Human Pallidothalamic and Cerebellothalamic Tracts: Anatomical Basis for Functional Stereotactic Neurosurgery

Total Page:16

File Type:pdf, Size:1020Kb

Human Pallidothalamic and Cerebellothalamic Tracts: Anatomical Basis for Functional Stereotactic Neurosurgery CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Brain Struct Funct (2008) 212:443–463 DOI 10.1007/s00429-007-0170-0 ORIGINAL ARTICLE Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery Marc N. Gallay Æ Daniel Jeanmonod Æ Jian Liu Æ Anne Morel Received: 7 September 2007 / Accepted: 20 December 2007 / Published online: 10 January 2008 Ó The Author(s) 2008 Abstract Anatomical knowledge of the structures to be two tracts in the subthalamic region, (3) the possibility to targeted and of the circuitry involved is crucial in stereo- discriminate between different subthalamic fibre tracts on tactic functional neurosurgery. The present study was the basis of immunohistochemical stainings, (4) correla- undertaken in the context of surgical treatment of motor tions of histologically identified fibre tracts with high- disorders such as essential tremor (ET) and Parkinson’s resolution MRI, and (5) evaluation of the interindividual disease (PD) to precisely determine the course and three- variability of the fibre systems in the subthalamic region. dimensional stereotactic localisation of the cerebellotha- This study should provide an important basis for accurate lamic and pallidothalamic tracts in the human brain. The stereotactic neurosurgical targeting of the subthalamic course of the fibre tracts to the thalamus was traced in the region in motor disorders such as PD and ET. subthalamic region using multiple staining procedures and their entrance into the thalamus determined according to Keywords Basal ganglia Á Thalamus Á Motor disorders Á our atlas of the human thalamus and basal ganglia [Morel Essential tremor Á Parkinson’s disease (2007) Stereotactic atlas of the human thalamus and basal ganglia. Informa Healthcare Inc., New York]. Stereotactic Abbreviations three-dimensional coordinates were determined by sec- ac Anterior commissure tioning thalamic and basal ganglia blocks parallel to al Ansa lenticularis stereotactic planes and, in two cases, by correlation with Acb Accumbens nucleus magnetic resonance images (MRI) from the same brains AChE Acethylcholinesterase prior to sectioning. The major contributions of this study Amg Amygdala are to provide: (1) evidence that the bulks of the cerebel- ap Ansa peduncularis lothalamic and pallidothalamic tracts are clearly separated AV Anteroventral nucleus up to their thalamic entrance, (2) stereotactic maps of the B Basal nucleus of Meynert bic Brachium of the inferior colliculus CaBP Calcium-binding proteins Cd Caudate nucleus M. N. Gallay Á D. Jeanmonod Á J. Liu Á A. Morel (&) CeM Central medial nucleus Laboratory for Functional Neurosurgery, Neurosurgery Clinic, CB Calbindin D-28K University Hospital Zu¨rich, CR Calretinin Sternwartstrasse 6, 8091 Zurich, Switzerland e-mail: [email protected] CL Central lateral nucleus Cl Claustrum Present Address: CM Centre me´dian nucleus J. Liu (or centromedian) Department of Physiology and Pathophysiology, School of Medicine, Xi’an Jiaotong University, 710061 Xian, CTT Cerebellothalamic tractotomy People’s Republic of China fct Fasciculus cerebello-thalamicus 123 444 Brain Struct Funct (2008) 212:443–463 fl Fasciculus lenticularis VLp (d, v, pl) Ventral lateral posterior nucleus (dorsal, frf Fasciculus retroflexus ventral, and paralamellar divisions) ft Fasciculus thalamicus VM Ventral medial nucleus fx Fornix VPI Ventral posterior inferior nucleus GPi Globus pallidus, internal segment VPL (p) Ventral posterior lateral nucleus GPe Globus pallidus, external segment (posterior