Thalamus and Hypothalamus

Total Page:16

File Type:pdf, Size:1020Kb

Thalamus and Hypothalamus DIENCEPHALON: THALAMUS AND HYPOTHALAMUS M. O. BUKHARI 1 DIENCEPHALON: General Introduction • Relay & integrative centers between the brainstem & cerebral cortex • Dorsal-posterior structures • Epithalamus • Anterior & posterior paraventricular nuclei • Habenular nuclei – integrate smell & emotions • Pineal gland – monitors diurnal / nocturnal rhythm • Habenular Commissure • Post. Commissure • Stria Medullaris Thalami • Thalamus(Dorsal thalamus) • Metathalamus • Medial geniculate body – auditory relay • Lateral geniculate body – visual relay Hypothalamic sulcus • Ventral-anterior structure • Sub-thalums (Ventral Thalamus) • Sub-thalamic Nucleus • Zona Inserta • Fields of Forel • Hypothalamus M. O. BUKHARI 2 Introduction THE THALAMUS Location Function External features Size Interthalamic 3 cms length x 1.5 cms breadth adhesion Two ends Anterior end– Tubercle of Thalamus Posterior end– Pulvinar – Overhangs Med & Lat.Gen.Bodies, Sup.Colliculi & their brachia Surfaces Sup. Surface – Lat. Part forms central part of lat. Vent. Med. Part is covered by tela choroidea of 3rd vent. Inf. Surface - Ant. part fused with subthalamus - Post. part free – inf. part of Pulvinar Med. Surface – Greater part of Lat. wall of 3rd ventricle Lat. Surface - Med.boundary of Post. Limb of internal capsule M. O. BUKHARI 3 Function of the Thalamus • Sensory relay • ALL sensory information (except smell) • Motor integration • Input from cortex, cerebellum and basal ganglia • Arousal • Part of reticular activating system • Pain modulation • All nociceptive information • Memory & behavior • Lesions are disruptive M. O. BUKHARI 4 SUBDIVISION OF THALAMUS M. O. BUKHARI 5 SUBDIVISION OF THALAMUS: WHITE MATTER OF THE THALAMUS Internal Medullary Stratum Zonale Lamina External Medullary Lamina M. O. BUKHARI 6 LATERAL MEDIAL Nuclei of Thalamus Stratum Zonale Anterior Nucleus Medial Dorsal Lateral Dorsal (Large) EXT.Med.Lam ILN Ret.N CMN VPL MGB VPM PVN Lateral Ventral Medial Ventral LGB (Small) LD, LP, Pulvinar – Dorsal Tier nuclei Hypothalamus VA, VL, VPL, VPM – Ventral Tier nuclei M. O. BUKHARI 7 VPM Functional group nuclei 1. Specific 2. Non-specific 3. Reticular 1. Specific - Input from certain specific ascending tratcs Project specific cortical areas VPL Ventral tier, Med & Lat. Geniculate bodies Ventral Posterior Nucleus: Nucleus Afferent Efferent Relay station VPM Trigeminal lemniscus Post central gyrus Impulses from face & head (3,1 & 2) Taste buds Solitariothalamic tract VPL Medial lemniscus Post central gyrus Exteroception (Pain,Tocuh (3,1 & 2) & Temp) Proprioception Spinal lemniscus from whole body except face & head M. O. BUKHARI 8 Functional group nuclei Nucleus Afferent Efferent Relay station Ventral Globus pallidus Premotor cortex Striatal impulses anterior (subthalamic fasciculus) area 6 & 8 Ventral Cerebellum Motor & premotor Cerebellar impulses lateral (dentato-rubro-thalamic areas fibres) Area 4 & 6 (Dentato-thalamic fibres) MGB Auditory fibres from Primary auditory Auditory impulses Inferior Colliculus area 41 & 42 LGB Optic tract Primary visual Visual impulses cortex area 17 M. O. BUKHARI 9 Functional group nuclei 2. Non - Specific group Do not receive afferents from ascending Tracts, but have abundant connections with other diencephalic nuclei. Project to cortical association areas in frontal & parietal lobes. Nucleus Afferent Efferent Relay station Anterior Mamillothalmic tract Cingulate gyrus Attention & Recent nucleus (Mamillary body) memory Medial Other thalamic nuclei & Prefrontal area Mood & Emotional dorsal Hypothalamus balance Lateral Ventral tier of thalamic Precuneus & Integrate sensory dorsal nuclei Cingulate gyrus information Lateral Ventral tier of thalamic Superior parietal Integrate sensory posterior nuclei lobule information Pulvinar Ventral tier of thalamic Association areas Correlates visual & nuclei in parietal, occipital auditory information with & temporal lobes other sensations M. O. BUKHARI 10 Functional group nuclei 3. Reticular nuclei Reticular nucleus, Intralaminar nuclei & Median nuclei (Paraventricular nucleus) Connected with Reticular formation Nucleus Afferent Efferent Relay station