Basal Forebrain

Total Page:16

File Type:pdf, Size:1020Kb

Basal Forebrain Published June 13, 2019 as 10.3174/ajnr.A6088 ORIGINAL RESEARCH ADULT BRAIN 3T MRI Whole-Brain Microscopy Discrimination of Subcortical Anatomy, Part 2: Basal Forebrain X M.J. Hoch, X M.T. Bruno, X A. Faustin, X N. Cruz, X A.Y. Mogilner, X L. Crandall, X T. Wisniewski, X O. Devinsky, and X T.M. Shepherd ABSTRACT BACKGROUND AND PURPOSE: The basal forebrain contains multiple structures of great interest to emerging functional neurosurgery applications, yet many neuroradiologists are unfamiliar with this neuroanatomy because it is not resolved with current clinical MR imaging. MATERIALS AND METHODS: We applied an optimized TSE T2 sequence to washed whole postmortem brain samples (n ϭ 13) to demonstrate and characterize the detailed anatomy of the basal forebrain using a clinical 3T MR imaging scanner. We measured the size of selected internal myelinated pathways and measured subthalamic nucleus size, oblique orientation, and position relative to the intercommissural point. RESULTS: We identified most basal ganglia and diencephalon structures using serial axial, coronal, and sagittal planes relative to the intercommissural plane. Specific oblique image orientations demonstrated the positions and anatomic relationships for selected struc- tures of interest to functional neurosurgery. We observed only 0.2- to 0.3-mm right-left differences in the anteroposterior and supero- inferior length of the subthalamic nucleus (P ϭ .084 and .047, respectively). Individual variability for the subthalamic nucleus was greatest for angulation within thesagittal plane (range, 15°–37°), transverse dimension (range, 2–6.7 mm), and most inferior border (range, 4–7 mm below the intercommissural plane). CONCLUSIONS: Direct identification of basal forebrain structures in multiple planes using the TSE T2 sequence makes this challenging neuroanatomy more accessible to practicing neuroradiologists. This protocol can be used to better define individual variations relevant to functional neurosurgical targeting and validate/complement advanced MR imaging methods being developed for direct visualization of these structures in living patients. ABBREVIATIONS: DBS ϭ deep brain stimulation; DRT ϭ dentatorubrothalamic tract; PLIC ϭ posterior limb of the internal capsule; STN ϭ subthalamic nucleus; SUDC ϭ sudden unexplained death of childhood; Vim ϭ thalamic ventrointermedius nucleus; ZI ϭ zona incerta eep to the cortical surface, the basal ganglia, thalamus, and exceeds the cerebral cortex in the resting state.3 Focal pathologic Dsubthalamus are vital basal forebrain structures involved in functional or structural changes can have serious clinical conse- the regulation of autonomic, motor, sensory, limbic, and endo- quences due to the compact organization of the basal forebrain. crine functions.1,2 The metabolic demand of the basal forebrain The thalamus is a complex hub receiving subcortical sensory and motor input that projects to both the cortex and striatum.4 Tha- lamic infarction, demyelination, tumors, and other pathologies Received March 9, 2019; accepted after revision April 22. can cause chronic pain,5 sensory loss in multiple modalities, am- From the Department of Radiology and Imaging Sciences, (M.J.H.), Emory Univer- nesia,6 dystonia,7 and other disorders.8,9 The subthalamus mod- sity, Atlanta, Georgia; Departments of Radiology (M.T.B., N.C., T.M.S.), Pathology 10 (A.F., T.W.), Neurosurgery (A.Y.M.), Neurology (L.C., T.W., O.D.), and Psychiatry ulates basal ganglia output. Ischemic and hyperglycemic inju- (T.W.), New York University, New York, New York; SUDC Foundation (L.C., O.D.), ries of the