division) Hip Hippocampus VPM Ventral posterior medial nucleus Hyp Hypothalamus VPMpc Ventral posterior medial nucleus, ic Internal capsule parvocellular division IC Inferior colliculus ZI Zona incerta iml Internal medullary lamina LD Lateral dorsal nucleus LGN Lateral geniculate nucleus Li Limitans nucleus Introduction LP Lateral posterior nucleus M1 Primary motor cortex The surgical treatment of motor disorders such as Parkin- MB Mammillary body son’s disease (PD) and essential tremor (ES) has evolved MD (pc, mc, pl) Mediodorsal nucleus (parvocellular, over the years, targeting alternatively the motor thalamus, magnocellular, and paralamellar the basal ganglia, and more rarely, subthalamic area. The divisions) different approaches are based on extensive knowledge of MGN Medial geniculate nucleus the motor circuitry and of the pathophysiology known from ml Medial lemniscus animal models, such as the MPTP monkey (DeLong 1990; mtt Mammillothalamic tract Obeso et al. 2000; Wichmann and DeLong 2003), and MV Medioventral nucleus peroperative recordings in patients undergoing surgery ot Optic tract (Lenz et al. 1994; Jeanmonod et al. 1996; Lozano et al. PAG Peri-aqueductal gray 1997; Hutchison et al. 1998; Vitek et al. 1998; Magnin pc Posterior commissure et al. 2000, 2001a; Zonenshayn et al. 2000; Garonzik et al. Pf Parafascicular nucleus 2002; Kobayashi et al. 2003). The two major motor path- PF Prefrontal cortex ways involved in PD and ET are illustrated schematically PMc Premotor cortex, caudal part in Fig. 1. Their principal access to the thalamus and thal- PMr Premotor cortex, rostral part amocortical network is through the pallidothalamic and Po Posterior nucleus cerebellothalamic tracts, respectively. The pallidothalamic pre-SMA Pre-supplementary motor area tract is composed of the ansa lenticularis (al) and of the PTT Pallidothalamic tractotomy fasciculus lenticularis (fl, coursing through field H2 of PuA Anterior pulvinar Forel), both take their origin in the internal part of the PuM Medial pulvinar pallidum (GPi). The two fibre tracts merge into the fas- PuT Putamen ciculus thalamicus (ft) (or field H1 of Forel) before PV Parvalbumin entering the thalamus. The cerebellothalamic tract connects R Reticular thalamic nucleus the deep cerebellar nuclei (dentate, interposed, and fastigial RN Red nucleus nuclei) with the thalamus and courses through the superior SC Superior colliculus cerebellar peduncle, decussates, and passes through and SG Suprageniculate nucleus anterior to the red nucleus before reaching the thalamus. sm Stria medullaris The current knowledge on the pallidothalamic and SMA-proper Supplementary motor area cerebellothalamic connections is dominantly derived from SNc Substantia nigra, pars compacta data in monkeys. Degeneration studies and the use of SNr Substantia nigra, pars reticulata modern tracing techniques with multiple anterograde and sPf Subparafascicular nucleus retrograde tracers provided much information about the STh Subthalamic nucleus origin of these fibre tracts and their projections to the stt Spinothalamic tract thalamus and thalamocortical circuits (Nauta and Mehler VA (pc, mc) Ventral anterior nucleus (parvocellular 1966; Carpenter et al. 1976; Asanuma et al. 1983a, b; and magnocellular divisions) Parent and De Bellefeuille 1983; Ilinsky et al. 1985; Per- VLa Ventral lateral anterior nucleus cheron et al. 1993, 1996; Rouiller et al. 1994; Inase and 123 Brain Struct Funct (2008) 212:443–463 445 M1 PMc SMA-proper pre-SMA PMr PFC Cortex VLp VLa VApc Thalamus V.im+D.im VM V.o.