Reticular Brain stem reticular Whole of cerebral Forms part of reticular formation cortex activating system (RAS) Intralami Brain stem reticular Other thalamic Involved in awareness of nar & formation nuclei & Corpus painful stimuli at thalamic Centro striatum level median M. O. BUKHARI 11 Thalamus: BLOOD SUPPLY M. O. BUKHARI 12 CONNECTONS OF THE THALAMUS Main connections of the thalamus. AfferentM. O. BUKHARI fibers are shown on the left, and efferent13 fibers are shown on the right The thalamus is an Prefrontal cortex important relay station Cingulate gyrus Somesthetic sensory area for two sensory-motor (3, 1, 2) axonal loops involving Caudate N. the cerebellum and Hypothalamic Nuclei the basal nuclei: Parietal cortex The cerebellar- MB Anygdaloid body rubro-thalamic- Inferior parietal lobule cortical-ponto- Spinal lemniscus Sup. Cereb. Peduncle VPL (Spinothalamic tract) cerebellar loop. RN VPM Trigeminal lemniscus Dentate Nucleus VPL The corticalstriatal- Medial pallidal-thalamic- lemniscus Sup. Sens. N. of Trigeminal NG & NC cortical loop. N. of spinal tract of Trig. nerve Main Dorsal nerve root connectionsM. O. BUKHARI 14 of Thalamus Input to the Thalamus M. O. BUKHARI 15 Input to the Thalamus Metathalamus Vision and Hearing M. O. BUKHARI 16 Input to the Thalamus Sensory relay - Ventral posterior group all sensation from body and head, including pain M. O. BUKHARI 17 Input to the Thalamus Motor control and integration M. O. BUKHARI 18 Input to the Thalamus Behavior and emotion connection with hypothalamus M. O. BUKHARI 19 Projections from the Thalamus Metathalamus Vision and Hearing M. O. BUKHARI 20 Projections from the Thalamus Sensory relay Ventral posterior group all sensation from body and head, including pain M. O. BUKHARI 21 Projections from the Thalamus Motor control and integration M. O. BUKHARI 22 Projections from the Thalamus Behavior and emotion connection with hypothalamus M. O. BUKHARI 23 A Summary of Various Thalamic Nuclei, Their Nervous Connections, and Their Functions Thalamic Nucleus Afferent Neuronal Loop Efferent Neuronal Loop Function Anterior Mammillothalamic tract, Cingulate gyrus, hypothalamus Emotional tone, mechanisms cingulate gyrus, of recent memory hypothalamus Dorsomedial Prefrontal cortex, Prefrontal cortex, Integration of somatic, hypothalamus, other hypothalamus, other thalamic visceral, and olfactory thalamic nuclei nuclei information and relation to emotional feelings and subjective states Lateral dorsal, lateral Cerebral cortex, other Cerebral cortex, other thalamic Unknown posterior, pulvinar thalamic nuclei nuclei Ventral anterior Reticular formation, Reticular formation, substantia Influences activity of motor substantia nigra, corpus nigra, corpus striatum, cortex striatum, premotor premotor cortex, other cortex, other thalamic thalamic nuclei nuclei Ventral lateral As in ventral anterior nucleus but also major input from Influences motor activity of cerebellum and minor input from red nucleus motor cortex Ventral Trigeminal lemniscus, Primary somatic sensory (areas Relays common sensations to posteromedial gustatory fibers 3, 1, and 2) cortex consciousness (VPM) Ventral Medial and spinal lemnisci PrimaryM. O. BUKHARI somatic sensory (areas Relays common sensations24 to posterolateral (VPL) 3, 1, and 2) cortex consciousness Thalamic Nucleus Afferent Neuronal Loop Efferent Neuronal Loop Function Intralaminar Reticular formation, To cerebral cortex via Influences levels of spinothalamic and other thalamic nuclei, consciousness and trigeminothalamic tracts corpus striatum alertness Midline Reticular formation Unknown Unknown Reticular Cerebral cortex, reticular Other thalamic nuclei Known to concerned formation mechanism by which Cerebral cortex regulates thalamus Medial Inferior colliculus, lateral Auditory radiation to Hearing geniculate lemniscus from both ears superior temporal gyrus body but predominantly the contralateral ear Lateral Optic tract Optic radiation to visual Visual information geniculate cortex of occipital lobe from opposite field of body vision M. O. BUKHARI 25 Functions of Thalamus Sensory integration relay station for all sensory pathways(Except olfaction) Capable of recognition of pain, thermal & tactile sensations Influences