subthalamic nucleus can result in hemiballism.11,12 The New York, New York; and Center for Advanced Imaging Innovation and Research (T.M.S.), New York, New York. basal ganglia have complex connections to the cortical motor This study was funded by the SUDC Foundation, the Taylor McKeen Shelton Foun- areas, including the precentral gyrus, supplementary motor dation, and the Finding a Cure for Epilepsy and Seizures fund. T.M.S. received re- 13 search support from the National Institute of Aging (grant AG048622). T.W. and area, and frontal eye fields. Basal ganglia pathologies cause A.F. received research support from the National Institute of Aging (grant AG008051). This work was supported, in part, by the Center for Advanced Imaging Indicates open access to non-subscribers at www.ajnr.org Innovation and Research, a National Institutes of Health–National Institute of Bio- medical Imaging and Bioengineering Biomedical Technology Resource Center article with supplemental on-line photos. (Grant P41EB017183). Indicates article with supplemental on-line videos. Please address correspondence to Timothy Shepherd, 660 First Ave, Room 226, New York, NY, 10016; e-mail: [email protected] http://dx.doi.org/10.3174/ajnr.A6088 AJNR Am J Neuroradiol ●:●●2019 www.ajnr.org 1 Copyright 2019 by American Society of Neuroradiology. movement disorders (eg, Parkinson, Huntington, and Wilson aging relaxation changes from the free aldehyde fixative solu- diseases), developmental disorders (eg, autism), or neuropsy- tion.40 Individual brains with MR imaging data included for the chiatric disorders (eg, Tourette syndrome and obsessive-com- figures (n ϭ 13) in this study met the following criteria: 1) mini- pulsive disorder).14-17 mal injury to cerebral hemispheres or callosum from procure- Functional neurosurgery is a rapidly evolving field with mul- ment, 2) no MR imaging or pathologic abnormality (outside the tiple basal forebrain targets to reversibly inhibit selected struc- hippocampus) identified by a board-certified neuroradiologist tures with deep brain stimulation (DBS) or ablate those structures and neuropathologist, respectively, 3) no T1-hyperintense fixa- using MR imaging–guided focused sonography. The subthalamic tion bands in the basal forebrain structures due to variable fixa- nucleus (STN), globus pallidus internus, and thalamic ventroin- tion penetration,41 and 4) a prerefrigeration postmortem interval termedius nucleus (Vim) are common targets to treat medically of Ͻ24 hours.42 One of 14 consecutive SUDC samples was re- refractory hypo- and hyperkinetic movement disorders.18 Ex- jected due to procurement-induced division of the midbrain. The ploratory targets include the habenulopeduncular pathway or nu- mean postnatal age for included specimens was 47.3 Ϯ 34.8 cleus accumbens for treating refractory depression and substance months with a range between 22 and 142 months (10/13 speci- abuse.19,20 Chronic electrical stimulation of selected thalamic mens were between 24 and 48 months of age); 6/13 specimens subnuclei can reduce seizures in patients with epilepsy.21 Despite were from male subjects with SUDC. After imaging was com- therapeutic successes, the mechanisms of DBS remain incom- pleted, brains were returned to the SUDC research study for brain pletely explained, partially due to limited anatomic and func- cutting within 7–10 days. tional understanding of key structures. For example, DBS of the STN is used to treat Parkinson disease, though some suggest zona Whole-Brain MR Imaging Protocol incerta stimulation may also be clinically important.22,23 Each brain was immersed in water inside a custom 3D-printed Imaging tools to precisely define basal forebrain