(p,a) L.po V.o.m Pontine Nuclei fct ft fl Striatum GPi GPe Cerebellum Cerebellar Cerebellar STh Basal Ganglia cortex nuclei al SNc Fig. 1 Simplified diagram of the cortico-cerebello-thalamocortical primarily to the VLa, VApc, and VM nuclei, with only minor and cortico-basal ganglia-thalamocortical circuitry based on data projections to the VLp (projections to the intralaminar nuclei are not derived from tracing studies in monkeys. The cerebellar nuclei project shown). Equivalent Hassler’s nomenclature (Hassler 1982) for to the motor thalamus via the fasciculus cerebellothalamicus (fct), thalamic nuclei is also indicated. Connections to the thalamus and with primary target in the VLp, but also in VLa and VM (projections cortex are represented with different thicknesses according to their to medial thalamic nuclei are not included in the schema). Efferent relative density and by different gradients in the thalamus. The two connections of the GPi to the thalamus course through the ansa major motor pathways are also represented by different colors for lenticularis (al) and the fasciculus lenticularis (fl), and the two fibre clarity. See list of abbreviations bulks merge to form the fasciculus thalamicus (ft) which projects Tanji 1995; Parent and Hazrati 1995a; Matelli and Luppino thalamocortical system (thalamocortical dysrhythmia, TCD) 1996; Sakai et al. 1996, 2000; Shink et al. 1997; Sidibe following thalamic cells deactivation, in case of ET, or cell et al. 1997; Middleton and Strick 2000; Baron et al. 2001, overinhibition, in case of PD (Magnin et al. 2001a, 2001b; 2006; Francois et al. 2002; Haber 2003; Parent and Parent Aufenberg et al. 2005). This pre-thalamic approach maxi- 2004; Calzavara et al. 2005). Thus, more is known about mizes the disinhibition of the thalamus with a lesion of the the origin and terminations than the exact pathway of those pallidothalamic fibers, that is, at least three times smaller fibres, particularly in the subthalamic region. In the human than the size of a pallidal lesion that would include the sen- brain, the course of the pallidothalamic and cerebellotha- sorimotor and the associative territories (Francois et al. 1994; lamic fibre tracts is still unclear. Indeed the description of Parent and Hazrati 1995a; Gross et al. 1999; Karachi et al. the subthalamic fibre pathways in the human brain dates 2002; Morel et al. 2002). The relevance of the
Recommended publications
  • MR Imaging of Ventral Thalamic Nuclei
    ORIGINAL RESEARCH MR Imaging of Ventral Thalamic Nuclei K. Yamada BACKGROUND AND PURPOSE: The Vim and VPL are important target regions of the thalamus for DBS. K. Akazawa Our aim was to clarify the anatomic locations of the ventral thalamic nuclei, including the Vim and VPL, on MR imaging. S. Yuen M. Goto MATERIALS AND METHODS: Ten healthy adult volunteers underwent MR imaging by using a 1.5T S. Matsushima whole-body scanner. The subjects included 5 men and 5 women, ranging in age from 23 to 38 years, with a mean age of 28 years. The subjects were imaged with STIR sequences (TR/TE/TI ϭ 3200 ms/15 A. Takahata ms/120 ms) and DTI with a single-shot echo-planar imaging technique (TR/TE ϭ 6000 ms/88 ms, M. Nakagawa b-value ϭ 2000 s/mm2). Tractography of the CTC and spinothalamic pathway was used to identify the K. Mineura thalamic nuclei. Tractography of the PT was used as a reference, and the results were superimposed T. Nishimura on the STIR image, FA map, and color-coded vector map. RESULTS: The Vim, VPL, and PT were all in close contact at the level through the ventral thalamus. The Vim was bounded laterally by the PT and medially by the IML. The VPL was bounded anteriorly by the Vim, laterally by the internal capsule, and medially by the IML. The posterior boundary of the VPL was defined by a band of low FA that divided the VPL from the pulvinar. CONCLUSIONS: The ventral thalamic nuclei can be identified on MR imaging by using reference structures such as the PT and the IML.
