Sub Order: Cyclorrhapha Sub Order: Cyclorrhapha
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
10 Arthropods and Corpses
Arthropods and Corpses 207 10 Arthropods and Corpses Mark Benecke, PhD CONTENTS INTRODUCTION HISTORY AND EARLY CASEWORK WOUND ARTIFACTS AND UNUSUAL FINDINGS EXEMPLARY CASES: NEGLECT OF ELDERLY PERSONS AND CHILDREN COLLECTION OF ARTHROPOD EVIDENCE DNA FORENSIC ENTOMOTOXICOLOGY FURTHER ARTIFACTS CAUSED BY ARTHROPODS REFERENCES SUMMARY The determination of the colonization interval of a corpse (“postmortem interval”) has been the major topic of forensic entomologists since the 19th century. The method is based on the link of developmental stages of arthropods, especially of blowfly larvae, to their age. The major advantage against the standard methods for the determination of the early postmortem interval (by the classical forensic pathological methods such as body temperature, post- mortem lividity and rigidity, and chemical investigations) is that arthropods can represent an accurate measure even in later stages of the postmortem in- terval when the classical forensic pathological methods fail. Apart from esti- mating the colonization interval, there are numerous other ways to use From: Forensic Pathology Reviews, Vol. 2 Edited by: M. Tsokos © Humana Press Inc., Totowa, NJ 207 208 Benecke arthropods as forensic evidence. Recently, artifacts produced by arthropods as well as the proof of neglect of elderly persons and children have become a special focus of interest. This chapter deals with the broad range of possible applications of entomology, including case examples and practical guidelines that relate to history, classical applications, DNA typing, blood-spatter arti- facts, estimation of the postmortem interval, cases of neglect, and entomotoxicology. Special reference is given to different arthropod species as an investigative and criminalistic tool. Key Words: Arthropod evidence; forensic science; blowflies; beetles; colonization interval; postmortem interval; neglect of the elderly; neglect of children; decomposition; DNA typing; entomotoxicology. -
Southampton French Quarter 1382 Specialist Report Download E9: Mineralised and Waterlogged Fly Pupae, and Other Insects and Arthropods
Southampton French Quarter SOU1382 Specialist Report Download E9 Southampton French Quarter 1382 Specialist Report Download E9: Mineralised and waterlogged fly pupae, and other insects and arthropods By David Smith Methods In addition to samples processed specifically for the analysis of insect remains, insect and arthropod remains, particularly mineralised pupae and puparia, were also contained in the material sampled and processed for plant macrofossil analysis. These were sorted out from archaeobotanical flots and heavy residues fractions by Dr. Wendy Smith (Oxford Archaeology) and relevant insect remains were examined under a low-power binocular microscope by Dr. David Smith. The system for ‘intensive scanning’ of faunas as outlined by Kenward et al. (1985) was followed. The Coleoptera (beetles) present were identified by direct comparison to the Gorham and Girling Collections of British Coleoptera. The dipterous (fly) puparia were identified using the drawings in K.G.V. Smith (1973, 1989) and, where possible, by direct comparison to specimens identified by Peter Skidmore. Results The insect and arthropod taxa recovered are listed in Table 1. The taxonomy used for the Coleoptera (beetles) follows that of Lucht (1987). The numbers of individual insects present is estimated using the following scale: + = 1-2 individuals ++ = 2-5 individuals +++ = 5-10 individuals ++++ = 10-20 individuals +++++ = 20- 100individuals +++++++ = more than 100 individuals Discussion The insect and arthropod faunas from these samples were often preserved by mineralisation with any organic material being replaced. This did make the identification of some of the fly pupae, where some external features were missing, problematic. The exceptions to this were samples 108 (from a Post Medieval pit), 143 (from a High Medieval pit) and 146 (from an Anglo-Norman well) where the material was partially preserved by waterlogging. -
A Broad Sampling of Muscidae (Diptera)
