Phytoalexins from the Poaceae: Biosynthesis, Function and Prospects in Food Preservation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemistry and Pharmacology of Kinkéliba (Combretum
CHEMISTRY AND PHARMACOLOGY OF KINKÉLIBA (COMBRETUM MICRANTHUM), A WEST AFRICAN MEDICINAL PLANT By CARA RENAE WELCH A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Medicinal Chemistry written under the direction of Dr. James E. Simon and approved by ______________________________ ______________________________ ______________________________ ______________________________ New Brunswick, New Jersey January, 2010 ABSTRACT OF THE DISSERTATION Chemistry and Pharmacology of Kinkéliba (Combretum micranthum), a West African Medicinal Plant by CARA RENAE WELCH Dissertation Director: James E. Simon Kinkéliba (Combretum micranthum, Fam. Combretaceae) is an undomesticated shrub species of western Africa and is one of the most popular traditional bush teas of Senegal. The herbal beverage is traditionally used for weight loss, digestion, as a diuretic and mild antibiotic, and to relieve pain. The fresh leaves are used to treat malarial fever. Leaf extracts, the most biologically active plant tissue relative to stem, bark and roots, were screened for antioxidant capacity, measuring the removal of a radical by UV/VIS spectrophotometry, anti-inflammatory activity, measuring inducible nitric oxide synthase (iNOS) in RAW 264.7 macrophage cells, and glucose-lowering activity, measuring phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression in an H4IIE rat hepatoma cell line. Radical oxygen scavenging activity, or antioxidant capacity, was utilized for initially directing the fractionation; highlighted subfractions and isolated compounds were subsequently tested for anti-inflammatory and glucose-lowering activities. The ethyl acetate and n-butanol fractions of the crude leaf extract were fractionated leading to the isolation and identification of a number of polyphenolic ii compounds. -
A Biosystematic Study of Allium Amplectens Torr
University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1974 A biosystematic study of Allium amplectens Torr Vickie Lynn Cain University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Life Sciences Commons Recommended Citation Cain, Vickie Lynn. (1974). A biosystematic study of Allium amplectens Torr. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/1850 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. A BIOSYSTEMI\'l'IC STUDY OF AlHum amplectens Torr. A 'lliesis Presented to The Faculty of the Department of Biological Sciences University of the Pacific In Partial Fulfillment of the Requirewents for the.Degree Master of Science in Biological Sciences by Vickie Lynn Cain August 1974 This thesis, written and submitted by is approved for recommendation to the Committee on Graduate Studies, University of the Pacific. Department Chairman or Dean: Chairman I; /') Date d c.~ cA; lfli ACKUOlvl.EDGSIV!EN'TS 'l'he author_ wishes to tha.'l.k Dr. B. Tdhelton a.YJ.d Dr. P. Gross for their• inva~i uoble advise and donations of time. l\'Iy appreciation to Dr. McNeal> my advisor. Expert assistance in the library vJEts pro:- vlded by Pr·, i:':I. SshaJit. To Vij c.y KJ12nna and Dolores No::..a.n rny ap-- preciatlon for rwraJ. -
Phytoalexins: Current and Possible Future Applications in Human Health and Diseases Control
International Journal of Molecular Biology: Open Access Review Article Open Access Phytoalexins: Current and possible future applications in human health and diseases control Abstract Volume 3 Issue 3 - 2018 Plants are prone to diseases and infections following their obvious exposure to microbes Anthony Cemaluk C Egbuonu,1 Juliet C and attendant microbial attacks. Plants control diseases and infections by using their 2 secondary metabolites known collectively as phytoalexins. These phytoalexins, usually Eneogwe 1 synthesized in plants in response to diseases and infections, have enormous chemical Department of Biochemistry, Michael Okpara University of Agriculture, Nigeria diversity and biologic roles but are essentially non biodegradable owing to their stable 2Department of Biochemistry, Michael Okpara University of structures hence could bio-accumulate with sustained effect once synthesized. Thus, Agriculture, Nigeria this reviewed current and possible future applications of phytoalexins in human health and diseases control using relevant search words and search engines. The review noted Correspondence: Anthony Cemaluk C Egbuonu, Department that resveratrol, a representative of, and an extensively studied, phytoalexins