    [Show full text]
  • NS201C Anatomy 1: Sensory and Motor Systems
    NS201C Anatomy 1: Sensory and Motor Systems 25th January 2017 Peter Ohara Department of Anatomy [email protected] The Subdivisions and Components of the Central Nervous System Axes and Anatomical Planes of Sections of the Human and Rat Brain Development of the neural tube 1 Dorsal and ventral cell groups Dermatomes and myotomes Neural crest derivatives: 1 Neural crest derivatives: 2 Development of the neural tube 2 Timing of development of the neural tube and its derivatives Timing of development of the neural tube and its derivatives Gestational Crown-rump Structure(s) age (Weeks) length (mm) 3 3 cerebral vesicles 4 4 Optic cup, otic placode (future internal ear) 5 6 cerebral vesicles, cranial nerve nuclei 6 12 Cranial and cervical flexures, rhombic lips (future cerebellum) 7 17 Thalamus, hypothalamus, internal capsule, basal ganglia Hippocampus, fornix, olfactory bulb, longitudinal fissure that 8 30 separates the hemispheres 10 53 First callosal fibers cross the midline, early cerebellum 12 80 Major expansion of the cerebral cortex 16 134 Olfactory connections established 20 185 Gyral and sulcul patterns of the cerebral cortex established Clinical case A 68 year old woman with hypertension and diabetes develops abrupt onset numbness and tingling on the right half of the face and head and the entire right hemitrunk, right arm and right leg. She does not experience any weakness or incoordination. Physical Examination: Vitals: T 37.0° C; BP 168/87; P 86; RR 16 Cardiovascular, pulmonary, and abdominal exam are within normal limits. Neurological Examination: Mental Status: Alert and oriented x 3, 3/3 recall in 3 minutes, language fluent.
    [Show full text]
  • Differential Deep Brain Stimulation Sites and Networks for Cervical Vs
    medRxiv preprint doi: https://doi.org/10.1101/2021.07.28.21261289; this version posted July 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Title Differential Deep Brain Stimulation Sites and Networks for Cervical vs. Generalized Dystonia Authors Andreas Horn*1, Martin Reich*2, Siobhan Ewert*1, Ningfei Li1, Bassam Al-Fatly1, Florian Lange2, Jonas Roothans2, Simon Oxenford1, Isabel Horn1, Steffen Paschen3, Joachim Runge4, Fritz Wodarg5, Karsten Witt6, Robert C. Nickl7, Matthias Wittstock8, Gerd-Helge Schneider9, Philipp Mahlknecht10, Werner Poewe10, Wilhelm Eisner11, Ann-Kristin Helmers12, Cordula Matthies7, Joachim K. Krauss4, Günther Deuschl3, Jens Volkmann2, Andrea Kühn1 Author Affiliations 1. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany. 2. Julius-Maximilians-University Würzburg, Department of Neurology, Germany 3. University Kiel, Department of Neurology, Germany 4. Department of Neurosurgery, Medical School Hannover, MHH, Hannover, Germany. 5. University Kiel, Department of Radiology, Germany 6. University Oldenburg, Department of Neurology, Germany 7. Julius-Maximilians-University Würzburg, Department of Neurosurgery, Germany 8. University Rostock, Department
    [Show full text]
  • The Department of Neurobiology & Anatomy and the Motor
    The Neuroscience Graduate Program presents: SHIONA BISWAS ADVISOR: LIN GAN IN A PHD THESIS DEFENSE WEDNESDAY, 28 SEPTEMBER 2016 10:00AM IN WHIPPLE AUDITORIUM (2-6424) The transcription regulator Lmo3 is required for correct cell fate specification in the external globus pallidus. The external globus pallidus (GPe), a core component of the basal ganglia, can powerfully influence the processing of motor information due to its widespread projections to almost all basal ganglia nuclei. Aberrant activity of GPe neurons has been linked to motor symptoms of a variety of movement disorders, such as Parkinson’s Disease, Huntington’s disease and dystonia. While several decades of work had suggested the existence of heterogeneity within GPe GABAergic projection neurons, it is not until recent years that multiple molecular markers have been established to unambiguously define and distinguish between two main GPe neuronal subtypes: the prototypic and arkypallidal neurons. This demarcation is also based on their unique projection patterns, membrane properties and ion channel expression, and consequently, distinct electrophysiological profiles, in both healthy and diseased (Parkinsonian) states. As a result of this, we now have an improved understanding of how these neurons function and encode motor behavior in both healthy and diseased states. A few studies have established some of the basic aspects of GPe development- such as the parts of the developing forebrain from which GPe neurons originate and the embryonic time points during which they are born. However, specific molecular factors required for the development of GPe neurons remain unexplored. For my thesis project, I studied the role of the transcription regulator, Lmo3, in the specification of subsets of external globus pallidus neurons.