structures container specifically designed to conform to a 64-channel head remain relatively unchanged despite rapid advances in therapeu- and neck coil on a 3T Prisma MR imaging scanner (Siemens, tics. To better understand the best anatomic targets and the actual Erlangen, Germany). Sealed water-filled disposable powderless mechanism for clinical improvement observed with functional latex medical gloves were gently wedged between the container neurosurgery, we need to directly visualize the relevant functional and brain to prevent motion. Scout sequences identified the brain anatomy before and ideally after treatment. Conventional MR position, and then 2D, high-resolution TSE MR imaging se- imaging has limited contrast resolution for basal forebrain anat- quences of the whole brain were obtained in coronal, sagittal, and omy; this is an active goal of MR imaging research. Susceptibility- axial planes relative to the intercommissural plane. Optimization weighted MR imaging,24-26 ultra-high-field in vivo MR imag- of sequence parameters for contrast resolution of small structures ing,27-29 and advanced diffusion techniques30-32 can improve in the postmortem brain using TSE sequences with 3T MR imag- localization of key basal forebrain structures but are challenging ing was reported separately.34 T2-weighted TSE sequence param- to implement into routine clinical practice. Independent valida- eters were the following: TR ϭ 5380 ms, TE ϭ 53 ms, echo-train tion of diffusion methods has been limited.33 We developed a length ϭ 7, echo spacing ϭ 10.8 ms, bandwidth ϭ 415 Hz/pixel, rapid 3T postmortem anatomic MR imaging protocol34 using an slice thickness and number ϭ 0.8 mm ϫ 116 (no interslice gap), optimized 2D-TSE sequence with a clinical 3T MR imaging system in-plane resolution ϭ 0.35 ϫ 0.35 mm, concatenations ϭ 2, av- and head coil available at most institutions. This protocol produces erages ϭ 10, total time ϭ 2 hours (full protocol available on re- exquisite anatomic contrast for subcortical structures comparable to quest). The current scanner software limits the number of slices to neuroanatomic atlases with histologic stains.2,35-37 Here, we demon- 128, so whole-brain imaging with isotropic 350-␮m voxels
Recommended publications
  • Differential Deep Brain Stimulation Sites and Networks for Cervical Vs
    medRxiv preprint doi: https://doi.org/10.1101/2021.07.28.21261289; this version posted July 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Title Differential Deep Brain Stimulation Sites and Networks for Cervical vs. Generalized Dystonia Authors Andreas Horn*1, Martin Reich*2, Siobhan Ewert*1, Ningfei Li1, Bassam Al-Fatly1, Florian Lange2, Jonas Roothans2, Simon Oxenford1, Isabel Horn1, Steffen Paschen3, Joachim Runge4, Fritz Wodarg5, Karsten Witt6, Robert C. Nickl7, Matthias Wittstock8, Gerd-Helge Schneider9, Philipp Mahlknecht10, Werner Poewe10, Wilhelm Eisner11, Ann-Kristin Helmers12, Cordula Matthies7, Joachim K. Krauss4, Günther Deuschl3, Jens Volkmann2, Andrea Kühn1 Author Affiliations 1. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany. 2. Julius-Maximilians-University Würzburg, Department of Neurology, Germany 3. University Kiel, Department of Neurology, Germany 4. Department of Neurosurgery, Medical School Hannover, MHH, Hannover, Germany. 5. University Kiel, Department of Radiology, Germany 6. University Oldenburg, Department of Neurology, Germany 7. Julius-Maximilians-University Würzburg, Department of Neurosurgery, Germany 8. University Rostock, Department
    [Show full text]
  • Semmelweis University, Department of Anatomy, Histology and Embryology the Position of the Diencephalon in the Brain Parts of the Diencephalon
