Supplementary Material
Total Page:16
File Type:pdf, Size:1020Kb
Xiang et al., Page S1 Supporting Information Fig. S1. Examples of the diversity of diaspore shapes in Fagales. Fig. S2. Cladogram of Fagales obtained from the 5-marker data set. Fig. S3. Chronogram of Fagales obtained from analysis of the 5-marker data set in BEAST. Fig. S4. Time scale of major fagalean divergence events during the past 105 Ma. Fig. S5. Confidence intervals of expected clade diversity (log scale) according to age of stem group. Fig. S6. Evolution of diaspores types in Fagales with BiSSE model. Fig. S7. Evolution of diaspores types in Fagales with Mk1 model. Fig. S8. Evolution of dispersal modes in Fagales with MuSSE model. Fig. S9. Evolution of dispersal modes in Fagales with Mk1 model. Fig. S10. Reconstruction of pollination syndromes in Fagales with BiSSE model. Fig. S11. Reconstruction of pollination syndromes in Fagales with Mk1 model. Fig. S12. Reconstruction of habitat shifts in Fagales with MuSSE model. Fig. S13. Reconstruction of habitat shifts in Fagales with Mk1 model. Fig. S14. Stratigraphy of fossil fagalean genera. Table S1 Genera of Fagales indicating the number of recognized and sampled species, nut sizes, habits, pollination modes, and geographic distributions. Table S2 List of taxa included in this study, sources of plant material, and GenBank accession numbers. Table S3 Primers used for amplification and sequencing in this study. Table S4 Fossil age constraints utilized in this study of Fagales diversification. Table S5 Fossil fruits reviewed in this study. Xiang et al., Page S2 Table S6 Statistics from the analyses of the various data sets. Table S7 Estimated ages for all families and genera of Fagales using BEAST. Table S8 Age and diversification rates estimated for the nodes of interest in Fagales. Xiang et al., Page S3 Figure S1-S14 Legends Fig. S1. Examples of the diversity of diaspore shapes in Fagales. (1) Pterocarya hupehensis; (2) Betula luminifera; (3) Casuarina equisetifolia; (4) Platycarya strobilacea; (5) Rhoiptelea chiliantha; (6) Cyclocarya paliurus; (7) Carpinus cordata; (8) Ostryopsis nobilis; (9) Engelhardia spicata; (10) Trigonobalanus doichangensis; (11) Fagus hayatae; (12) Quercus viminea; (13) Corylus ferox; (14) Juglans mandshurica; (15) Myrica rubra; (16) Lithocarpus xylocarpus; (17) Carya illinoinensis. Fig. S2. Cladogram of Fagales obtained from the 5-marker data set. Values above branches represent Bayesian posterior values, maximum likelihood and maximum parsimony bootstrap values. (*) denotes the clades with 100% support, and (-) denotes the nodes not supported. The numbers in circles show the locations of fossil calibration points, as referred to Table S4. Fig. S3. Chronogram of Fagales obtained from analysis of the 5-marker data set in BEAST. Fig. S4. Time scale of major fagalean divergence events during the past 105 Ma. Blue circles represent cladogenic events leading to the seven families. Black and red circles represent stem ages of the winged and wingless genera, respectively. Black and red Xiang et al., Page S4 squares represent the initial diversifications of the winged and wingless genera, respectively. Numbers indicate the node number, as referred to Fig. S3 and Table S7. Fig. S5. Confidence intervals of expected clade diversity (log scale) according to age of stem group, given a fixed background diversification rate (r) equal to that of Fagales as a whole. The black lines are the 95% confidence interval in the absence of extinction (r = 0.0686). Quantitatively similar results were obtained for a relative extinction fraction of 0.9. (A) Winged clades; horizontal dashed lines are the 95% highest probability densities of ages estimated in BEAST. (B) Wingless clades; horizontal lines as above. Fig. S6. Evolution of diaspores types in Fagales with BiSSE model. Terminal taxa correspond to those in Fig. S3. Fig. S7. Evolution of diaspores types in Fagales with Mk1 model. Terminal taxa correspond to those in Fig. S3. Fig. S8. Evolution of dispersal modes in Fagales with MuSSE model. Terminal taxa correspond to those in Fig. S3. Fig. S9. Evolution of dispersal modes in Fagales with Mk1 model. Terminal taxa correspond to those in Fig. S3. Xiang et al., Page S5 Fig. S10. Reconstruction of pollination syndromes in Fagales with BiSSE model. Terminal taxa correspond to those in Fig. S3. Fig. S11. Reconstruction of pollination syndromes in Fagales with Mk1 model. Terminal taxa correspond to those in Fig. S3. Fig. S12. Reconstruction of habitat shifts in Fagales with MuSSE model. Terminal taxa correspond to those in Fig. S3. Fig. S13. Reconstruction of habitat shifts in Fagales with Mk1 model. Terminal taxa correspond to those in Fig. S3. Fig. S14. Stratigraphy of fossil fagalean genera based on macrofossil and pollen