Directional Asymmetry of the Zebrafish Epithalamus Guides Dorsoventral
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Connexions of the Amygdala
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.28.2.137 on 1 April 1965. Downloaded from J. Neurol. Neurosurg. Psychiat., 1965, 28, 137 The connexions of the amygdala W. M. COWAN, G. RAISMAN, AND T. P. S. POWELL From the Department of Human Anatomy, University of Oxford The amygdaloid nuclei have been the subject of con- to what is known of the efferent connexions of the siderable interest in recent years and have been amygdala. studied with a variety of experimental techniques (cf. Gloor, 1960). From the anatomical point of view MATERIAL AND METHODS attention has been paid mainly to the efferent connexions of these nuclei (Adey and Meyer, 1952; The brains of 26 rats in which a variety of stereotactic or Lammers and Lohman, 1957; Hall, 1960; Nauta, surgical lesions had been placed in the diencephalon and and it is now that there basal forebrain areas were used in this study. Following 1961), generally accepted survival periods of five to seven days the animals were are two main efferent pathways from the amygdala, perfused with 10 % formol-saline and after further the well-known stria terminalis and a more diffuse fixation the brains were either embedded in paraffin wax ventral pathway, a component of the longitudinal or sectioned on a freezing microtome. All the brains were association bundle of the amygdala. It has not cut in the coronal plane, and from each a regularly spaced generally been recognized, however, that in studying series was stained, the paraffin sections according to the Protected by copyright. the efferent connexions of the amygdala it is essential original Nauta and Gygax (1951) technique and the frozen first to exclude a contribution to these pathways sections with the conventional Nauta (1957) method. -
Thalamus and Hypothalamus
DIENCEPHALON: THALAMUS AND HYPOTHALAMUS M. O. BUKHARI 1 DIENCEPHALON: General Introduction • Relay & integrative centers between the brainstem & cerebral cortex • Dorsal-posterior structures • Epithalamus • Anterior & posterior paraventricular nuclei • Habenular nuclei – integrate smell & emotions • Pineal gland – monitors diurnal / nocturnal rhythm • Habenular Commissure • Post. Commissure • Stria Medullaris Thalami • Thalamus(Dorsal thalamus) • Metathalamus • Medial geniculate body – auditory relay • Lateral geniculate body – visual relay Hypothalamic sulcus • Ventral-anterior structure • Sub-thalums (Ventral Thalamus) • Sub-thalamic Nucleus • Zona Inserta • Fields of Forel • Hypothalamus M. O. BUKHARI 2 Introduction THE THALAMUS Location Function External features Size Interthalamic 3 cms length x 1.5 cms breadth adhesion Two ends Anterior end– Tubercle of Thalamus Posterior end– Pulvinar – Overhangs Med & Lat.Gen.Bodies, Sup.Colliculi & their brachia Surfaces Sup. Surface – Lat. Part forms central part of lat. Vent. Med. Part is covered by tela choroidea of 3rd vent. Inf. Surface - Ant. part fused with subthalamus - Post. part free – inf. part of Pulvinar Med. Surface – Greater part of Lat. wall of 3rd ventricle Lat. Surface - Med.boundary of Post. Limb of internal capsule M. O. BUKHARI 3 Function of the Thalamus • Sensory relay • ALL sensory information (except smell) • Motor integration • Input from cortex, cerebellum and basal ganglia • Arousal • Part of reticular activating system • Pain modulation • All nociceptive information • Memory & behavior • Lesions are disruptive M. O. BUKHARI 4 SUBDIVISION OF THALAMUS M. O. BUKHARI 5 SUBDIVISION OF THALAMUS: WHITE MATTER OF THE THALAMUS Internal Medullary Stratum Zonale Lamina External Medullary Lamina M. O. BUKHARI 6 LATERAL MEDIAL Nuclei of Thalamus Stratum Zonale Anterior Nucleus Medial Dorsal Lateral Dorsal (Large) EXT.Med.Lam ILN Ret.N CMN VPL MGB VPM PVN Lateral Ventral Medial Ventral LGB (Small) LD, LP, Pulvinar – Dorsal Tier nuclei Hypothalamus VA, VL, VPL, VPM – Ventral Tier nuclei M. -
Tonic Activity in Lateral Habenula Neurons Promotes Disengagement from Reward-Seeking Behavior
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426914; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Tonic activity in lateral habenula neurons promotes disengagement from reward-seeking behavior 5 Brianna J. Sleezer1,3, Ryan J. Post1,2,3, David A. Bulkin1,2,3, R. Becket Ebitz4, Vladlena Lee1, Kasey Han1, Melissa R. Warden1,2,5,* 1Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA 2Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA 10 3These authors contributed equally 4Department oF Neuroscience, Université de Montréal, Montréal, QC H3T 1J4, Canada 5Lead Contact *Correspondence: [email protected] 15 Sleezer*, Post*, Bulkin* et al. 1 of 38 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426914; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SUMMARY Survival requires both the ability to persistently pursue goals and the ability to determine when it is time to stop, an adaptive balance of perseverance and disengagement. Neural activity in the 5 lateral habenula (LHb) has been linked to aversion and negative valence, but its role in regulating the balance between reward-seeking and disengaged behavioral states remains unclear. -
