Human Physiology an Integrated Approach

Total Page:16

File Type:pdf, Size:1020Kb

Human Physiology an Integrated Approach Appendix Physics and Math Richard D. Hill and Daniel Biller B University of Texas Introduction Using these fundamental units of measure, we can now es- tablish standard units for physical concepts ( Tbl. B.1 ). Although This appendix discusses selected aspects of biophysics, the these are the standard units for these concepts at this time, they are study of physics as it applies to biological systems. Because liv- not the only units ever used to describe them. For instance, force ing systems are in a continual exchange of force and energy, it is can also be measured in dynes, energy can be measured in calories, necessary to define these important concepts. According to the pressure can be measured in torr or mm Hg, and power can be mea- seventeenth-century scientist Sir Isaac Newton, a body at rest sured in horsepower. However, all of these units can be converted tends to stay at rest, and a body in motion tends to continue mov- into a standard unit counterpart, and vice versa. ing in a straight line unless the body is acted upon by some force The remainder of this appendix discusses some biologically (Newton’s First Law). relevant applications of physical concepts. This discussion in- Newton further defined force as an influence, measurable in cludes topics such as bioelectrical principles, osmotic principles, both intensity and direction, that operates on a body in such a and behaviors of gases and liquids relevant to living organisms. manner as to produce an alteration of its state of rest or motion. Put another way, force gives energy to a quantity, or mass, thereby Bioelectrical Principles enabling it to do work. In general, a driving force multiplied by a quantity yields energy, or work. For example: Living systems are composed of different molecules, many of which exist in a charged state. Cells are filled with charged par- = force * distance work ticles such as proteins and organic acids, and ions are in continual Energy exists in two general forms: kinetic energy and potential flux across the cell membrane. Therefore, electrical forces are im- energy. Kinetic energy { kinein, to move} is the energy possessed portant to life. by a mass in motion. Potential energy is energy possessed by a When molecules gain or lose electrons, they develop posi- mass because of its position. Kinetic energy ( KE ) is equal to one- tive or negative charges. A basic principle of electricity is that op- half the mass (m ) of a body in motion multiplied by the square of posite charges attract and like charges repel. A force must act on the velocity (v ) of the body: a charged particle (a mass) to bring about changes in its position. KE = 1∕2 mv2 Potential energy (PE ) is equal to the mass (m ) of a body multiplied by acceleration due to gravity ( g ) times the height ( h ) Standard Units for Table B-1 of the body above the earth’s surface: Physical Concepts PE = mgh where g = 10 m s2 > Mathematical Both kinetic and potential energy are measured in joules. Measured Standard (SI*) Derivation/ Concept Unit Definition Force Newton (N) 1 N = 1 kg # m s2 Basic Units of Measurement > For physical concepts to be useful in scientific endeavors, they Energy/Work/ Joule (J) 1 J = 1 N # m must be measurable and should be expressed in standard units Heat of measurement. Some fundamental units of measure include the following: Power Watt (W) 1 W = 1 J s > Length ( l ): Length is measured in meters (m). = # Time ( t ): Time is measured in seconds (s). Electrical Coulomb (C) 1 C 1 A s Mass ( m ): Mass is measured in kilograms (kg), and is defined as charge the weight of a body in a gravitational field. Potential Volt (V) 1 V = 1 J C Temperature ( T ): Absolute temperature is measured on the > Kelvin (K) scale, Resistance Ohm (⍀) 1 Æ = 1 V A where K = degrees Celsius (ЊC) + 273.15 > and ЊC = degrees Fahrenheit - 32 1.8 Capacitance Farad (F) 1 F = 1 C V 1 2> > Electric current ( I ): Electric current is measured in amperes (A). Pressure Pascal (Pa) 1 Pa = 1 N m2 Amount of substance ( n ): The amount of a substance is mea- > sured in moles (mol). * SI = Système International d’Unités 944 Appendix B Physics and Math Therefore, there must be a force acting on charged particles Faraday constant (F) is an expression of the electrical charge car- to cause attraction or repulsion, and this electrical force can be ried by one mole of electrons and is equal to 96,485 coulombs/ measured. mole. Electrical force increases as the strength (number) of charges The amount of current that flows depends on the nature of increases, and it decreases as the distance between the charges in- the material between the charges. If a material hinders electron creases ( Fig. B.1 ). This observation has been called Coulomb’s flow, then it is said to offer resistance (R), measured in ohms. law , and can be