    [Show full text]
  • Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: a Comparative in Situ Hybridization Analysis
    The Journal of Neuroscience, March 1993. 73(3): 1258-1279 Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: A Comparative in situ Hybridization Analysis Martin K.-H. Schafer,i-a Robert Day,* William E. Cullinan,’ Michel Chri?tien,3 Nabil G. Seidah,* and Stanley J. Watson’ ‘Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0720 and J. A. DeSeve Laboratory of *Biochemical and 3Molecular Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada H2W lR7 Posttranslational processing of proproteins and prohor- The participation of neuropeptides in the modulation of a va- mones is an essential step in the formation of bioactive riety of CNS functions is well established. Many neuropeptides peptides, which is of particular importance in the nervous are synthesized as inactive precursor proteins, which undergo system. Following a long search for the enzymes responsible an enzymatic cascade of posttranslational processing and mod- for protein precursor cleavage, a family of Kexin/subtilisin- ification events during their intracellular transport before the like convertases known as PCl, PC2, and furin have recently final bioactive products are secreted and act at either pre- or been characterized in mammalian species. Their presence postsynaptic receptors. Initial endoproteolytic cleavage occurs in endocrine and neuroendocrine tissues has been dem- C-terminal to pairs of basic amino acids such as lysine-arginine onstrated. This study examines the mRNA distribution of (Docherty and Steiner, 1982) and is followed by the removal these convertases in the rat CNS and compares their ex- of the basic residues by exopeptidases. Further modifications pression with the previously characterized processing en- can occur in the form of N-terminal acetylation or C-terminal zymes carboxypeptidase E (CPE) and peptidylglycine a-am- amidation, which is essential for the bioactivity of many neu- idating monooxygenase (PAM) using in situ hybridization ropeptides.
    [Show full text]
  • Semmelweis University, Department of Anatomy, Histology and Embryology the Position of the Diencephalon in the Brain Parts of the Diencephalon
    Microscopy of the diencephalon Árpád Dobolyi Semmelweis University, Department of Anatomy, Histology and Embryology The position of the diencephalon in the brain Parts of the diencephalon • Thalamus • Epithalamus – Pineal body – Habenulae – Trigonum habenulae – Habenular nuclei – Stria medullaris – Habenular commissure • Metathalamus – Medial geniculate body – Lateral geniculate body • Subthalamus – Subthalamic nucleus – Zona incerta – H fields of Forel • Hypothalamus Nuclear groups and nuclei of the thalamus Frontal sections of the thalamus Anterior section Middle section Functional classification of thalamic nuclei • Specific nuclei: specific input, project to specific part of the cortex - sensory relay nuclei: VPL, VPM, MGB, LGB - motor relay nuclei: VA, VL - limbic relay nuclei: AV, AD, AM • Association nuclei: cortical input, project to associative areas of the cortex - MD, LD, LP, pulvinar • Non-specific nuclei: ascending input, diffuse projection to the cortex - midline and intralaminar nuclei • Nuclei not projecting to the cerebral cortex - n. reticularis thalami, n. parafascicularis, n. subparafascicularis Cortical projections of (specific and association) thalamic nuclei mediosagittal view lateral view Specific sensory relay nuclei The VPL relays sensory inputs from the body to the cerebral cortex (Input: spinothalamic tract and the medial lemniscus) The VPM relays sensory inputs from the head to the cerebral cortex (Input: trigeminal and dorsal trigeminal lemniscus pathways) Relay of gustatory inputs to the cortex takes place
    [Show full text]
  • Supranuclear and Internuclear Ocular Motility Disorders