    Microscopy of the diencephalon Árpád Dobolyi Semmelweis University, Department of Anatomy, Histology and Embryology The position of the diencephalon in the brain Parts of the diencephalon • Thalamus • Epithalamus – Pineal body – Habenulae – Trigonum habenulae – Habenular nuclei – Stria medullaris – Habenular commissure • Metathalamus – Medial geniculate body – Lateral geniculate body • Subthalamus – Subthalamic nucleus – Zona incerta – H fields of Forel • Hypothalamus Nuclear groups and nuclei of the thalamus Frontal sections of the thalamus Anterior section Middle section Functional classification of thalamic nuclei • Specific nuclei: specific input, project to specific part of the cortex - sensory relay nuclei: VPL, VPM, MGB, LGB - motor relay nuclei: VA, VL - limbic relay nuclei: AV, AD, AM • Association nuclei: cortical input, project to associative areas of the cortex - MD, LD, LP, pulvinar • Non-specific nuclei: ascending input, diffuse projection to the cortex - midline and intralaminar nuclei • Nuclei not projecting to the cerebral cortex - n. reticularis thalami, n. parafascicularis, n. subparafascicularis Cortical projections of (specific and association) thalamic nuclei mediosagittal view lateral view Specific sensory relay nuclei The VPL relays sensory inputs from the body to the cerebral cortex (Input: spinothalamic tract and the medial lemniscus) The VPM relays sensory inputs from the head to the cerebral cortex (Input: trigeminal and dorsal trigeminal lemniscus pathways) Relay of gustatory inputs to the cortex takes place
    [Show full text]
  • Thalamus and Hypothalamus
    DIENCEPHALON: THALAMUS AND HYPOTHALAMUS M. O. BUKHARI 1 DIENCEPHALON: General Introduction • Relay & integrative centers between the brainstem & cerebral cortex • Dorsal-posterior structures • Epithalamus • Anterior & posterior paraventricular nuclei • Habenular nuclei – integrate smell & emotions • Pineal gland – monitors diurnal / nocturnal rhythm • Habenular Commissure • Post. Commissure • Stria Medullaris Thalami • Thalamus(Dorsal thalamus) • Metathalamus • Medial geniculate body – auditory relay • Lateral geniculate body – visual relay Hypothalamic sulcus • Ventral-anterior structure • Sub-thalums (Ventral Thalamus) • Sub-thalamic Nucleus • Zona Inserta • Fields of Forel • Hypothalamus M. O. BUKHARI 2 Introduction THE THALAMUS Location Function External features Size Interthalamic 3 cms length x 1.5 cms breadth adhesion Two ends Anterior end– Tubercle of Thalamus Posterior end– Pulvinar – Overhangs Med & Lat.Gen.Bodies, Sup.Colliculi & their brachia Surfaces Sup. Surface – Lat. Part forms central part of lat. Vent. Med. Part is covered by tela choroidea of 3rd vent. Inf. Surface - Ant. part fused with subthalamus - Post. part free – inf. part of Pulvinar Med. Surface – Greater part of Lat. wall of 3rd ventricle Lat. Surface - Med.boundary of Post. Limb of internal capsule M. O. BUKHARI 3 Function of the Thalamus • Sensory relay • ALL sensory information (except smell) • Motor integration • Input from cortex, cerebellum and basal ganglia • Arousal • Part of reticular activating system • Pain modulation • All nociceptive information • Memory & behavior • Lesions are disruptive M. O. BUKHARI 4 SUBDIVISION OF THALAMUS M. O. BUKHARI 5 SUBDIVISION OF THALAMUS: WHITE MATTER OF THE THALAMUS Internal Medullary Stratum Zonale Lamina External Medullary Lamina M. O. BUKHARI 6 LATERAL MEDIAL Nuclei of Thalamus Stratum Zonale Anterior Nucleus Medial Dorsal Lateral Dorsal (Large) EXT.Med.Lam ILN Ret.N CMN VPL MGB VPM PVN Lateral Ventral Medial Ventral LGB (Small) LD, LP, Pulvinar – Dorsal Tier nuclei Hypothalamus VA, VL, VPL, VPM – Ventral Tier nuclei M.