written: Current is inversely proportional to resistance, such that current decreases as resistance increases. If a material offers high resis- F = q q ed2 1 2> tance to electron flow, then that material is called an insulator. If where q1 a n d q2 are the electrical charges (coulombs), d is the dis- resistance is low, and current flows relatively freely, then the ma- tance between the charges (meters), e is the dielectric constant, terial is called a conductor. Current, voltage, and resistance are and F is the force of attraction or repulsion, depending on the related by Ohm’s law, which states: type of charge on the particles. V = IR When opposite charges are separated, a force acts over a distance to draw them together. As the charges move together, w h e r e V = potential difference in volts work is being done by the charged particles and energy is being I = current in amperes released. Conversely, to separate the united charges, energy must R = resistance in ohms be added and work done. If charges are separated and kept apart, In biological systems, pure water is not a good conductor, but wa- they have the potential to do work. This electrical potential is ter containing dissolved NaCl is a good conductor because ions called voltage. Voltage is measured in volts (V). provide charges to carry the current. In biological membranes, If electrical charges are separated and there is a potential dif- the lipids have few or no charged groups, so they offer high resis- ference between them, then the force between the charges allows tance to current flow across them. Thus, different cells can have electrons to flow. Electron flow is called an electric current. The different electrical properties depending on their membrane lipid composition and the permeability of their membranes to ions. ELECTRICAL FORCE Osmotic Principles Freezing point, vapor pressure, boiling point, and osmotic pres- If you separate two opposite charges, there will be an electric force between them. sure are properties of solutions collectively called colligative + properties. These properties depend on the number of solute particles present in a solution. Osmotic pressure is the force If you increase the number of charges that are separated, the that drives the diffusion of water across a membrane. Because force increases. there are no solutes in pure water, it has no osmotic pressure. + However, if one adds a solute like NaCl, the greater the concen- + + tration ( c ) of a solute dissolved in water, the greater the osmotic pressure. The osmotic pressure ( p ) varies directly with the con- If you increase the distance between the charges, the force decreases. centration of solute (number of particles ( n ) per volume ( V )): + p = n V RT 1 > 2 p = cRT If charges are d where R is the ideal gas constant 8.3145 joules K # mol a n d T + 1 > 2 separated by some is the absolute temperature in Kelvin. Osmotic pressure can be distance d, they have the potential to do work. measured by determining the mechanical pressure that must be This electrical potential is applied to a solution so that osmosis ceases. called voltage. Water balance in the body is under the control of osmotic pressure gradients (concentration gradients). Most cell mem- If separated charges are allowed to move together, they do work branes allow water to pass freely, primarily through open chan- and energy is released. The + Work = force X distance nels. To control the movement of water, the body either removes amount of work done depends these channels from the membrane or control solute movement on the number of particles and that creates concentration gradients. the distance between them. To separate the charged Relevant Behaviors of Gases and Liquids particles, energy must be put into the The respiratory and circulatory systems of the human body obey system and work + the physical laws that govern the behavior of gases and liquids. is done. This section discusses some of the important laws that govern Fig. B-1 these behaviors and how our body systems utilize these laws. 945 Appendix B Physics and Math Gases This equation is read as “pH is equal to the negative log of the The ideal gas law states: hydrogen ion concentration.” But what is a logarithm? A logarithm is the exponent to which you would have to PV = nRT raise the base (10) to get the number in which you are interested. For example, to get the number 100, you would have to square the w h e r e P = pressure of gases in the system base (10): V = volume of the system n = number of moles in gas 102 = 100 T = temperature The base 10 was raised to the second power; therefore, the log of R = ideal gas constant (8.3145 J/K mol) 100 is 2: If n and T are kept constant for all pressures and volumes in a sys- = tem of gases, then any two pressures and volumes in that system log 100 2 are related by Boyle’s Law, Some other simple examples include: = P1V1 P2V2 1 01 = 10 The log of 10 is 1.