voluntary movements through basal ganglia & cerebellum – cerebral cortex – cortico-nuclear / cortico-spinal pathways Through ascending activating system – maintains state of wakefulness and alertness Impulses received from hypothalamus projected to prefrontal & cingulate gyrus – Determination of mood Recent memory and emotions Influences electrical activity of cerebral cortex (EEG) M. O. BUKHARI 26 LESIONS OF THE THALAMUS Sensory Loss These lesions usually result from thrombosis or hemorrhage of one of the arteries supplying the thalamus. Damage to the VPM nucleus and the VPL nucleus will result in the loss of all forms of sensation, including light touch, tactile localization and discrimination, and muscle joint sense from the opposite side of the body. Surgical Relief of Pain by Thalamic Cauterization Thalamic Pain Abnormal Involuntary Movements Choreoathetosis with ataxia may follow vascular lesions of the thalamus. It is not certain whether these signs in all cases are due to the loss of function of the thalamus or to involvement of the neighboring caudate and lentiform nuclei. Thalamic Hand M. O. BUKHARI 27 Fatal familial
Recommended publications
  • Differential Deep Brain Stimulation Sites and Networks for Cervical Vs
    medRxiv preprint doi: https://doi.org/10.1101/2021.07.28.21261289; this version posted July 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Title Differential Deep Brain Stimulation Sites and Networks for Cervical vs. Generalized Dystonia Authors Andreas Horn*1, Martin Reich*2, Siobhan Ewert*1, Ningfei Li1, Bassam Al-Fatly1, Florian Lange2, Jonas Roothans2, Simon Oxenford1, Isabel Horn1, Steffen Paschen3, Joachim Runge4, Fritz Wodarg5, Karsten Witt6, Robert C. Nickl7, Matthias Wittstock8, Gerd-Helge Schneider9, Philipp Mahlknecht10, Werner Poewe10, Wilhelm Eisner11, Ann-Kristin Helmers12, Cordula Matthies7, Joachim K. Krauss4, Günther Deuschl3, Jens Volkmann2, Andrea Kühn1 Author Affiliations 1. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany. 2. Julius-Maximilians-University Würzburg, Department of Neurology, Germany 3. University Kiel, Department of Neurology, Germany 4. Department of Neurosurgery, Medical School Hannover, MHH, Hannover, Germany. 5. University Kiel, Department of Radiology, Germany 6. University Oldenburg, Department of Neurology, Germany 7. Julius-Maximilians-University Würzburg, Department of Neurosurgery, Germany 8. University Rostock, Department
    [Show full text]
  • The Connexions of the Amygdala
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.28.2.137 on 1 April 1965. Downloaded from J. Neurol. Neurosurg. Psychiat., 1965, 28, 137 The connexions of the amygdala W. M. COWAN, G. RAISMAN, AND T. P. S. POWELL From the Department of Human Anatomy, University of Oxford The amygdaloid nuclei have been the subject of con- to what is known of the efferent connexions of the siderable interest in recent years and have been amygdala. studied with a variety of experimental techniques (cf. Gloor, 1960). From the anatomical point of view MATERIAL AND METHODS attention has been paid mainly to the efferent connexions of these nuclei (Adey and Meyer, 1952; The brains of 26 rats in which a variety of stereotactic or Lammers and Lohman, 1957; Hall, 1960; Nauta, surgical lesions had been placed in the diencephalon and and it is now that there basal forebrain areas were used in this study. Following 1961), generally accepted survival periods of five to seven days the animals were are two main efferent pathways from the amygdala, perfused with 10 % formol-saline and after further the well-known stria terminalis and a more diffuse fixation the brains were either embedded in paraffin wax ventral pathway, a component of the longitudinal or sectioned on a freezing microtome. All the brains were association bundle of the amygdala. It has not cut in the coronal plane, and from each a regularly spaced generally been recognized, however, that in studying series was stained, the paraffin sections according to the Protected by copyright. the efferent connexions of the amygdala it is essential original Nauta and Gygax (1951) technique and the frozen first to exclude a contribution to these pathways sections with the conventional Nauta (1957) method.