    [Show full text]
  • MRI Atlas of the Human Deep Brain Jean-Jacques Lemaire
    MRI Atlas of the Human Deep Brain Jean-Jacques Lemaire To cite this version: Jean-Jacques Lemaire. MRI Atlas of the Human Deep Brain. 2019. hal-02116633 HAL Id: hal-02116633 https://hal.uca.fr/hal-02116633 Preprint submitted on 1 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License MRI ATLAS of the HUMAN DEEP BRAIN Jean-Jacques Lemaire, MD, PhD, neurosurgeon, University Hospital of Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA, France This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Terminologia Foundational Model Terminologia MRI Deep Brain Atlas NeuroNames (ID) neuroanatomica usages, classical and french terminologies of Anatomy (ID) Anatomica 1998 (ID) 2017 http://fipat.library.dal.ca In
    [Show full text]
  • ON-LINE FIG 1. Selected Images of the Caudal Midbrain (Upper Row
    ON-LINE FIG 1. Selected images of the caudal midbrain (upper row) and middle pons (lower row) from 4 of 13 total postmortem brains illustrate excellent anatomic contrast reproducibility across individual datasets. Subtle variations are present. Note differences in the shape of cerebral peduncles (24), decussation of superior cerebellar peduncles (25), and spinothalamic tract (12) in the midbrain of subject D (top right). These can be attributed to individual anatomic variation, some mild distortion of the brain stem during procurement at postmortem examination, and/or differences in the axial imaging plane not easily discernable during its prescription parallel to the anterior/posterior commissure plane. The numbers in parentheses in the on-line legends refer to structures in the On-line Table. AJNR Am J Neuroradiol ●:●●2019 www.ajnr.org E1 ON-LINE FIG 3. Demonstration of the dentatorubrothalamic tract within the superior cerebellar peduncle (asterisk) and rostral brain stem. A, Axial caudal midbrain image angled 10° anterosuperior to posteroinferior relative to the ACPC plane demonstrates the tract traveling the midbrain to reach the decussation (25). B, Coronal oblique image that is perpendicular to the long axis of the hippocam- pus (structure not shown) at the level of the ventral superior cerebel- lar decussation shows a component of the dentatorubrothalamic tract arising from the cerebellar dentate nucleus (63), ascending via the superior cerebellar peduncle to the decussation (25), and then enveloping the contralateral red nucleus (3). C, Parasagittal image shows the relatively long anteroposterior dimension of this tract, which becomes less compact and distinct as it ascends toward the thalamus. ON-LINE FIG 2.
    [Show full text]
  • Motor Systems Basal Ganglia
    Motor systems 409 Basal Ganglia You have just read about the different motor-related cortical areas. Premotor areas are involved in planning, while MI is involved in execution. What you don’t know is that the cortical areas involved in movement control need “help” from other brain circuits in order to smoothly orchestrate motor behaviors. One of these circuits involves a group of structures deep in the brain called the basal ganglia. While their exact motor function is still debated, the basal ganglia clearly regulate movement. Without information from the basal ganglia, the cortex is unable to properly direct motor control, and the deficits seen in Parkinson’s and Huntington’s disease and related movement disorders become apparent. Let’s start with the anatomy of the basal ganglia. The important “players” are identified in the adjacent figure. The caudate and putamen have similar functions, and we will consider them as one in this discussion. Together the caudate and putamen are called the neostriatum or simply striatum. All input to the basal ganglia circuit comes via the striatum. This input comes mainly from motor cortical areas. Notice that the caudate (L. tail) appears twice in many frontal brain sections. This is because the caudate curves around with the lateral ventricle. The head of the caudate is most anterior. It gives rise to a body whose “tail” extends with the ventricle into the temporal lobe (the “ball” at the end of the tail is the amygdala, whose limbic functions you will learn about later). Medial to the putamen is the globus pallidus (GP).
    [Show full text]
  • Direct Visualization and Characterization of The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.25.008318; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Direct visualization and characterization of the 2 human zona incerta and surrounding structures 3 Running Title: Jonathan C. Lau1,2,3,4,*, Yiming Xiao2,3, Roy A.M. Haast2,3, Greydon Gilmore1,4, Direct visualization Kamil Uludag7,8,9, Keith W. MacDougall1, Ravi S. Menon2,3,6, of the zona incerta 1 1,2,3,4,6,& 1,2,3,4,5,6,& Andrew G. Parrent , Terry M. Peters , Ali R. Khan Keywords: brain; atlas; human; neuroanatomy; zona incerta; 7T; deep brain stimulation; T1; quantitative MRI 4 5 1Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, London, Ontario, Canada 6 2Imaging Research Laboratories, Robarts Research Institute Canada, Western University, London, Ontario, Canada 7 3Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada 8 4School of Biomedical Engineering, Western University, London, Ontario, Canada 9 5Brain and Mind Institute, Western University, London, Ontario, Canada 10 6Department of Medical Biophysics, Western University, London, Ontario, Canada 11 7IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Seobu-ro, 2066, Jangan-gu, Suwon, South Korea 12 8Department of Biomedical Engineering, N Center, Sungkyunkwan University, Seobu-ro, 2066, Jangan-gu, Suwon, South Korea 13 9Techna Institute and Koerner Scientist in MR Imaging, University Health Network, 100 College St, Toronto, ON, Canada 14 *Corresponding author 15 &Joint senior authors 16 17 Abstract: The zona incerta (ZI) is a small gray matter region of the deep brain first identified in the 19th 18 century, yet direct in vivo visualization and characterization has remained elusive.