Recommended publications
  • Focusing on the Re-Emergence of Primitive Reflexes Following Acquired Brain Injuries
    33 Focusing on The Re-Emergence of Primitive Reflexes Following Acquired Brain Injuries Resiliency Through Reconnections - Reflex Integration Following Brain Injury Alex Andrich, OD, FCOVD Scottsdale, Arizona Patti Andrich, MA, OTR/L, COVT, CINPP September 19, 2019 Alex Andrich, OD, FCOVD Patti Andrich, MA, OTR/L, COVT, CINPP © 2019 Sensory Focus No Pictures or Videos of Patients The contents of this presentation are the property of Sensory Focus / The VISION Development Team and may not be reproduced or shared in any format without express written permission. Disclosure: BINOVI The patients shown today have given us permission to use their pictures and videos for educational purposes only. They would not want their images/videos distributed or shared. We are not receiving any financial compensation for mentioning any other device, equipment, or services that are mentioned during this presentation. Objectives – Advanced Course Objectives Detail what primitive reflexes (PR) are Learn how to effectively screen for the presence of PRs Why they re-emerge following a brain injury Learn how to reintegrate these reflexes to improve patient How they affect sensory-motor integration outcomes How integration techniques can be used in the treatment Current research regarding PR integration and brain of brain injuries injuries will be highlighted Cases will be presented Pioneers to Present Day Leaders Getting Back to Life After Brain Injury (BI) Descartes (1596-1650) What is Vision? Neuro-Optometric Testing Vision writes spatial equations
    [Show full text]
  • VTPP 423 Syllabus General
    VTPP 423 BIOMEDICAL PHYSIOLOGY I COURSE INFORMATION Description: Biomedical Physiology I. (3-2). Credit 4. Physiological principles, review of cellular physiology, and development of an understanding of the nervous system and muscle, cardiovascular, and respiratory physiology; clinical applications related to organ systems. Prerequisites: VIBS 305; junior or senior classification. Discussions: MWF: 9:10 a.m. – 10:00 a.m. (Room 309, VICI) Lab Sessions: 501: Tuesdays : 12:40 - 2:30 p.m. (Room 320, VICI) 504: Fridays : 12:40 - 2:30 p.m. (Room 320, VICI) Instructor: J.D. Herman Office Hours: MWF 10:00 – 11:00 or by appointment Office Room # 316 VIDI Phone: 979/862-7765 [email protected] Teaching TBA Assistant: Required Lauralee Sherwood: Human Physiology: from cells to systems, 8th edition, Brooks/Cole Cengage Resources: Learning, ISBN: 978-1-111-57743-8 iClicker 2 Web-sites: htt p://ecampus.tamu.edu/ Course Goal: To understand the physiological significance of cells, organs and organ systems in maintaining homeostasis of the mammalian organism. (To develop critical thinking, problem solving and self- learning skills in preparation for a career in medicine/science.) Learning Outcomes: By the end of the course, the student will: • investigate and solve mathematical calculations commonly used in physiology • articulate an understanding of homeostatic control mechanisms of the: ▪ central nervous system ▪ muscular system ▪ cardiovascular system ▪ respiratory system ▪ renal system • collect and analyze physiologic data related to the ▪ central nervous system ▪ muscular system ▪ cardiovascular system ▪ respiratory system ▪ renal system • evaluate the relationship between physiology and disease ▪ including insight into critical thinking in the clinical setting ▪ including goals and mechanisms of some pharmacologic agents Course Grading: A total of 400 points are possible in the course.