    CHAPTER 19 Supranuclear and Internuclear Ocular Motility Disorders David S. Zee and David Newman-Toker OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF THE MEDULLA THE SUPERIOR COLLICULUS Wallenberg’s Syndrome (Lateral Medullary Infarction) OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF Syndrome of the Anterior Inferior Cerebellar Artery THE THALAMUS Skew Deviation and the Ocular Tilt Reaction OCULAR MOTOR ABNORMALITIES AND DISEASES OF THE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN BASAL GANGLIA THE CEREBELLUM Parkinson’s Disease Location of Lesions and Their Manifestations Huntington’s Disease Etiologies Other Diseases of Basal Ganglia OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN THE PONS THE CEREBRAL HEMISPHERES Lesions of the Internuclear System: Internuclear Acute Lesions Ophthalmoplegia Persistent Deficits Caused by Large Unilateral Lesions Lesions of the Abducens Nucleus Focal Lesions Lesions of the Paramedian Pontine Reticular Formation Ocular Motor Apraxia Combined Unilateral Conjugate Gaze Palsy and Internuclear Abnormal Eye Movements and Dementia Ophthalmoplegia (One-and-a-Half Syndrome) Ocular Motor Manifestations of Seizures Slow Saccades from Pontine Lesions Eye Movements in Stupor and Coma Saccadic Oscillations from Pontine Lesions OCULAR MOTOR DYSFUNCTION AND MULTIPLE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN SCLEROSIS THE MESENCEPHALON OCULAR MOTOR MANIFESTATIONS OF SOME METABOLIC Sites and Manifestations of Lesions DISORDERS Neurologic Disorders that Primarily Affect the Mesencephalon EFFECTS OF DRUGS ON EYE MOVEMENTS In this chapter, we survey clinicopathologic correlations proach, although we also discuss certain metabolic, infec- for supranuclear ocular motor disorders. The presentation tious, degenerative, and inflammatory diseases in which su- follows the schema of the 1999 text by Leigh and Zee (1), pranuclear and internuclear disorders of eye movements are and the material in this chapter is intended to complement prominent.
    [Show full text]
  • MRI Atlas of the Human Deep Brain Jean-Jacques Lemaire
    MRI Atlas of the Human Deep Brain Jean-Jacques Lemaire To cite this version: Jean-Jacques Lemaire. MRI Atlas of the Human Deep Brain. 2019. hal-02116633 HAL Id: hal-02116633 https://hal.uca.fr/hal-02116633 Preprint submitted on 1 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License MRI ATLAS of the HUMAN DEEP BRAIN Jean-Jacques Lemaire, MD, PhD, neurosurgeon, University Hospital of Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA, France This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Terminologia Foundational Model Terminologia MRI Deep Brain Atlas NeuroNames (ID) neuroanatomica usages, classical and french terminologies of Anatomy (ID) Anatomica 1998 (ID) 2017 http://fipat.library.dal.ca In
    [Show full text]
  • Neural Plasticity in the Brain During Neuropathic Pain
    biomedicines Review Neural Plasticity in the Brain during Neuropathic Pain Myeong Seong Bak 1, Haney Park 1 and Sun Kwang Kim 1,2,* 1 Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; [email protected] (M.S.B.); [email protected] (H.P.) 2 Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-0491 Abstract: Neuropathic pain is an intractable chronic pain, caused by damage to the somatosensory nervous system. To date, treatment for neuropathic pain has limited effects. For the development of efficient therapeutic methods, it is essential to fully understand the pathological mechanisms of neuropathic pain. Besides abnormal sensitization in the periphery and spinal cord, accumulating evidence suggests that neural plasticity in the brain is also critical for the development and mainte- nance of this pain. Recent technological advances in the measurement and manipulation of neuronal activity allow us to understand maladaptive plastic changes in the brain during neuropathic pain more precisely and modulate brain activity to reverse pain states at the preclinical and clinical levels. In this review paper, we discuss the current understanding of pathological neural plasticity in the four pain-related brain areas: the primary somatosensory cortex, the anterior cingulate cortex, the periaqueductal gray, and the basal ganglia. We also discuss potential treatments for neuropathic pain based on the modulation of neural plasticity in these brain areas. Keywords: neuropathic pain; neural plasticity; primary somatosensory cortex; anterior cingulate cortex; periaqueductal grey; basal ganglia Citation: Bak, M.S.; Park, H.; Kim, S.K.