    [Show full text]
  • Semmelweis University, Department of Anatomy, Histology and Embryology the Position of the Diencephalon in the Brain Parts of the Diencephalon
    Microscopy of the diencephalon Árpád Dobolyi Semmelweis University, Department of Anatomy, Histology and Embryology The position of the diencephalon in the brain Parts of the diencephalon • Thalamus • Epithalamus – Pineal body – Habenulae – Trigonum habenulae – Habenular nuclei – Stria medullaris – Habenular commissure • Metathalamus – Medial geniculate body – Lateral geniculate body • Subthalamus – Subthalamic nucleus – Zona incerta – H fields of Forel • Hypothalamus Nuclear groups and nuclei of the thalamus Frontal sections of the thalamus Anterior section Middle section Functional classification of thalamic nuclei • Specific nuclei: specific input, project to specific part of the cortex - sensory relay nuclei: VPL, VPM, MGB, LGB - motor relay nuclei: VA, VL - limbic relay nuclei: AV, AD, AM • Association nuclei: cortical input, project to associative areas of the cortex - MD, LD, LP, pulvinar • Non-specific nuclei: ascending input, diffuse projection to the cortex - midline and intralaminar nuclei • Nuclei not projecting to the cerebral cortex - n. reticularis thalami, n. parafascicularis, n. subparafascicularis Cortical projections of (specific and association) thalamic nuclei mediosagittal view lateral view Specific sensory relay nuclei The VPL relays sensory inputs from the body to the cerebral cortex (Input: spinothalamic tract and the medial lemniscus) The VPM relays sensory inputs from the head to the cerebral cortex (Input: trigeminal and dorsal trigeminal lemniscus pathways) Relay of gustatory inputs to the cortex takes place
    [Show full text]
  • Characterization of the Human Habenula In-Vivo and Ex-Vivo at 7T
    Characterization of the Human Habenula in-vivo and ex-vivo at 7T B. Strotmann1, M. Weiss1, C. Kögler1, A. Schäfer1, R. Trampel1, S. Geyer1, A. Villringer1, and R. Turner1 1Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany Introduction: The habenula has an important controlling role within the human reward system [1,2]: positive reward is signaled by the dopamine system, whereas disappointment is linked to habenular activation. Overactivation of the lateral habenula is associated with depression [3,4]. The habenula is positioned next to the third ventricle in front of the pineal body. It is divided into a medial and lateral part, which receive input from frontal parts of the brain via the stria medullaris and project down the brainstem via the fasciculus retroflexus[5]. The habenular commissure connecting the nuclei on both hemispheres forms the habenular trigone. However, the visualization of this structure is difficult because of its rather small size of approximately 5-9 mm in diameter. Therefore, we made use of a high field strength of 7T to obtain high resolution and high contrast T1, T2* und proton density maps to visualize and determine structural subdivisions of the habenula in-vivo and ex-vivo. Methods: All experiments were performed on a 7 Tesla whole-body MR scanner (MAGNETOM 7T, Siemens Healthcare, Erlangen, Germany) using a 24 channel phased-array head coil (Nova Medical Inc, Wilmington MA, USA) for in-vivo scans, and a custom-built single channel square coil (120mm side) with the post mortem brain tissue centred inside. The study was approved by the ethics committee of the local university and informed consent was obtained.