Revista Brasileira de Entomologia 62 (2018) 292–303 REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution www.rbentomologia.com Biology, Ecology and Diversity Houseflies speaking for the conservation of natural areas: a broad sampling of Muscidae (Diptera) on coastal plains of the Pampa biome, Southern Brazil a,∗ b c Ândrio Zafalon-Silva , Frederico Dutra Kirst , Rodrigo Ferreira Krüger a Universidade Federal do Paraná, Departamento de Zoologia, Curitiba, PR, Brazil b Universidade Federal de Minas Gerais, Departamento de Zoologia, Minas Gerais, MG, Brazil c Universidade Federal de Pelotas, Departamento de Microbiologia e Parasitologia, Pelotas, RS, Brazil a a b s t r a c t r t i c l e i n f o Article history: The Brazilian Coastal Plain of the Pampa Biome (CPPB), has suffered fragmentation caused by resource Received 9 February 2018 extraction and cattle raising. In turn, conservation proposals are needed to prevent the anthropisation of Accepted 10 September 2018 Pampa natural areas. The first step towards conservation proposals by using insects is fauna inventories, Available online 5 October 2018 providing data support for legislators. Thus, we undertook a regional and broad-scale sampling survey Associate Editor: Gustavo Graciolli to investigate the diversity of Muscidae flies in protected and non-protected areas of CPPB. In addition, we carried out an ecological guild diversity analysis as a metric approach of bioindication. The Muscidae Keywords: sampling resulted in 6314 specimens, 98 species taxa in 31 genera. Based on diversity estimators, our Atlantic forest sampling represents 70–86% of all muscids of CPPB. The highest diversity occurs in Pelotas streams Diptera Ecology (non-protected) and Taim Ecological Station (a huge protected area). -
Diptera: Muscidae) Due to Habronema Muscae (Nematoda: Habronematidae
©2017 Institute of Parasitology, SAS, Košice DOI 10.1515/helm-2017-0029 HELMINTHOLOGIA, 54, 3: 225 – 230, 2017 Preimaginal mortality of Musca domestica (Diptera: Muscidae) due to Habronema muscae (Nematoda: Habronematidae) R. K. SCHUSTER Central Veterinary Research Laboratory, PO Box 597, Dubai, United Arab Emirates, E-mail: [email protected] Article info Summary Received December 29, 2016 In order to study the damage of Habronema muscae (Carter, 1861) on its intermediate host, Mus- Accepted April 24, 2017 ca domestica Linnaeus, 1758, fl y larval feeding experiments were carried out. For this, a defi ned number of praeimaginal stages of M. domestica was transferred in daily intervals (from day 0 to day 10) on faecal samples of a naturally infected horse harboring 269 adult H. muscae in its stomach. The development of M. domestica was monitored until imagines appeared. Harvested pupae were measured and weighted and the success of infection was studied by counting 3rd stage nematode larvae in freshly hatched fl ies. In addition, time of pupation and duration of the whole development of the fl ies was noticed. Pupation, hatching and preimaginal mortality rates were calculated and the number of nematode larvae in freshly hatched fl ies was counted. Adult fl ies harboured up to 60 Habronema larvae. Lower pupal volumes and weights, lower pupation rates and higher preimaginal mortality rates were found in experimental groups with long exposure to parasite eggs compared to experimental groups with short exposure or to the uninfected control groups. Maggots of the former groups pupated earlier and fl y imagines occurred earlier. These fi ndings clearly showed a negative impact of H. -
Midsouth Entomologist 5: 39-53 ISSN: 1936-6019
Midsouth Entomologist 5: 39-53 ISSN: 1936-6019 www.midsouthentomologist.org.msstate.edu Research Article Insect Succession on Pig Carrion in North-Central Mississippi J. Goddard,1* D. Fleming,2 J. L. Seltzer,3 S. Anderson,4 C. Chesnut,5 M. Cook,6 E. L. Davis,7 B. Lyle,8 S. Miller,9 E.A. Sansevere,10 and W. Schubert11 1Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, e-mail: [email protected] 2-11Students of EPP 4990/6990, “Forensic Entomology,” Mississippi State University, Spring 2012. 2272 Pellum Rd., Starkville, MS 39759, [email protected] 33636 Blackjack Rd., Starkville, MS 39759, [email protected] 4673 Conehatta St., Marion, MS 39342, [email protected] 52358 Hwy 182 West, Starkville, MS 39759, [email protected] 6101 Sandalwood Dr., Madison, MS 39110, [email protected] 72809 Hwy 80 East, Vicksburg, MS 39180, [email protected] 850102 Jonesboro Rd., Aberdeen, MS 39730, [email protected] 91067 Old West Point Rd., Starkville, MS 39759, [email protected] 10559 Sabine St., Memphis, TN 38117, [email protected] 11221 Oakwood Dr., Byhalia, MS 38611, [email protected] Received: 17-V-2012 Accepted: 16-VII-2012 Abstract: A freshly-euthanized 90 kg Yucatan mini pig, Sus scrofa domesticus, was placed outdoors on 21March 2012, at the Mississippi State University South Farm and two teams of students from the Forensic Entomology class were assigned to take daily (weekends excluded) environmental measurements and insect collections at each stage of decomposition until the end of the semester (42 days). Assessment of data from the pig revealed a successional pattern similar to that previously published – fresh, bloat, active decay, and advanced decay stages (the pig specimen never fully entered a dry stage before the semester ended). -