    [Show full text]
  • Neurophysiology (Revised 2012)
    The American Physiological Society Medical Curriculum Objectives Project Complete curriculum objectives available at: http://www.the-aps.org/medphysobj Neurophysiology (revised 2012) Cellular Neurophysiology, Blood Brain Barrier, Cerebrovascular Physiology A. Physiology of the Neuron NEU 1. Define, and identify on a diagram of a motor neuron, the following regions: dendrites, axon, axon hillock, soma, and an axodendritic synapse. NEU 2. Define, and identify on a diagram of a primary sensory neuron, the following regions: receptor membrane, peripheral axon process, central axon process, soma, sensory ganglia. NEU 3. Write the Nernst equation, and explain the effects of altering the intracellular or extracellular Na+, K+, Cl-, or Ca2+ concentration on the equilibrium potential for that ion. NEU 4. Describe the normal distribution of Na+, K+, and Cl- across the cell membrane, and using the chord conductance (Goldman) equation, explain how the relative permeabilities of these ions create a resting membrane potential. NEU 5. Describe ionic basis of an action potential. NEU 6. Distinguish the effects of hyperkalemia, hypercalcemia, and hypoxia on the resting membrane and action potential. NEU 7. Explain how the abnormal function of ion channels (channelopathies) can alter the resting membrane and action potential and cause paralysis, ataxia, or night blindness. NEU 8. Describe the ionic basis of each of the following local graded potentials: excitatory post synaptic potential (EPSP), inhibitory post synaptic potential (IPSP), end plate potential (EPP) and a receptor (generator) potential. NEU 9. Contrast the generation and conduction of graded potentials (EPSP and IPSP) with those of action potentials. NEU 10. On a diagram of a motor neuron, indicate where you would most likely find IPSP, EPSP, action potential trigger point, and release of neurotransmitter.
    [Show full text]
  • The Phenomenon of Multiple Stretch Reflexes
    Henry Ford Hospital Medical Journal Volume 34 Number 1 Article 6 3-1986 The Phenomenon of Multiple Stretch Reflexes Robert D. Teasdall Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Teasdall, Robert D. (1986) "The Phenomenon of Multiple Stretch Reflexes," Henry Ford Hospital Medical Journal : Vol. 34 : No. 1 , 31-36. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol34/iss1/6 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. The Phenomenon of Multiple Stretch Reflexes Robert D. Teasdall, MD* Multiple stretch reflexes occur in muscles adjacent to or remote from the tap. The response may be ipsilateral or bilateral. These reflexes are encountered not only in normal subjects with brisk stretch reflexes but particularly in patients with lesions of the upper motor neuron. The concussion obtained by the blow is conducted along bone to muscle. Muscle spindles are stimulated, and in this manner independent stretch reflexes are produced in these muscles. This mechanism is responsible for the phenomenon of multiple stretch reflexes. The thorax and pelvis play important roles in the contralateral responses by transmitting these mechanical events across the midline. (Henry FordHosp Med J 1986;34:31-6) ontraction of muscles remote from the site of f)ercussion is Head and neck Cencountered in patients with brisk stretch reflexes.
    [Show full text]
  • Human Physiology (Biology 4) Laboratory Exercises
    Human Physiology (Biology 4) Laboratory Exercises Instructor: Rebecca Bailey 1 Laboratory Exercises Lab 1: The Microscope and Overview of Organ Systems..................page 3 Lab 2: Cells & Tissues (See Supplement)........................................page 15 Lab 3: Transport 1 & 2 (See Supplement for Part 2)........................page 16 Labs 4 and 5: Nervous System (ADAM)...........................................page 19 Lab 6: Reflexes & Senses………………...........................................page 20 Lab 7: Muscular System (ADAM).....................................................page 31 Lab 7a: Whole Muscle Function (See Supplement).........................page 32 ---this lab is not done every semester, check your schedule--- Lab 8: ECG and Cardiovascular System…......................................page 33 