    [Show full text]
  • Organization of The
    Ivana Pavlinac Dodig, M.D., Ph.D. 1 2 3 4 5 Hypothalamus Epithalamus Thalamus Metathalamus Subthalamus 6 Literally "between-brain„ Diencephalon is the area of the brain between the telencephalon and brainstem. It consists of the thalamus, subthalamus, hypothalamus, metathalamus, and epithalamus. Epithalamus Epithelial roof of the third ventricle, habenula, pineal body and afferent/efferent connections, including striae medullares. (dorsal) Thalamus Large mass of relay nuclei for reciprocal information flow between subcortical areas and telencephalon. Subthalamus Continuation of the tegmentum, with several nuclei including the pars reticulata of the substantia nigra. Functionally part of the basal ganglia. Hypothalamus Extends from the optic chiasm to the mammillary bodies. Contains a multitude of nuclei (e.g. suprachiasmatic nucleus, mammilary bodies) Regulatory functions of visceral, endocrine, autonomic and emotional processes: ▪ Temperature regulation ▪ Sympathetic and parasympathetic events ▪ Endocrine function of pituitary ▪ Emotional and sexual behaviour ▪ Feeding and drinking behaviour ▪ Affective processes ▪ Sleep and wake cycle 10 Anterior (supraoptic) + preoptic area Mid-level (tuberoinfundibulary) area Posterior (mammillary) area 11 Suprachiasmatic (retinal inputs for diurnal rhythms and hormone release) Preoptic nuclei (lat. and med. – endocrine and temperature regulations) Supraoptic Vazopressin Oxytocin Paraventricular 12 . Nucl. infundibularis (arcuatus) – DA (prolactine release- inhibiting hormone) .
    [Show full text]
  • Direct Visualization and Characterization of The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.25.008318; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Direct visualization and characterization of the 2 human zona incerta and surrounding structures 3 Running Title: Jonathan C. Lau1,2,3,4,*, Yiming Xiao2,3, Roy A.M. Haast2,3, Greydon Gilmore1,4, Direct visualization Kamil Uludag7,8,9, Keith W. MacDougall1, Ravi S. Menon2,3,6, of the zona incerta 1 1,2,3,4,6,& 1,2,3,4,5,6,& Andrew G. Parrent , Terry M. Peters , Ali R. Khan Keywords: brain; atlas; human; neuroanatomy; zona incerta; 7T; deep brain stimulation; T1; quantitative MRI 4 5 1Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, London, Ontario, Canada 6 2Imaging Research Laboratories, Robarts Research Institute Canada, Western University, London, Ontario, Canada 7 3Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada 8 4School of Biomedical Engineering, Western University, London, Ontario, Canada 9 5Brain and Mind Institute, Western University, London, Ontario, Canada 10 6Department of Medical Biophysics, Western University, London, Ontario, Canada 11 7IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Seobu-ro, 2066, Jangan-gu, Suwon, South Korea 12 8Department of Biomedical Engineering, N Center, Sungkyunkwan University, Seobu-ro, 2066, Jangan-gu, Suwon, South Korea 13 9Techna Institute and Koerner Scientist in MR Imaging, University Health Network, 100 College St, Toronto, ON, Canada 14 *Corresponding author 15 &Joint senior authors 16 17 Abstract: The zona incerta (ZI) is a small gray matter region of the deep brain first identified in the 19th 18 century, yet direct in vivo visualization and characterization has remained elusive.
    [Show full text]
  • The Network Organization of Rat Intrathalamic Macroconnections and a Comparison with Other Forebrain Divisions
    The network organization of rat intrathalamic macroconnections and a comparison with other forebrain divisions Larry W. Swansona,1, Olaf Spornsb,c, and Joel D. Hahna aDepartment of Biological Sciences, University of Southern California, Los Angeles, CA 90089; bIndiana University Network Science Institute, Indiana University, Bloomington, IN 47405; and cDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405 Contributed by Larry W. Swanson, May 17, 2019 (sent for review April 8, 2019; reviewed by Zhanyan Fu and Leah A. Krubitzer) The thalamus is 1 of 4 major divisions of the forebrain and is of cortical regions (6). In contrast, the THe (habenular nuclei) and usually subdivided into epithalamus, dorsal thalamus, and ventral THv (reticular and ventral lateral geniculate nuclei, intergeniculate thalamus. The 39 gray matter regions comprising the large dorsal leaflet, zona incerta, and fields of Forel) are much smaller and thalamus project topographically to the cerebral cortex, whereas have virtually no projections to the cerebral cortex (6). the much smaller epithalamus (2 regions) and ventral thalamus (5 For the purposes of this analysis, axonal connections among all regions) characteristically project subcortically. Before analyzing 46 thalamic nuclei recognized on one side of the rat brain in a extrinsic inputs and outputs of the thalamus, here, the intrinsic standard atlas (7) have been considered (whether THe, THd, or connections among all 46 gray matter regions of the rat thalamus THv) along with the connections established by these nuclei with on each side of the brain were expertly collated and subjected to the 46 corresponding thalamic nuclei on the other side of the network analysis.