Brain Structure and Function Related to Headache
Review Cephalalgia 0(0) 1–26 ! International Headache Society 2018 Brain structure and function related Reprints and permissions: sagepub.co.uk/journalsPermissions.nav to headache: Brainstem structure and DOI: 10.1177/0333102418784698 function in headache journals.sagepub.com/home/cep Marta Vila-Pueyo1 , Jan Hoffmann2 , Marcela Romero-Reyes3 and Simon Akerman3 Abstract Objective: To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background: Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus: This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms -
Loss of the Habenula Intrinsic Neuromodulator Kisspeptin1 Affects Learning in Larval Zebrafish
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Loss of the habenula intrinsic neuromodulator Kisspeptin1 affects learning in larval zebrafish Lupton, Charlotte; Sengupta, Mohini; Cheng, Ruey‑Kuang; Chia, Joanne; Thirumalai, Vatsala; Jesuthasan, Suresh 2017 Lupton, C., Sengupta, M., Cheng, R.‑K., Chia, J., Thirumalai, V., & Jesuthasan, S. (2017). Loss of the habenula intrinsic neuromodulator Kisspeptin1 affects learning in larval zebrafish. eNeuro, 4(3), e0326‑16.2017‑. doi:10.1523/ENEURO.0326‑16.2017 https://hdl.handle.net/10356/107013 https://doi.org/10.1523/ENEURO.0326‑16.2017 © 2017 Lupton et al. This is an open‑access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. Downloaded on 29 Sep 2021 15:54:33 SGT New Research Cognition and Behavior Loss of the Habenula Intrinsic Neuromodulator Kisspeptin1 Affects Learning in Larval Zebrafish Joanne Chia,5 Vatsala ء,Ruey-Kuang Cheng,4 ء,Mohini Sengupta,3 ء,Charlotte Lupton,1,2 and Suresh Jesuthasan2,4,6 ء,Thirumalai,3 DOI:http://dx.doi.org/10.1523/ENEURO.0326-16.2017 1Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK, 2Institute for Molecular and Cell Biology, 138673, Singapore, 3National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India, 4Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore, 5National University of Singapore Graduate School for Integrative Sciences and Engineering, 117456, Singapore, and 6Duke-NUS Graduate Medical School, 169857 Singapore Abstract Learning how to actively avoid a predictable threat involves two steps: recognizing the cue that predicts upcoming punishment and learning a behavioral response that will lead to avoidance. -
Characterization of the Human Habenula In-Vivo and Ex-Vivo at 7T
Characterization of the Human Habenula in-vivo and ex-vivo at 7T B. Strotmann1, M. Weiss1, C. Kögler1, A. Schäfer1, R. Trampel1, S. Geyer1, A. Villringer1, and R. Turner1 1Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany Introduction: The habenula has an important controlling role within the human reward system [1,2]: positive reward is signaled by the dopamine system, whereas disappointment is linked to habenular activation. Overactivation of the lateral habenula is associated with depression [3,4]. The habenula is positioned next to the third ventricle in front of the pineal body. It is divided into a medial and lateral part, which receive input from frontal parts of the brain via the stria medullaris and project down the brainstem via the fasciculus retroflexus[5]. The habenular commissure connecting the nuclei on both hemispheres forms the habenular trigone. However, the visualization of this structure is difficult because of its rather small size of approximately 5-9 mm in diameter. Therefore, we made use of a high field strength of 7T to obtain high resolution and high contrast T1, T2* und proton density maps to visualize and determine structural subdivisions of the habenula in-vivo and ex-vivo. Methods: All experiments were performed on a 7 Tesla whole-body MR scanner (MAGNETOM 7T, Siemens Healthcare, Erlangen, Germany) using a 24 channel phased-array head coil (Nova Medical Inc, Wilmington MA, USA) for in-vivo scans, and a custom-built single channel square coil (120mm side) with the post mortem brain tissue centred inside. The study was approved by the ethics committee of the local university and informed consent was obtained. -
Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus
The Journal of Neuroscience, May 1, 2003 • 23(9):3855–3868 • 3855 Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus Raymond Mongeau,1 Gabriel A. Miller,1 Elizabeth Chiang,1 and David J. Anderson1,2 1Division of Biology and 2Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125 Environment and experience influence defensive behaviors, but the neural circuits mediating such effects are not well understood. We describe a new experimental model in which either flight or freezing reactions can be elicited from mice by innately aversive ultrasound. Flight and freezing are negatively correlated, suggesting a competition between fear motor systems. An unfamiliar environment or a previous aversive event, moreover, can alter the balance between these behaviors. To identify potential circuits controlling this compe- tition, global activity patterns in the whole brain were surveyed in an unbiased manner by c-fos in situ hybridization, using novel experimental and analytical methods. Mice predominantly displaying freezing behavior had preferential neural activity in the lateral septum ventral and several medial and periventricular hypothalamic nuclei, whereas mice predominantly displaying flight had more activity in cortical, amygdalar, and striatal motor areas, the dorsolateral posterior zone of the hypothalamus, and the vertical limb of the diagonal band. These complementary patterns of c-fos induction, taken together with known connections between these structures, suggest ways in which the brain may mediate the balance between these opponent defensive behaviors. Key words: defense behaviors; ultrasound; C56Bl6 mice; anxiety; flight behavior; freezing behavior; septum; hypothalamus; pedunculo- pontine tegmentum; diagonal band; cingulate cortex; motor cortex; retrosplenial cortex; accumbens; caudate putamen; amygdala Introduction iors can, moreover, be altered in a predictable manner by simple Studies of defensive behaviors in rodents provide useful para- environmental manipulations. -
Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons
The Journal of Neuroscience, June 27, 2007 • 27(26):6923–6930 • 6923 Behavioral/Systems/Cognitive Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABAA Receptor-Mediated Mechanism Huifang Ji and Paul D. Shepard Maryland Psychiatric Research Center and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228 Transient changes in the activity of midbrain dopamine neurons encode an error signal that contributes to associative learning. Although considerableattentionhasbeendevotedtothemechanismscontributingtophasicincreasesindopamineactivity,lessisknownaboutthe origin of the transient cessation in firing accompanying the unexpected loss of a predicted reward. Recent studies suggesting that the lateral habenula (LHb) may contribute to this type of signaling in humans prompted us to evaluate the effects of LHb stimulation on the activity of dopamine and non-dopamine neurons of the anesthetized rat. Single-pulse stimulation of the LHb (0.5 mA, 100 s) transiently suppressed the activity of 97% of the dopamine neurons recorded in the substantia nigra and ventral tegmental area. The duration of the cessation averaged ϳ85 ms and did not differ between the two regions. Identical stimuli transiently excited 52% of the non-dopamineneuronsintheventralmidbrain.ElectrolyticlesionsofthefasciculusretroflexusblockedtheeffectsofLHbstimulationon dopamine neurons. Local application of bicuculline but not the SK-channel blocker apamin attenuated the effects of LHb stimulation on dopamine cells, indicating that the response is mediated by GABAA receptors. These data suggest that LHb-induced suppression of dopamine cell activity is mediated indirectly by orthodromic activation of putative GABAergic neurons in the ventral midbrain. The habenulomesencephalic pathway, which is capable of transiently suppressing the activity of dopamine neurons at a population level, may represent an important component of the circuitry involved in encoding reward expectancy. -
Increased Theta/Alpha Synchrony in the Habenula-Prefrontal Network with Negative
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424800; this version posted January 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Increased theta/alpha synchrony in the habenula-prefrontal network with negative 2 emotional stimuli in human patients 3 Yongzhi Huang1,2*, Bomin Sun3*, Jean Debarros4, Chao Zhang3, Shikun Zhan3, Dianyou Li3, 4 Chencheng Zhang3, Tao Wang3, Peng Huang3, Yijie Lai3, Peter Brown4, Chunyan Cao3†, 5 Huiling Tan4† 6 1 Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 7 300072, China 8 2 Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK 9 3 Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of 10 Medicine, Shanghai 200025, China 11 4 Medical Research Council (MRC) Brain Network Dynamics Unit at the University of Oxford, 12 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK 13 * These authors contributed equally to this work 14 † Corresponding author. 15 Address correspondence to: 16 Huiling Tan, 6th Floor West Wing JR Hospital, MRC Brain Network Dynamics Unit, Nuffield 17 Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Phone: 18 (+44) 01865-572483; Email: [email protected]; 19 or Chunyan Cao, Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong 20 University School of Medicine, Shanghai 200025, China; Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424800; this version posted January 1, 2021. -
Organization of The