Lab 9: Cardiovascular System (See Supplement, ADAM)...............page 41 Lab 10: Blood……….........................................................................page 42 Lab 11: Blood Slides and Respiratory System (ADAM)....................page 46 Lab 12: Respiratory System.............................................................page 49 Lab 13: Urinary System....................................................................page 54 Lab 14: Digestive System and Acid/Base Demo..............................page 60 At the end of each lab, you should be able to understand the concepts and processes learned and answer any of the questions investigated in the activity. You are expected to identify microscopic tissues/organs
    [Show full text]
  • The Plantar Reflex
    THE PLANTAR REFLEX a historical, clinical and electromyographic study From the Department of Neurology, Academic Hospital 'Dijkzigt', Rotterdam, The Netherlands THE PLANTAR REFLEX A HISTORICAL, CLINICAL AND ELECTROMYOGRAPHIC STUDY PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE GENEESKUNDE AAN DE ERASMUS UNIVERSITEIT TE ROTTERDAM OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. B. LEIJNSE EN VOLGENS BESLU!T VAN HET COLLEGE VAN DEKANEN. DE OPENBARE VERDED!GING ZAL PLAATS VINDEN OP WOENSDAG 16 NOVEMBER 1977 DES NAMIDDAGS TE 4.15 UUR PREC!ES DOOR JAN VAN GIJN GEBOREN TE GELDERMALSEN 1977 KRIPS REPRO - MEPPEL PROMOTOR: DR. H. VAN CREVEL CO-PROMOTOR: PROF. DR. A. STAAL CO-REFERENTEN: PROF. DR. H. G. ]. M. KUYPERS PROF. DR. P. E. VOORHOEVE Aan mijn ouders Aan Carien, Maarten en Willem CONTENTS page GENERAL INTRODUCTION 15 CHAPTER I HISTORY OF THE PLANTAR REFLEX AS A CLINICAL SIGN DISCOVERY - the plantar reflex before Babinski 19 - the toe phenomenon . 21 - Joseph Babinski and his work 24 ACCEPTANCE - the pyramidal syndrome before the toe reflex 26 - confirmation . 26 - a curious eponym in Holland 28 - false positive findings? 29 - false negative findings 29 FLEXION AND EXTENSION SYNERGIES - the Babinski sign as part of a flexion synergy . 31 - opposition from Babinski and others . 33 - ipsilateral limb extension with downgoing toes versus the normal plantar response . 36 - crossed toe responses . 36 - tonic plantar flexion of the toes in hemiplegia 37 RIVAL SIGNS - confusion . 39 - different sites of excitation 39 - stretch reflexes of the toe muscles 41 - spontaneous or associated dorsiflexion of the great toe 42 - effects other than in the toes after plantar stimulation 42 THE PLANTAR RESPONSE IN INFANTS - contradictory findings 43 - the grasp reflex of the foot .
    [Show full text]
  • Neuropsychiatry Block Spinal Cord Functions and Reflexes
    NeuroPsychiatry Block Spinal Cord Functions and Reflexes By Laiche Djouhri, PhD Dept. of Physiology Email: [email protected] Ext:71044 NeuroPsychiatry Block/Week 1 Motor Functions of the Spinal Cord, The cord Reflexes Chapter 55 (Guyton & Hall) 2 Objectives By the end of this session students are expected to: . Appreciate the two-way traffic along the spinal cord . Describe some characteristics of spinal neuronal circuits . Classify reflexes and appreciate their clinical importance . Describe neuronal mechanisms of the 10withdrawal/6/2016 reflex & crossed extensor reflex3 The Spinal Cord (SC) . It is about 45 cm long and 2 cm in diameter 8 Cervical . It is composed of about 100 million neurons and even more neuroglia 12 Thoracic . It is continuous with the brain and together they make up the Lumbar CNS 5 Sacral 5 . 31 pairs of spinal nerves are connected to it 1 10/6/2016 Coccygeal 4 The Spinal Nerves . Each spinal nerve has a ventral root and a dorsal root . The dorsal (posterior) root contains afferent (sensory) nerve fibers, and their cell bodies are located in dorsal root ganglion (DRG). The ventral (anterior) root carries efferent (motor) fibers, and their cells bodies are located in the ventral horn of the spinal cord. Afferent fiber Efferent fiber (DRG) Each DRG has 1000s of cell bodies Spinal Cord Organization: 1. The Grey Matter . The structural organization of the SC can best be studied in a cross section of the cord which reveals: • An outer band of white matter surrounding • An inner core of grey matter (H shaped) which can be divided into 3 functional zones: 1.