    [Show full text]
  • Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies
    REVIEW published: 21 May 2019 doi: 10.3389/fneur.2019.00410 Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies Thomas Koeglsperger 1,2*, Carla Palleis 1,2, Franz Hell 1,3, Jan H. Mehrkens 4 and Kai Bötzel 1* 1 Department of Neurology, Ludwig Maximilians University, Munich, Germany, 2 Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany, 3 Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany, 4 Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson’s disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor Edited by: Matteo Bologna, for the individual outcome after DBS. Programming of the implanted pulse generator Sapienza University of Rome, Italy (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes Reviewed by: even more relevant in cases in which the electrodes are located at the border of Angel Sesar, the intended target structure and when side effects become challenging. At present, Complejo Hospitalario Universitario de Santiago, Spain adjusting stimulation parameters depends to a large extent on personal experience. Adolfo Ramirez-Zamora,
    [Show full text]
  • CENTRAL NERVOUS SYSTEM Composed from Spinal Cord and Brain
    CENTRAL NERVOUS SYSTEM composed from spinal cord and brain SPINAL CORD − is developmentally the oldest part of CNS − is long about 45 cm in adult − fills upper 2/3 of vertebral canal cranial border at level of: foramen magnum, pyramidal decussation, exit of first pair of spinal nerves caudal border: level of L1 vertebra – medullary cone – filum terminale made by pia mater (ends at level of S2 vertebra) – spinal roots below L1 vertebra form cauda equina two enlargements: • cervical enlargement (CV – ThI): origin of nerves for upper extremity – brachial plexus • lumbosacral enlargement (LI – SII): origin of nerves for lower extremity – lumbosacral plexus Spinal segment is part of spinal cord where 1 pair of spinal n. exits. Spinal cord consists of 31 spinal segments and 31 pairs of spinal nn.: 8 cervical, 12 thoracic, 5 lumbar, 1 coccygeal. Spinal nn. leave spinal cord through íntervertebral foramens. Denticulate ligg. attach spinal segments to vertebral canal. Dermatome is part of skin innervated by 1 spinal nerve. external features: • anterior median fissure • anterolateral sulcus – exits of anterior roots of spinal nn. (laterally to anterior median fissure) • posterolateral sulcus – exits of posterior roots of spinal nn. • posterior median sulcus • posterior intermediate sulcus internal features: White matter • anterior funiculus (between anterior median fissure and anterolateral sulcus) • lateral funiculus (between anterolateral and posterolateral sulci) • posterior funiculus (between posterolateral sulcus and posterior median sulcus) is divided by posterior intermediate sulcus to: − gracile fasciculus – medial one − cuneate fasciculus – lateral one, both for sensory tracts of fine sensation White matter of spinal cord contains fibres of ascending and descending nerve tracts.
    [Show full text]
  • Central Nervous System. Sense Organs Study Guide
    CENTRAL NERVOUS SYSTEM. SENSE ORGANS STUDY GUIDE 0 Ministry of Education and Science of Ukraine Sumy State University Medical Institute CENTRAL NERVOUS SYSTEM. SENSE ORGANS STUDY GUIDE Recommended by the Academic Council of Sumy State University Sumy Sumy State University 2017 1 УДК 6.11.8 (072) C40 Authors: V. I. Bumeister, Doctor of Biological Sciences, Professor; O. S. Yarmolenko, Candidate of Medical Sciences, Assistant; O. O. Prykhodko, Candidate of Medical Sciences, Assistant Professor; L. G. Sulim, Senior Lecturer Reviewers: O. O. Sherstyuk – Doctor of Medical Sciences, Professor of Ukrainian Medical Stomatological Academy (Poltava); V. Yu. Harbuzova – Doctor of Biological Sciences, Professor of Sumy State University (Sumy) Recommended by for publication Academic Council of Sumy State University as a study guide (minutes № 11 of 15.06.2017) Central nervous system. Sense organs : study guide / C40 V. I. Bumeister, O. S. Yarmolenko, O. O. Prykhodko, L. G. Sulim. – Sumy : Sumy State University, 2017. – 173 p. ISBN 978-966-657- 694-4 This study gnide is intended for the students of medical higher educational institutions of IV accreditation level, who study human anatomy in the English language. Навчальний посібник рекомендований для студентів вищих медичних навчальних закладів IV рівня акредитації, які вивчають анатомію людини англійською мовою. УДК 6.11.8 (072) © Bumeister V. I., Yarmolenko O. S., Prykhodko O. O, Sulim L. G., 2017 ISBN 978-966-657- 694-4 © Sumy State University, 2017 2 INTRODUCTION Human anatomy is a scientific study of human body structure taking into consideration all its functions and mechanisms of its development. Studying the structure of separate organs and systems in close connection with their functions, anatomy considers a person's organism as a unit which develops basing on the regularities under the influence of internal and external factors during the whole process of evolution.