    [Show full text]
  • Memory Loss from a Subcortical White Matter Infarct
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.6.866 on 1 June 1988. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1988;51:866-869 Short report Memory loss from a subcortical white matter infarct CAROL A KOOISTRA, KENNETH M HEILMAN From the Department ofNeurology, College ofMedicine, University ofFlorida, and the Research Service, Veterans Administration Medical Center, Gainesville, FL, USA SUMMARY Clinical disorders of memory are believed to occur from the dysfunction of either the mesial temporal lobe, the mesial thalamus, or the basal forebrain. Fibre tract damage at the level of the fornix has only inconsistently produced amnesia. A patient is reported who suffered a cerebro- vascular accident involving the posterior limb of the left internal capsule that resulted in a persistent and severe disorder of verbal memory. The inferior extent of the lesion effectively disconnected the mesial thalamus from the amygdala and the frontal cortex by disrupting the ventral amygdalofugal and thalamic-frontal pathways as they course through the diencephalon. This case demonstrates that an isolated lesion may cause memory loss without involvement of traditional structures associated with memory and may explain memory disturbances in other white matter disease such as multiple sclerosis and lacunar state. Protected by copyright. Memory loss is currently believed to reflect grey day of his illness the patient was transferred to Shands matter damage of either the mesial temporal lobe,' -4 Teaching Hospital at the University of Florida for further the mesial or the basal forebrain.'0 l evaluation. thalamus,5-9 Examination at that time showed the patient to be awake, Cerebrovascular accidents resulting in memory dys- alert, attentive and fully oriented.
    [Show full text]
  • Neural Circuit and Clinical Insights from Intraoperative Recordings During Deep Brain Stimulation Surgery
    brain sciences Perspective Neural Circuit and Clinical Insights from Intraoperative Recordings During Deep Brain Stimulation Surgery Anand Tekriwal 1,2,3 , Neema Moin Afshar 2, Juan Santiago-Moreno 3, Fiene Marie Kuijper 4, Drew S. Kern 1,5, Casey H. Halpern 4, Gidon Felsen 2 and John A. Thompson 1,5,* 1 Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80203, USA 2 Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80203, USA 3 Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80203, USA 4 Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA 5 Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80203, USA * Correspondence: [email protected] Received: 28 June 2019; Accepted: 18 July 2019; Published: 20 July 2019 Abstract: Observations using invasive neural recordings from patient populations undergoing neurosurgical interventions have led to critical breakthroughs in our understanding of human neural circuit function and malfunction. The opportunity to interact with patients during neurophysiological mapping allowed for early insights in functional localization to improve surgical outcomes, but has since expanded into exploring fundamental aspects of human cognition including reward processing, language, the storage and retrieval of memory, decision-making, as well as sensory and motor processing. The increasing use of chronic neuromodulation, via deep brain stimulation, for a spectrum of neurological and psychiatric conditions has in tandem led to increased opportunity for linking theories of cognitive processing and neural circuit function. Our purpose here is to motivate the neuroscience and neurosurgical community to capitalize on the opportunities that this next decade will bring.
    [Show full text]
  • Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics
    Published August 13, 2020 as 10.3174/ajnr.A6693 REVIEW ARTICLE Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics E.H. Middlebrooks, R.A. Domingo, T. Vivas-Buitrago, L. Okromelidze, T. Tsuboi, J.K. Wong, R.S. Eisinger, L. Almeida, M.R. Burns, A. Horn, R.J. Uitti, R.E. Wharen Jr, V.M. Holanda, and S.S. Grewal ABSTRACT SUMMARY: Deep brain stimulation is an established therapy for multiple brain disorders, with rapidly expanding potential indi- cations. Neuroimaging has advanced the field of deep brain stimulation through improvements in delineation of anatomy, and, more recently, application of brain connectomics. Older lesion-derived, localizationist theories of these conditions have evolved to newer, network-based “circuitopathies,” aided by the ability to directly assess these brain circuits in vivo through the use of advanced neuroimaging techniques, such as diffusion tractography and fMRI. In this review, we use a combination of ultra-high-field MR imaging and diffusion tractography to highlight relevant anatomy for the currently approved indications for deep brain stimulation in the United States: essential tremor, Parkinson disease, drug-resistant epilepsy, dystonia, and obsessive-compulsive disorder. We also review the literature regarding the use of fMRI and diffusion tractography in under- standing the role of deep brain stimulation in these disorders, as well as their potential use in both surgical targeting and de- vice programming. ABBREVIATIONS: AL ¼ ansa lenticularis; ALIC
    [Show full text]