated in the IR regions. An analysis of chloroplast sequence divergence revealed that the small single copy region was highly variable among the different genera in the Lauraceae family. A total of 40 repeat structures and 83 simple sequence repeats were detected in both the coding and non-coding regions. A phylogenetic analysis indicated that Calycanthus is most closely related to Lauraceae, both being members of Laurales, Submitted 7 June 2017 which forms a sister group to Magnoliids.
    [Show full text]
  • Stand Structure of Monocotyledons and Dicotyledons in Different
    BOIS ET FORÊTS DES TROPIQUES, 2011, N° 307 (1) STRUCTURE DE PEUPLEMENTS / LE POINT SUR… 33 Stand structure of Monocotyledons and Dicotyledons in different successional stages in Corcovado Fidèle Bognounou1, 2, 3 Renée Morton3 National Park, Costa Rica Sarah Ayangma3 Laurence Jonkers3 Christer Björkman3 Helena Bylund3 Colin M. Orians4 Andres Vega5 Per Chister Oden2 1 University of Ouagadougou Life Sciences and Earth Sciences Training and Research Department 03 BP 7021, Ouagadougou 03 Burkina Faso 2 Swedish University of Agricultural Sciences Faculty of Forest Sciences Southern Swedish Forest Research Centre PO Box 101, SE-230 53 Alnarp Sweden 3 Swedish University of Agricultural Sciences Faculty of Forest Sciences Department of Ecology Box 7044, 75007 Uppsala Sweden 4 Department of Biology Tufts University 120 Dana Building Medford, MA 02155 USA 5 Corcovado National Park 400 E, 75 S, 75 E de la Municipalidad de Tibas Tibas Costa Rica Photograph 1. Primary forest. Photograph S. Ayangma. BOIS ET FORÊTS DES TROPIQUES, 2011, N° 307 (1) F. Bognounou, R. Morton, 34 FOCUS / STAND STRUCTURE S. Ayangma, L. Jonkers, C. Björkman, H. Bylund, C. M. Orians, A. Vega, P. C. Oden RÉSUMÉ ABSTRACT RESUMEN STRUCTURE DES PEUPLEMENTS DE STAND STRUCTURE OF MONOCOTYLEDONS ESTRUCTURA DE LOS RODALES DE MONOCOTYLEDONES ET DICOTYLEDONES AND DICOTYLEDONS IN DIFFERENT MONOCOTILEDÓNEAS Y DICOTILEDÓNEAS LORS DE DIFFERENTS STADES DE SUCCESSIONAL STAGES IN CORCOVADO EN DIFERENTES ETAPAS DE SUCESIÓN SUCCESSION DANS LE PARC NATIONAL NATIONAL PARK, COSTA RICA EN EL PARQUE NACIONAL DE CORCOVADO DE CORCOVADO AU COSTA RICA EN COSTA RICA Les deux grands groupes d’angiospermes, The two major groups of angiosperms, Los dos principales grupos de angiosper- monocotylédones et dicotylédones, diffè- monocotyledons and dicotyledons, differ mas, monocotiledóneas y dicotiledóneas, rent à plusieurs égards au niveau de leur in several of their life history traits.
    [Show full text]
  • Aniba Rosaeodora Ducke): Alometria, Manejo E Produção De Óleo Essencial Na Amazônia Central
    INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS Silvicultura de pau-rosa (Aniba rosaeodora Ducke): Alometria, manejo e produção de óleo essencial na Amazônia Central PEDRO MEDRADO KRAINOVIC Manaus, Amazonas Maio, 2017 PEDRO MEDRADO KRAINOVIC Silvicultura de pau-rosa (Aniba rosaeodora Ducke): Alometria, manejo e produção de óleo essencial na Amazônia Central ORIENTADOR: Dr. Paulo de Tarso Barbosa Sampaio Co-orientador: Dr. Valdir Florêncio da Veiga Junior Tese apresentada ao Programa de Pós- Graduação em Ciências de Florestas Tropicais, do Instituto Nacional de Pesquisas da Amazônia, como parte dos requisitos para obtenção do título de Doutor em Ciências de Florestas Tropicais área de concentração em Silvicultura Tropical. Manaus, Amazonas Maio, 2017 ii Krainovic, Pedro Medrado Silvicultura de pau-rosa (Aniba rosaeodora Ducke): Alometria, manejo e produção de óleo essencial na Amazônia Central/ Pedro Medrado Krainovic. --- Manaus : [s.n.], 2017. Tese (doutorado) --- INPA, Manaus, 2017 Orientador : Paulo de Tarso Barbosa Sampaio Co-orientador : Valdir Florêncio da Veiga Junior Área de concentração : Ciências de Florestas Tropicais 1. Plantios florestais. 2. Conservação do pau-rosa. 3. Espécie ameaçada de extinção. 4. Manejo da biomassa aérea. 5. Alometria. 6. Exportação de nutrientes. 7. Óleo essencial. I. Título. iii Sinopse: Estudou-se a alometria das árvores, a prática de manejo da biomassa aérea e o óleo essencial proveniente de plantios comerciais de pau-rosa (Aniba rosaeodora Ducke), estabelecidos nos municípios de Maués e Novo Aripuanã, no Estado do Amazonas, Brasil. Palavras-chave: Plantios florestais, Conservação do pau-rosa, Espécie ameaçada de extinção, Alometria, Manejo da biomassa aérea, tipos de colheita, Exportação de nutrientes, Óleo essencial.
    [Show full text]
  • CITES and Timber (PDF)
    This guide covers the main timber species regulated CITES and Timber by the Convention on International Trade in Endangered Species (CITES). It provides information CITES and Timber on the key issues regarding the implementation of the Convention for this important group of plants. A guide to CITES-listed tree species Written for the non-expert, individual sections cover the species found in significant trade, with details on their distribution, uses, traded parts and derivatives, and scientific and common names. Madeleine Groves Madeleine Groves Additional sections cover timber identification and measurement, guidance on CITES documentation and key resources. and Catherine Rutherford shop.kew.org/kewbooksonline Madeleine Groves Catherine Rutherford CITES and Timber A guide to CITES-listed tree species Madeleine Groves Catherine Rutherford © The Board of Trustees of the Royal Botanic Gardens, Kew 2015 Illustrations and photographs © Royal Botanic Gardens, Kew, unless otherwise stated in the captions The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without written permission of the publisher unless in accordance with the provisions of the Copyright Designs and Patents Act 1988. Great care has been taken to maintain the accuracy of the information contained in this work. However, neither the publisher, the editors nor authors can be held responsible for any consequences arising from use of the information contained herein.
    [Show full text]