was of Biochemistry, Michael Okpara University of Agriculture, variously implicated in the management of human health, including in the prevention Umudike, Abia State, Nigeria, Tel +23480.3636-6565, of cardiovascular disease and cancers. Resveratrol acts via mechanisms essentially Email [email protected] related to its capacity to ameliorate oxidative stress perhaps by significantly enhancing the synthesis of nitric oxide, NO, which could act as an antioxidant. Received: October 30, 2017 | Published: May 10, 2018 Increased oxidative stress has been implicated in human diseases and efforts aimed at mitigating (or preventing the onset of) oxidative stress have been the underlying approach to human disease management and control. -
ABSTRACT YUZUAK, SEYIT. Utilizing Metabolomics and Model Systems
ABSTRACT YUZUAK, SEYIT. Utilizing Metabolomics and Model Systems to Gain Insight into Precursors and Polymerization of Proanthocyanidins in Plants (Under the direction of Dr. De-Yu Xie). Proanthocyanidins (PAs) are oligomers or polymers of flavan-3-ols. In plants, PAs have multiple protective functions against biotic and abiotic stresses. PAs are also important nutraceuticals existing in common beverages and food products to benefit human health. To date, although the biosynthesis of PAs has been intensively studieed and fundamental progress has been made in over the past decades, many questions remain unanswered. For example, its direct precursors of extension units are unknown and their monomer structure diversity are also unclear. These questions about proanthocyanidins result from not having of model systems and effective technologies. Our laboratory has made significant progress in enhancing the understanding of these unknown and unclear points regarding proanthocyanidins. In my dissertation research reported here, I focus on two areas: testing muscadine as a crop system to develop metabolomics for studying precursor diversity and isolating enzymes from a red cell tobacco system to understand the precursors of the extension units of PA. First, I developed a metabolomics protocol to analyze anthocyanidins and anthocyanins in muscadine grape. This study demonstrated that muscadine berries can produce at least six anthocyanidins, revealing the diversity of pathway precursors for PAs. The Journal of Agriculture and Food Chemistry is reviewing this work. Second, I developed a metabolomics protocol of HPLC-qTOF-MS/MS to analyze flavan- 3-ols and dimeric PAs in muscadine grape. This study also demonstrated the high structure diversity of flavan-3-ols, particularly methylated flavan-3-ols. -
ABSTRACT ZENG, HAINIAN. Development
ABSTRACT ZENG, HAINIAN. Development-dependent Formation and Metabolism of Anthocyanins and Proanthocyanidins in Acer Species. (Under the direction of David Danehower, William Hoffmann, Jenny Xiang and De-yu Xie). Anthocyanins are one of the richest pigments, which belong to flavonoid compounds in plant kingdom. They have many biological and ecological functions. Over the past many years, numerous efforts have been made to determine the biosynthetic pathway of anthocyanins and also to identify several regulatory proteins mainly in flowers and fruits of model plants and crop plants. However, many questions concerning the metabolism of anthocyanins in foliage remains unsolved. One example is “How can developmental processes impact on accumulation patterns of anthocyanins in leaves”. In this study, we choose several cultivars from one of the most popular ornamental plants Acer palmatum Thunb. to understand the mechanism of developmental changes of pigmentation in leaf. Several other maple species were also analyzed. We propose that the metabolism of anthocyanins play an essential role in such changes. We use an integrated approach of phytochemistry and metabolic profiling to determine the biosynthesis and metabolism of anthocyanins and their impacts on foliage color. Proanthocyanidin analysis was carried out as well to determine their relationship to both anthocyanin production and foliar coloration. We have found that even for green leaves with no/trace amount of detectable anthocyanins, the biosynthetic pathway of anthocyanidin/proanthocyanidin -
Anthocyanin Pigments: Beyond Aesthetics