information. Xiang et al., Page S6 Table S1 Genera of Fagales indicating the number of recognized and sampled species, diaspore sizes, habits, pollination modes, and geographic distributions. Family Genus No. species No. spp. sampled Diaspore size Habit Pollination mode Distribution (mm) Betulaceae Alnus ~40 23 2−4 trees or shrubs anemophilous North Temperate Zone Betula ~60 21 1.5−5 trees or shrubs anemophilous Northern hemisphere Carpinus ~50 18 2−6 trees or shrubs anemophilous North temperate zone, Central America Corylus ~20 15 7−15 trees or shrubs anemophilous North temperate zone Ostrya 8 6 6−8 trees anemophilous North temperate zone Ostryopsis 2 1 4−6 shrubs anemophilous Western China, Mongolia Casuarinaceae Allocasuarina 58 6 3−8 trees or shrubs anemophilous Australia Casuarina 17 12 3−8 trees or shrubs anemophilous Tropical Asia, Australia Ceuthostoma 2 1 3−8 trees or shrubs anemophilous Malaysia Gymnostoma 18 10 3−8 trees or shrubs anemophilous Australia, New Caledonia Fagaceae Castanea 12 6 15−30 trees entomophilous North Temperate Zone Castanopsis ~120 20 10−25 trees entomophilous tropical and subtropical Asia Chrysolepis 2 2 8−13 trees anemophilous Western N America Fagus 10 9 15−25 trees anemophilous North Temperate Zone Quercus ~450 38 13−45 trees or shrubs anemophilous Northern hemisphere, tropical America Lithocarpus ~300 14 16−35 trees entomophilous Tropical Asia, southwestern USA Trigonobalanus 3 2 4−5 trees anemophilous, secondarily Southeast Asia, northern S America entomophilous Xiang et al., Page S7 Juglandaceae Alfaroa 7 4 16−25 trees anemophilous Central America Carya (incl. Annamocarya) 18 13 16−40 trees anemophilous Eastern N America, China, northern Vietnam Cyclocarya 1 1 7 trees anemophilous Eastern China Engelhardia (incl. Alfaropsis) 7 4 3−6 trees anemophilous Indo-China, Indo-Malaysia Juglans 20 13 25−50 trees anemophilous North Temperate Old world, America Platycarya 1 1 3−6 trees or shrubs entomophilous Eastern Asia Pterocarya 6 6 6−9 trees anemophilous Eastern and central Asia Oreomunnea 2 2 7−10 trees anemophilous Central America Rhoiptelea 1 1 2−3 trees anemophilous SW China, N Vietnam Myricaceae Morella ~48 11 10−20 trees or shrubs anemophilous Temperate or subtropical regions of both hemisphere Myrica 2 2 2.5−3 shrub anemophilous Eastern N America Comptonia 1 1 20 shrub anemophilous Eastern N America Canacomyrica 1 1 10 tree or shrub entomophilous New Caledonia Nothofagaceae Nothofagus 35 23 6−7 trees or shrubs anemophilous South America, Australasia Ticodendraceae Ticodendron 1 1 35 trees anemophilous Tropical America Data are obtained from several sources (Hewson, 1989; Johnson and Wilson, 1993; Kubitzki, 1993; Herbert et al., 2006; Electronic databases: www.efloras.org). Xiang et al., Page S8 Table S2 List of taxa included in this study, sources of plant materials, and GenBank accession numbers. Species Voucher Accession number rbcL matK trnL trnL-F atpB-rbcL Betulaceae Alnus acuminata Xia K et Zhou ZK 200813, KUN KF418925 KF419022 KF418978 KF419068 KF418869 A. cordata FJ844569 FJ844590 - - - A. cremastogyne LDXR 137, PE FJ844571 KF419023 KF418979 KF419069 KF418870 A. firma AB060562 AB060053 AB063548 - - A. formosana Ying TS 001, PE KF418926 KF419024 KF418980 KF419070 KF418871 A. glutinosa Feng M 967024, PE KF418927 KF419025 AF327573 - FJ423675 A. hirsuta Chen ZD et Hong DY 9811033, PE FJ844576 KF419034 FJ012047 FJ012047 - A. incana Chen ZD 0712, PE X56618 KF419026 AF327574 - FJ423677 A. japonica Chen ZD et Hong DY 9811045, PE FJ844577 KF419035 AY211427 AY211427 - A. mandshurica Chen ZD 2118, PE KF418928 KF419036 - - - A. maritima Li JH et Chen ZD 20011217-4, PE KF418929 KF419027 KF418981 KF418981 KF418872 A. matsumurae FJ844578 FJ844595 - - - A. nepalensis Chen ZD 9501, PE KF418930 KF419028 KF418982 KF419071 FJ423678 A. nitida Chen ZD 2014, PE KF418931 KF419029 KF418983 - KF418873 A. orientalis Chen ZD 2005, PE KF418932 KF419030 KF418984 KF419072 - A. rubra Chen ZD 2008, PE KF418933 KF419031 KF418985 KF419073 KF418874 A. rugosa FJ844593 FJ844600 - - - A. serrulata FLAS 201719, PE KF418934 KF419032 KF418986 KF419074 - A. serrulatoides FJ844586 FJ844603 - - - A. sinuata Chen ZD 357-97B, PE AY263926 AY263914 AY147067 AY147067 KF418875 A. trabeculosa FJ844588 FJ844604 - - - A. viridis Chen ZD 990010, PE KF418935 KF419033 DQ860513 - KF418876 Betula alleghaniensis Chen ZD 990020, PE KF418936 AY372015 KF418987 KF419075 KF418877 B. alnoides - FJ011821 FJ012051 FJ012051 FJ423679 B. costata GU373375 GU373389 - - B. dahurica - FJ011824 FJ012054 FJ012054 FJ423680 Xiang et al., Page S9 B. ermanii Chen ZD 2121, PE KF418937 AY372016 KF418988 KF419076 KF418878 B. fruticosa GU373338 AY372017 GQ244637 - - B. glandulosa Xia K et Zhou ZK 200814, KUN KF418938 KF419037 KF418989 KF419077 KF418879 B. insignis GQ248555 GQ248086