Ophthalmic and Cutaneous
ISRAEL JOURNAL OF VETERINARY MEDICINE OPHTHALMIC AND CUTANEOUS HABRONEMIASIS IN A HORSE: CASE REPORT AND REVIEW OF THE LITERATURE Yarmut Y., Brommer H., Weisler S., Shelah M., Komarovsky O., and Steinman A*. a Koret School of Veterinary Medicine, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel. b Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University. Yalelaan 114, NL-3584 CM, Utrecht, The Netherlands. c Kfar Shmuel 13, 99788, Israel. * Corresponding author. A. Steinman Tel.: +972-54-8820-516; Fax: +972-3-9604-079. E-mail address: [email protected] Hospital (KSVM-VTH). The horse presented skin lesions around INTRODUCTION the medial canthus of the right eye and on the lateral bulb of Habronemiasis is a parasitic disease of equids (horses, donkeysth,e heel of the right front leg. The lesions were first noticed 3 mules and zebras) caused by the nematodes Habronema musca,week s previously and the referring veterinarian had suspected H. majus andDraschia microstoma (1,2). The adult worms livhabronemiasise . The horse was treated with ivermectin 1.87 % on the wall of the stomach of the host without internal migrationper .os (Eqvalan Veterinary® 200 ug/kg, Merial B.V., Haarlem, Embryonated eggs are excreted in the feces to the environmenNetherlands)t , and dexamethasone intramuscularly (Dexacort where they are ingested by the larvae of intermediate hosts, sucForte®h , 20 mg/ml Teva Pharmaceut. Works Private Ltd. Co, as houseflies and stable flies. Most cases of gastric habronemiasiHungary)s , twice every second day. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Flies) Benjamin Kongyeli Badii
Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3]. -
Key to the Adults of the Most Common Forensic Species of Diptera in South America
390 Key to the adults of the most common forensic species ofCarvalho Diptera & Mello-Patiu in South America Claudio José Barros de Carvalho1 & Cátia Antunes de Mello-Patiu2 1Department of Zoology, Universidade Federal do Paraná, C.P. 19020, Curitiba-PR, 81.531–980, Brazil. [email protected] 2Department of Entomology, Museu Nacional do Rio de Janeiro, Rio de Janeiro-RJ, 20940–040, Brazil. [email protected] ABSTRACT. Key to the adults of the most common forensic species of Diptera in South America. Flies (Diptera, blow flies, house flies, flesh flies, horse flies, cattle flies, deer flies, midges and mosquitoes) are among the four megadiverse insect orders. Several species quickly colonize human cadavers and are potentially useful in forensic studies. One of the major problems with carrion fly identification is the lack of taxonomists or available keys that can identify even the most common species sometimes resulting in erroneous identification. Here we present a key to the adults of 12 families of Diptera whose species are found on carrion, including human corpses. Also, a summary for the most common families of forensic importance in South America, along with a key to the most common species of Calliphoridae, Muscidae, and Fanniidae and to the genera of Sarcophagidae are provided. Drawings of the most important characters for identification are also included. KEYWORDS. Carrion flies; forensic entomology; neotropical. RESUMO. Chave de identificação para as espécies comuns de Diptera da América do Sul de interesse forense. Diptera (califorídeos, sarcofagídeos, motucas, moscas comuns e mosquitos) é a uma das quatro ordens megadiversas de insetos. Diversas espécies desta ordem podem rapidamente colonizar cadáveres humanos e são de utilidade potencial para estudos de entomologia forense. -
Diptera: Cyclorrhapha)