    [Show full text]
  • The Spinal Cord, Spinal Nerves, and Spinal Reflexes
    12 The Spinal Cord, Spinal Nerves, and Spinal Reflexes Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Functional Organization of the Spinal Cord Learning Outcomes 12.1 Describe how the spinal cord can function without input from the brain. 12.2 Discuss the anatomical features of the spinal cord. 12.3 Describe the three meningeal layers that surround the spinal cord. 12.4 Explain the roles of gray matter and white matter in processing and relaying sensory information and motor commands. © 2018 Pearson Education, Inc. Section 1: Functional Organization of the Spinal Cord Learning Outcomes (continued) 12.5 Describe the major components of a spinal nerve. 12.6 Describe the rami associated with spinal nerves. 12.7 Relate the distribution pattern of spinal nerves to the region they innervate. 12.8 Describe the cervical plexus. 12.9 Relate the distribution pattern of the brachial plexus to its function. 12.10 Relate the distribution patterns of the lumbar plexus and sacral plexus to their functions. © 2018 Pearson Education, Inc. Module 12.1: The spinal cord can function independently from the brain © 2018 Pearson Education, Inc. Module 12.1: The brain and spinal cord Both the brain and the spinal cord: . Receive sensory input from receptors . Contain reflex centers . Send motor output to effectors Reflex . Rapid, automatic response triggered by specific stimuli Spinal reflexes . Controlled in the spinal cord . Function without input from the brain © 2018 Pearson Education, Inc. Module 12.1: Review A. Describe the direction of sensory input and motor commands relative to the spinal cord. B.
    [Show full text]
  • Questions for Exam 2012
    BIOLOGICAL PSYCHOLOGY I (2012 sec 003) MIDTERM EXAM 3A (Thursday, Nov. 12, 2009) Mark the ONE BEST letter choice (either A, B, C, D, or E) on the computer-graded sheet in NUMBER TWO PENCIL. If you need to erase, do so completely! You MUST use the answer sheet provided by us inside your exam packet. No other answer sheet will be allowed. TAKE A DEEP BREATH – TAKE YOUR TIME, READ ALL QUESTIONS AND ANSWERS CAREFULLY - GOOD LUCK!!! 1. The calcium necessary for the interaction between actin and myosin filaments during muscle contraction is released from: a) the motor neurons presynaptic terminals. b) the sarcoplasmic reticulum. c) the actin filaments. d) myosin filaments. e) the synaptic vesicles. 2. In the early pioneering studies of sleep, which region, when electrically stimulated with a small electrode, would wake sleeping cats? a) the frontal cortex. b) the hippocampus. c) the basal ganglia. d) the ascending reticular activating system. e) medial forebrain bundle. 3. What is the correct sequence of the different stages of sleep experienced through the night, beginning when you fall asleep (numbers are the different stages of non-REM sleep)? a) 1, 2, 3, 4, REM, 4, 3, 2, 1 . b) REM, 1, 2, 3, 4 . c) 4, 3, 2, 1, 2, 3, 4, REM . d) 1, 2, 3, 4, 3, 2, 1, REM . e) 4, 3, 2, 1, REM, 1, 2, 3, 4 . 4. As part of a science-fair project in 1965, how long did Randy Gardner stay awake during his sleep deprivation experiment? a) 2 days. b) 5 days.
    [Show full text]
  • Deep Tendon Reflexes
    Reflex Physiology Dr. Ali Ebneshahidi © 2009 Ebneshahidi Reflex Physiology . Reflexes are automatic, subconscious response to changes within or outside the body. a. Reflexes maintain homeostasis (autonomic reflexes) – heart rate, breathing rate, blood pressure, and digestion. b. Reflexes also carry out the automatic action of swallowing, sneezing, coughing, and vomiting. c. Reflexes maintain balance & posture. ex. Spinal reflexes – control trunk and limb muscles. d. Brain reflexes – involve reflex center in brain stem. ex. Reflexes for eye movement. © 2009 Ebneshahidi Reflex Arc The reflex arc governs the operation of reflexes. Nerve impulses follow nerve pathways as they travel through the nervous system. The simplest of these pathways, including a few neurons, constitutes a reflex arc. Reflexes whose arc pass through the spinal cord are called spinal reflexes. © 2009 Ebneshahidi Parts of Reflex Arc . 1. Receptor – detects the stimulus. a) Description: the receptor end of a particular dendrite or a specialized receptor cell in a sensory organ. b) function: sensitive to a specific type of internal or external change. 2. sensory neuron – conveys the sensory info. to brain or spinal cord. a. Description: Dendrite, cell body, and axon of a sensory neuron. b. Function: transmit nerve impulses from the receptor into the brain or spinal cord. © 2009 Ebneshahidi Reflex Arc . 3. Interneuron: relay neurons. a. Description: dendrite, cell body, and axon of a neuron within the brain or spinal cord. b. function: serves as processing center, conducts nerve impulses from the sensory neuron to a motor neuron. 4. Motor neuron: conduct motor output to the periphery. a. Description: Dendrite, cell body, and axon of a motor neuron.