    [Show full text]
  • The Network Organization of Rat Intrathalamic Macroconnections and a Comparison with Other Forebrain Divisions
    The network organization of rat intrathalamic macroconnections and a comparison with other forebrain divisions Larry W. Swansona,1, Olaf Spornsb,c, and Joel D. Hahna aDepartment of Biological Sciences, University of Southern California, Los Angeles, CA 90089; bIndiana University Network Science Institute, Indiana University, Bloomington, IN 47405; and cDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405 Contributed by Larry W. Swanson, May 17, 2019 (sent for review April 8, 2019; reviewed by Zhanyan Fu and Leah A. Krubitzer) The thalamus is 1 of 4 major divisions of the forebrain and is of cortical regions (6). In contrast, the THe (habenular nuclei) and usually subdivided into epithalamus, dorsal thalamus, and ventral THv (reticular and ventral lateral geniculate nuclei, intergeniculate thalamus. The 39 gray matter regions comprising the large dorsal leaflet, zona incerta, and fields of Forel) are much smaller and thalamus project topographically to the cerebral cortex, whereas have virtually no projections to the cerebral cortex (6). the much smaller epithalamus (2 regions) and ventral thalamus (5 For the purposes of this analysis, axonal connections among all regions) characteristically project subcortically. Before analyzing 46 thalamic nuclei recognized on one side of the rat brain in a extrinsic inputs and outputs of the thalamus, here, the intrinsic standard atlas (7) have been considered (whether THe, THd, or connections among all 46 gray matter regions of the rat thalamus THv) along with the connections established by these nuclei with on each side of the brain were expertly collated and subjected to the 46 corresponding thalamic nuclei on the other side of the network analysis.
    [Show full text]
  • Diencephalon Diencephalon
    Diencephalon Diencephalon • Thalamus dorsal thalamus • Hypothalamus pituitary gland • Epithalamus habenular nucleus and commissure pineal gland • Subthalamus ventral thalamus subthalamic nucleus (STN) field of Forel Diencephalon dorsal surface Diencephalon ventral surface Diencephalon Medial Surface THALAMUS Function of the Thalamus • Sensory relay – ALL sensory information (except smell) • Motor integration – Input from cortex, cerebellum and basal ganglia • Arousal – Part of reticular activating system • Pain modulation – All nociceptive information • Memory & behavior – Lesions are disruptive Classification of Thalamic Nuclei I. Lateral Nuclear Group II. Medial Nuclear Group III. Anterior Nuclear Group IV. Posterior Nuclear Group V. Metathalamic Nuclear Group VI. Intralaminar Nuclear Group VII. Thalamic Reticular Nucleus Classification of Thalamic Nuclei LATERAL NUCLEAR GROUP Ventral Nuclear Group Ventral Posterior Nucleus (VP) ventral posterolateral nucleus (VPL) ventral posteromedial nucleus (VPM) Input to the Thalamus Sensory relay - Ventral posterior group all sensation from body and head, including pain Projections from the Thalamus Sensory relay Ventral posterior group all sensation from body and head, including pain LATERAL NUCLEAR GROUP Ventral Lateral Nucleus Ventral Anterior Nucleus Input to the Thalamus Motor control and integration Projections from the Thalamus Motor control and integration LATERAL NUCLEAR GROUP Prefrontal SMA MI, PM SI Ventral Nuclear Group SNr TTT GPi Cbll ML, STT Lateral Dorsal Nuclear Group Lateral
    [Show full text]
  • Basal Ganglia 519 Basal Ganglia