    [Show full text]
  • Recollection Et Familiarité Chez 12 Patients Présentant Un Infarctus
    Recollection et familiarité chez 12 patients présentant un infarctus thalamique gauche : étude comportementale, en imagerie structurale et fonctionnelle de repos Lola Danet To cite this version: Lola Danet. Recollection et familiarité chez 12 patients présentant un infarctus thalamique gauche : étude comportementale, en imagerie structurale et fonctionnelle de repos. Neurosciences. Université Paul Sabatier - Toulouse III, 2015. Français. NNT : 2015TOU30335. tel-01453172 HAL Id: tel-01453172 https://tel.archives-ouvertes.fr/tel-01453172 Submitted on 2 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 « c’est, on l’a dit, une réflexion nostalgique sur l’impuissance de la réalité à recomposer les tableaux de la mémoire. » Antoine Compagnon, à propos de la Recherche du temps perdu de Marcel Proust. 2 A Yvette Rose Loria et à Charlotte Danet 3 Je remercie Jean-François Démonet et Christine Bastin pour avoir bien voulu évaluer mon travail. Je remercie Olivier Félician, Christopher Moulin et Patrice Péran d’avoir accepté de faire partie de mon jury de thèse. Jérémie Pariente, directeur de ma thèse, mais aussi collègue et partenaire de réflexion scientifique et clinique depuis plusieurs années. Merci pour cette belle aventure, les aventures passées et futures, merci pour ton engagement, ton exigence et ta sincérité.
    [Show full text]
  • Basal Ganglia Physiology Neuroanatomy > Basal Ganglia > Basal Ganglia
    Basal Ganglia Physiology Neuroanatomy > Basal Ganglia > Basal Ganglia BASAL GANGLIA PHYSIOLOGY THE DIRECT & INDIRECT PATHWAYS OVERALL CIRCUITRY Key Structures • Cerebral cortex • Thalamus • Spinal motor neurons • Striatum, which is the: - Caudate & - Putamen CONNECTIVITY • The thalamus excites the cerebral cortex, which stimulates the spinal motor neurons. • The cortex excites the striatum. THE DIRECT PATHWAY Key Structures • The combined globus pallidus internal segment and the substantia nigra reticulata - GPi/STNr Connectivity • The striatum (primarily the putamen) inhibits GPi/STNr. 1 / 5 • GPi/STNr inhibits the thalamus. The direct pathway is overall excitatory THE INDIRECT PATHWAY Key Structures • The globus pallidus external segment - GPe Connectivity • GPe is inhibited by the Striatum. • GPe inhibits GPi/STNr The indirect pathway is overall inhibitory Subthalamic nucleus • The Indirect Pathway via the subthalamic nucleus Connectivity • The subthalamic nucleus excites GPi/STNr. • GPe inhibits the subthalamic nucleus Indirect Pathway: Summary • Whether it is because of GPe inhibition of the GPi/STNr • OR because of GPe inhibition of the subthalamic nucleus, • The indirect pathway is always overall inhibitory. HEMIBALLISMUS & PARKINSON'S DISEASE Hemiballismus Clinical Correlation: Hemiballismus • When the subthalamic nucleus is selectively injured, patients develop a loss of motor inhibition on the side contralateral to the subthalamic nucleus lesion, they develop wild ballistic, flinging movements, called hemiballismus. 2 / 5 Parkinson's Disease Clinical Correlation: Parkinson's disease • Substantia nigra compacta degeneration causes Parkinson's disease. • It is a disorder of slowness and asymmetric muscle rigidity, often associated with tremor. Dopamine Receptors • The substantia nigra compacta releases dopamine. • The two most prominent dopamine (D) receptors in the striatum are: - The D1 receptor, which is part of the direct pathway and is excited by dopamine.
    [Show full text]