molecules Review Anthocyanin Pigments: Beyond Aesthetics , Bindhu Alappat * y and Jayaraj Alappat y Warde Academic Center, St. Xavier University, 3700 W 103rd St, Chicago, IL 60655, USA; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Academic Editor: Pasquale Crupi Received: 29 September 2020; Accepted: 19 November 2020; Published: 24 November 2020 Abstract: Anthocyanins are polyphenol compounds that render various hues of pink, red, purple, and blue in flowers, vegetables, and fruits. Anthocyanins also play significant roles in plant propagation, ecophysiology, and plant defense mechanisms. Structurally, anthocyanins are anthocyanidins modified by sugars and acyl acids. Anthocyanin colors are susceptible to pH, light, temperatures, and metal ions. The stability of anthocyanins is controlled by various factors, including inter and intramolecular complexations. Chromatographic and spectrometric methods have been extensively used for the extraction, isolation, and identification of anthocyanins. Anthocyanins play a major role in the pharmaceutical; nutraceutical; and food coloring, flavoring, and preserving industries. Research in these areas has not satisfied the urge for natural and sustainable colors and supplemental products. The lability of anthocyanins under various formulated conditions is the primary reason for this delay. New gene editing technologies to modify anthocyanin structures in vivo and the structural modification of anthocyanin via semi-synthetic methods offer new opportunities in this area. This review focusses on the biogenetics of anthocyanins; their colors, structural modifications, and stability; their various applications in human health and welfare; and advances in the field. Keywords: anthocyanins; anthocyanidins; biogenetics; polyphenols; flavonoids; plant pigments; anthocyanin bioactivities 1. Introduction Anthocyanins are water soluble pigments that occur in most vascular plants. -
Untersuchungen Zum Metabolismus, Zur Bioverfügbarkeit Und Zur Antioxidativen Wirkung Von Anthocyanen
Untersuchungen zum Metabolismus, zur Bioverfügbarkeit und zur antioxidativen Wirkung von Anthocyanen Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH) vorgelegte DISSERTATION von Diplom-Lebensmittelchemiker Jens Fleschhut aus Heilbronn Dekan: Prof. Dr. Manfred M. Kappes Referent: Prof. Dr. Sabine E. Kulling Korreferent: Prof. Dr. Stefan Bräse Tag der mündlichen Prüfung: 25. Oktober 2004 Die vorliegende Arbeit wurde zwischen Juli 2001 und September 2004 im Institut für Ernährungsphysiologie der Bundesforschungsanstalt für Ernährung, Karlsruhe angefertigt. Frau Prof. Dr. Sabine E. Kulling danke ich für die Überlassung des interessanten Themas, ihre sehr wohlwollende und allzeit freundliche Unterstützung sowie für die großzügig gewährten Freiräume bei der Durchführung dieser Arbeit. Für meinen Opa INHALTSVERZEICHNIS Inhaltsverzeichnis 1 Einleitung und theoretische Grundlagen 1 1.1 Allgemeines . 1 1.2 Die Familie der Flavonoide . 1 1.3 Chemische Eigenschaften der Anthocyane . 2 1.3.1 Chemische Struktur . 2 1.3.2 Strukturelle Veränderungen in Abhängigkeit vom pH-Wert . 4 1.3.3 Zerfall der Anthocyanidine . 5 1.3.4 Bildung von Metallkomplexen . 6 1.4 Physikalische Eigenschaften der Anthocyane . 7 1.4.1 Absorptions-Spektren der Anthocyane . 7 1.4.2 Copigmentierung von Anthocyanen . 7 1.5 Natürliches Vorkommen der Anthocyane und Gehalte in Lebensmitteln . 8 1.6 Physiologische Eigenschaften der Anthocyane . 10 1.6.1 Antioxidative Eigenschaften . 11 1.6.2 Schutz vor koronaren Herzerkrankungen . 13 1.6.3 Schutz vor Krebserkrankungen . 15 1.6.4 Antibakterielle und antivirale Wirkung, Verbesserung der Nachtsicht und sonstige Effekte . 17 1.7 Bisherige Erkenntnisse zur Bioverfügbarkeit und zum Metabolismus der An- thocyane . -
Investigation of Rice Diterpenoid Phytoalexin Biosynthesis Benjamin C
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 Investigation of rice diterpenoid phytoalexin biosynthesis Benjamin C. Brown Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry Commons Recommended Citation Brown, Benjamin C., "Investigation of rice diterpenoid phytoalexin biosynthesis" (2017). Graduate Theses and Dissertations. 16322. https://lib.dr.iastate.edu/etd/16322 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Investigation of rice diterpenoid phytoalexin biosynthesis by Benjamin C. Brown A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Major: Biochemistry Program of Study Committee: Reuben J. Peters, Major Professor Gustavo MacIntosh Bing Yang The student author and the program of study committee are solely responsible for the content of this thesis. The graduate college will ensure this thesis is globally accessible and will not permit alterations once a degree is conferred. Iowa State University Ames, IA 2018 Copyright © Benjamin C. Brown, 2018. All rights reserved. ii TABLE OF CONTENTS ABSTRACT iv CHAPTER 1. GENERAL INTRODUCTION 1 References 7 Figures 8 CHAPTER 2. MATERIALS AND METHODS 9 Materials 9 CRISPR/Cas9 Vectors 9 Plant Growth 10 Induction and Extraction of Diterpenoids 11 LC-MS/MS Analysis of Diterpenoids 12 References 15 Figures 15 Tables 30 CHAPTER 3. -