    Basal Ganglia 519 Basal Ganglia You have just read about the different motor-related cortical areas. Premotor areas are involved in planning, while MI is involved in execution; corticospinal fibers from MI target LMNs. What you don’t know is that the cortical areas involved in movement control need some “help” from the basal ganglia in order to smoothly orchestrate motor behaviors. Without the information from the basal ganglia, the cortex is unable to properly direct motor control, and the deficits seen in Parkinson’s and Huntington’s disease and other movement disorders become apparent. The adjacent drawings show level 16 of our series of brain sections. Some of the important “players” can be seen. They are the caudate nucleus and the putamen nucleus. Together they are called the neostriatum or simply striatum. Next to the putamen is the globus pallidus, and it can be seen to have two parts, a lateral (external or outer) segment and a medial (internal or inner) segment. The putamen and globus pallidus, which lie adjacent to each other, are called the lenticular nucleus. Finally, the striatum and the globus pallidus are called the corpus striatum. You can also see a nice thick fiber bundle associated with the globus pallidus called the ansa lenticularis. This fasciculus passes under (ventral) the posterior limb of the internal capsule. While not apparent in this section, the ansa lenticularis then heads dorsally to reach the motor thalamic nuclei (VA/ VL). The ansa arises from cells of the inner segment of the globus pallidus and terminates in the ipsilateral VA/VL.
    [Show full text]
  • Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies
    REVIEW published: 21 May 2019 doi: 10.3389/fneur.2019.00410 Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies Thomas Koeglsperger 1,2*, Carla Palleis 1,2, Franz Hell 1,3, Jan H. Mehrkens 4 and Kai Bötzel 1* 1 Department of Neurology, Ludwig Maximilians University, Munich, Germany, 2 Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany, 3 Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany, 4 Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson’s disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor Edited by: Matteo Bologna, for the individual outcome after DBS. Programming of the implanted pulse generator Sapienza University of Rome, Italy (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes Reviewed by: even more relevant in cases in which the electrodes are located at the border of Angel Sesar, the intended target structure and when side effects become challenging. At present, Complejo Hospitalario Universitario de Santiago, Spain adjusting stimulation parameters depends to a large extent on personal experience. Adolfo Ramirez-Zamora,
    [Show full text]
  • The Language Connectome: New Pathways, New Concepts
    NROXXX10.1177/1073858413513502The NeuroscientistDick and others 513502research-article2013 Review The Neuroscientist 2014, Vol. 20(5) 453 –467 The Language Connectome: New © The Author(s) 2013 Reprints and permissions: sagepub.com/journalsPermissions.nav Pathways, New Concepts DOI: 10.1177/1073858413513502 nro.sagepub.com Anthony Steven Dick1, Byron Bernal2, and Pascale Tremblay3 Abstract The field of the neurobiology of language is experiencing a paradigm shift in which the predominant Broca–Wernicke– Geschwind language model is being revised in favor of models that acknowledge that language is processed within a distributed cortical and subcortical system. While it is important to identify the brain regions that are part of this system, it is equally important to establish the anatomical connectivity supporting their functional interactions. The most promising framework moving forward is one in which language is processed via two interacting “streams”—a dorsal and ventral stream—anchored by long association fiber pathways, namely the superior longitudinal fasciculus/ arcuate fasciculus, uncinate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and two less well-established pathways, the middle longitudinal fasciculus and extreme capsule. In this article, we review the most up-to-date literature on the anatomical connectivity and function of these pathways. We also review and emphasize the importance of the often overlooked cortico-subcortical connectivity for speech via the “motor stream” and associated
    [Show full text]