Ivana Pavlinac Dodig, M.D., Ph.D. 1 2 3 4 5 Hypothalamus Epithalamus Thalamus Metathalamus Subthalamus 6 Literally "between-brain„ Diencephalon is the area of the brain between the telencephalon and brainstem. It consists of the thalamus, subthalamus, hypothalamus, metathalamus, and epithalamus. Epithalamus Epithelial roof of the third ventricle, habenula, pineal body and afferent/efferent connections, including striae medullares. (dorsal) Thalamus Large mass of relay nuclei for reciprocal information flow between subcortical areas and telencephalon. Subthalamus Continuation of the tegmentum, with several nuclei including the pars reticulata of the substantia nigra. Functionally part of the basal ganglia. Hypothalamus Extends from the optic chiasm to the mammillary bodies. Contains a multitude of nuclei (e.g. suprachiasmatic nucleus, mammilary bodies) Regulatory functions of visceral, endocrine, autonomic and emotional processes: ▪ Temperature regulation ▪ Sympathetic and parasympathetic events ▪ Endocrine function of pituitary ▪ Emotional and sexual behaviour ▪ Feeding and drinking behaviour ▪ Affective processes ▪ Sleep and wake cycle 10 Anterior (supraoptic) + preoptic area Mid-level (tuberoinfundibulary) area Posterior (mammillary) area 11 Suprachiasmatic (retinal inputs for diurnal rhythms and hormone release) Preoptic nuclei (lat. and med. – endocrine and temperature regulations) Supraoptic Vazopressin Oxytocin Paraventricular 12 . Nucl. infundibularis (arcuatus) – DA (prolactine release- inhibiting hormone) . -
The Use of Neuromodulation in the Treatment of Cocaine Dependence Lucia M
Original Article ADDICTIVE 1 DISORDERS & THEIR TREATMENT Volume 13, Number 1 March 2014 The Use of Neuromodulation in the Treatment of Cocaine Dependence Lucia M. Alba-Ferrara, PhD, Francisco Fernandez, MD, and Gabriel A. de Erausquin, MD, PhD, MSc reports of craving, which usually pre- Abstract cedes the seeking and taking of drugs. Cocaine-related disorders are currently among the Understanding the pathophysiology of most devastating mental diseases, as they impover- ish all spheres of life resulting in tremendous eco- addiction and the neurobiological basis nomic, social, and moral costs. Despite multiple of craving in particular, is essential for efforts to tackle cocaine dependence, pharmacolog- designing better index of treatment re- ical as well as cognitive therapies have had limited success. In this review, we discuss the use of recent sponse and for developing new thera- neuromodulation techniques, such as conventional peutic interventions. repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation, and the use of H coils for deep rTMS for the treatment of cocaine dependence. Moreover, we discuss attempts to identify optimal brain targets underpinning cocaine craving and with- THE ANATOMIC BASIS OF drawal for neurodisruption treatment, as well as some weaknesses in the literature, such as the ab- COCAINE DEPENDENCE sence of biomarkers for individual risk classification and the inadequacy of treatment outcome measures, Several investigations have con- which may delay progress in the field. Finally, we present some genetic markers candidates and objec- cluded that the most likely final com- From the Department of tive outcome measures, which could be applied in mon pathway underpinning drugs’ Psychiatry and Neuroscience, combination with transcranial magnetic stimulation treatment of cocaine dependence. -
Thalamus.Pdf
Thalamus 583 THALAMUS This lecture will focus on the thalamus, a subdivision of the diencephalon. The diencephalon can be divided into four areas, which are interposed between the brain stem and cerebral hemispheres. The four subdivisions include the hypothalamus to be discussed in a separate lecture, the ventral thalamus containing the subthalamic nucleus already discussed, the epithalamus which is made up mostly of the pineal body, and the dorsal thalamus (henceforth referred to as the thalamus) which is the focus of this lecture. Although we will not spend any time in lecture on the pineal body, part of the epithalamus, it does have some interesting features as well as some clinical relevance. The pineal is a small midline mass of glandular tissue that secretes the hormone melatonin. In lower mammals, melatonin plays a central role in control of diurnal rhythms (cycles in body states and hormone levels that follow the day- night cycle). In humans, at least a portion of the control of diurnal rhythms has been taken over by the hypothalamus, but there is increasing evidence that the pineal and melatonin play at least a limited role. Recent investigations have demonstrated a role for melatonin in sleep, tumor reduction and aging. Additionally, based on the observation that tumors of the pineal can induce a precocious puberty in males it has been suggested that the pineal is also involved in timing the onset of puberty. In many individuals the pineal is partially calcified and can serve as a marker for the midline of the brain on x- rays. Pathological processes can sometimes be detected by a shift in its position.