International Journal of Molecular Sciences Article Mitochondrial Genomes Provide Insights into the Phylogeny of Lauxanioidea (Diptera: Cyclorrhapha) Xuankun Li 1,†, Wenliang Li 2,†, Shuangmei Ding 1, Stephen L. Cameron 3, Meng Mao 4, Li Shi 5,* and Ding Yang 1,* 1 Department of Entomology, China Agricultural University, Beijing 100193, China; [email protected] (X.L.); [email protected] (S.D.) 2 College of Forestry, Henan University of Science and Technology, Luoyang 471023, China; [email protected] 3 Department of Entomology, Purdue University, West Lafayette, IN 47907, USA; [email protected] 4 Department of Plant and Environmental Protection Science, University of Hawaii at Manoa, Honolulu, HI 96822, USA; [email protected] 5 College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010018, China * Correspondences: [email protected] (L.S.); [email protected] (D.Y.); Tel.: +86-471-431-7421 (L.S.); +86-10-6273-2999 (D.Y.) † These authors contributed equally to this work. Academic Editor: Kun Yan Zhu Received: 26 January 2017; Accepted: 1 April 2017; Published: 14 April 2017 Abstract: The superfamily Lauxanioidea is a significant dipteran clade including over 2500 known species in three families: Lauxaniidae, Celyphidae and Chamaemyiidae. We sequenced the first five (three complete and two partial) lauxanioid mitochondrial (mt) genomes, and used them to reconstruct the phylogeny of this group. The lauxanioid mt genomes are typical of the Diptera, containing all 37 genes usually present in bilaterian animals. A total of three conserved intergenic sequences have been reported across the Cyclorrhapha. The inferred secondary structure of 22 tRNAs suggested five substitution patterns among the Cyclorrhapha. -
Aus Dem Institut Für Parasitologie Und Tropenveterinärmedizin Des Fachbereichs Veterinärmedizin Der Freien Universität Berlin
Aus dem Institut für Parasitologie und Tropenveterinärmedizin des Fachbereichs Veterinärmedizin der Freien Universität Berlin Entwicklung der Arachno-Entomologie am Wissenschaftsstandort Berlin aus veterinärmedizinischer Sicht - von den Anfängen bis in die Gegenwart Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Till Malte Robl Tierarzt aus Berlin Berlin 2008 Journal-Nr.: 3198 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. L. Brunnberg Erster Gutachter: Univ.-Prof. em. Dr. Dr. h.c. Dr. h.c. Th. Hiepe Zweiter Gutachter: Univ.-Prof. Dr. E. Schein Dritter Gutachter: Univ.-Prof. Dr. J. Luy Deskriptoren (nach CAB-Thesaurus): Arachnida, veterinary entomology, research, bibliographies, veterinary schools, museums, Germany, Berlin, veterinary history Tag der Promotion: 20.05.2008 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. ISBN-13: 978-3-86664-416-8 Zugl.: Berlin, Freie Univ., Diss., 2008 D188 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form reproduziert oder unter Verwendung elektronischer Systeme verar- beitet, vervielfältigt oder verbreitet werden. Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen, usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürfen. This document is protected by copyright law. -
The Head of Fannia Pusio (Fanniidae: Diptera) As a Novel Source of Morphometric Data for Assessing of Variation Along Geographic and Biological Lines
Zoological Studies 60:16 (2021) doi:10.6620/ZS.2021.60-16 Open Access The Head of Fannia pusio (Fanniidae: Diptera) as A Novel Source of Morphometric Data for Assessing of Variation Along Geographic and Biological Lines Yolanda Bravo-Pena1,* , José Herrera-Russert1,2 , Elena Romera1 , and José Galián1,3 1Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain. *Correspondence: E-mail: [email protected] (Bravo-Pena) E-mail: [email protected] (Romera) 2Department of Insect Biotechnology, Institute of Insect Biotechnology. Heinrich-Buff-Ring 26-3,35392, Gießen, Germany. E-mail: [email protected] (Herrera-Russert) 3Arthropotech SL, Arthropod Biotechnology, Nave Apícola, Granja Veterinaria UMU, Avenida de la Libertad, s/n, Guadalupe, 30071, Murcia, Spain. E-mail: [email protected] (Galián) Received 24 October 2020 / Accepted 14 January 2021 / Published 6 April 2021 Communicated by Jen-Pan Huang Fannia Robineau-Desvoidy, 1830 is the most diverse genus in the family Fanniidae (Diptera), with 288 species, many of which are include many of sanitary, economic and legal interest. The morphological homogeneity within the genus often makes species determination difficult.The best option for correct identification is to combine molecular and morphological analyses. The variation in the shape of a selection of body characters can be assessed by Geometric Morphometrics using the head as an innovative structure. Sex must be accounted for as a key covariate in this kind of study, since Fannia, as many other Diptera, has a sexually dimorphic head structure, with holoptic males and dicoptic females. Firstly, we analysed a set of Fannia sp.