    [Show full text]
  • I Order Neurons: Are Axons of Post
    www.examrace.com1 Re www.examrace.com2 rcaiEI'Iセᄋ@ セエ@ www.examrace.com3 Reflex Action • Definition : It is an involuntary response to a peripheral stimulation • Sensory impulse is automatically converted into a motor effect • It forms the functional unit of nervous system • It depends on integrity of reflex arc www.examrace.com4 Reflex Arc Following components • An Afferent from a receptor • Synapse, may be one or many • An Efferent to effector organ www.examrace.com5 Receptors skin -Afferent neuron Efferent neuron Effector (muscle) www.examrace.com6 Classification: A: Clinical classification • Superficial • Deep or Tendon reflexes • Visceral: at least one part of reflex arc is formed by autonomic nerve eg. Pupillary reflex, carotid sinus reflex • Pathological eg. Babinski’s sign www.examrace.com7 B: Anatomical cl. • Segmental Reflexes: end of afferent & beginning of efferent neuron are in the same seg. of spinal cord • Intersegmental Reflex : here the end & beginning are in different seg. • Suprasegmental Reflex: centre for such reflex lies above the spinal cord www.examrace.com8 C: Inborn or Acquired • Conditioned or Acquired: are acquired after learning or training eg. Reflex salivation • Unconditioned or Inborn: present since birth eg. Salivation when an object is placed in mouth. www.examrace.com9 D: depending upon no. of Synapses • Monosynaptic • Bisynaptic • Polysynaptic E : physiological classification • Flexor reflex • Extensor re. www.examrace.com10 Monosynaptic Reflex Stretch Reflex or Myotatic Reflex Reflex Arc • Stimulus—Stretch to muscle • Receptor– Muscle spindle (gpIa & II fib) • Central conn.—On alpha motor neuron • Response—Contraction of same muscle • Central delay— 0.5 ms. ( one synapse) www.examrace.com11 Afferent Muscle nerve ceptor Motor neuron www.examrace.com12 Structure of receptor • Muscles have two types of fibers • Extrafusal fib.----contractile fib.
    [Show full text]
  • Modeling Reflex Arcs
    Contents List ...where molecules become real TM euron Modeling Kit© Modeling Reflex Arcs Student Handout II “Take a walk” through the nervous system by completing the Simplified Overview of the Nervous System graphic organizer (page 5). Use this as a road map to the major divisions of the nervous system. A reflex arc is a simple signal conduction pathway to and from the central nervous system (CNS). The most common form of reflex arc consists of anafferent neuron, an interneuron and an efferent neuron. Signals from afferent, or sensory, neurons approach the central nervous system. Efferent, or motor, neurons exit the CNS and conduct signals to effectors. Effectors may be muscle or glandular tissue. Interneurons, found exclusively in the CNS, conduct signals from afferent neurons toward efferent neurons. All reflex arcs have five essential components: 1. The site of the stimulus action is called the receptor. 2. The afferent or sensory neuron transmits afferent impulses to the CNS. 3. The integration center is located within the CNS where information is processed. 4. The efferent or motor neuron conducts efferent impulses from the integration center to the appropriate effectors. 5. The effector is the muscle or glandular tissue that response to the efferent impulse. Case 1. The Withdrawal Reflex The withdrawal or flexor reflex is a rapid, predictable motor response to a painful stimulus that causes an automatic withdrawal of the threatened body part from the stimulus. Imagine that you reach into a desk drawer to retrieve a writing utensil to jot down some notes about the amazing lesson your teacher is presenting on reflexes.
    [Show full text]