Molecular Biology of Disease Resistance in Rice
Physiological and Molecular Plant Pathology (2001) 59, 1±11 doi:10.1006/pmpp.2001.0353, available online at http://www.idealibrary.com on MINI-REVIEW Molecular biology of disease resistance in rice FENGMING SONG1,2 and ROBERT M. GOODMAN1* 1Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, U.S.A. and 2Department of Plant Protection, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310029, P.R. China (Accepted for publication 13 August 2001) Rice is one of the most important staple foods for the understanding the molecular biology of disease resistance increasing world population, especially in Asia. Diseases in rice is a prerequisite. are among the most important limiting factors that aect In recent years, rice has been recognized as a genetic rice production, causing annual yield loss conservatively model for molecular biology research aimed toward estimated at 5 %. More than 70 diseases caused by fungi, understanding mechanisms for growth, development and bacteria, viruses or nematodes have been recorded on rice stress tolerance as well as disease resistance [34]. Rice as a [68], among which rice blast (Magnaporthe grisea), model crop is a fortuitous situation since it is also a crop of bacterial leaf blight (Xanthomonas oryzae pv. oryzae) and world signi®cance. Rice is an attractive model for plant sheath blight (Rhizoctonia solani) are the most serious genetics and genomics because it has a relatively small constraints on high productivity [68]. Resistant cultivars genome. Considerable progress has been made in rice and application of pesticides have been used for disease towards cloning and identi®cation of disease resistance control. -
Studies on the Anthocyanin Pigments in Allium Amplectens Torr
University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1972 Studies on the anthocyanin pigments in Allium amplectens Torr Chun-Mei Chu University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Biology Commons Recommended Citation Chu, Chun-Mei. (1972). Studies on the anthocyanin pigments in Allium amplectens Torr. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/1787 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STUDIES ON THE ANTHOCYANIN" PIGHEHTS IN Allium amplec~ ']~orr. A Thesis Presented to The Faculty of the Department of Biological Sciences University of the Pacific In Partial Fulfillment of the Requirements for the Degree r1aster of Science in Biological Sciences by Chun-Nei Chu December 1972 This thesis, written and submitted by is approved for recommendation to the Committee on Graduate Studies, University of the Pacific. Department Chairman or Dean: Thesis Chairman -~· ACKNOWLEDGEMENT I am deeply grateful to Dr.o Dale W. ~1cNea.l of the University of the Pacific under whose guidance this study was made. I would also like to thank 11r. John P. IvlcGo'.'ran for his help. -~~- .. · .. ' .. :~ .. TABLE OF CONTENTS PAGE INTRODUCTION . .. .. .. .. .. .. 1 LITERATURE REVIillv General review of anthocyanins ••••••••••••••••••••• 5 Isolation ~nd identification ••••••••••••••••••••••• 10 Biosynthesis of anthocyanins .. .. .. .. .. .. 11 MATERIALS AND NETHODS .... ~ .. ~ ..........• ............. 15 RESULTS .••• 6 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ~ • • • • • • 19 DISCUSSION .................................... -
Plant Disease Control: Understanding the Roles of Toxins and Phytoalexins in Host-Pathogen Interaction
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Pertanika Journal of Scholarly Research Reviews (PJSRR - Universiti Putra Malaysia,... PJSRR (2018) 4(1): 54-66 eISSN: 2462-2028 © Universiti Putra Malaysia Press Pertanika Journal of Scholarly Research Reviews http://www.pjsrr.upm.edu.my/ Plant Disease Control: Understanding the Roles of Toxins and Phytoalexins in Host-Pathogen Interaction Magaji G USMANa,b, Tijjani AHMADUb, ADAMU Jibrin Nayayab, AISHA M Dodoc aLaboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia bDepartment of Crop Production, Faculty of Agriculture and Agricultural Technology, Abubakar Tafawa Balewa University (ATBU). PMB 0248, Bauchi, Nigeria cCardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom *[email protected] Abstract – Naturally, plant habitats are exposed to several potential effects of biotic and different abiotic environmental challenges. Several types of micro-organisms namely; bacteria, viruses, fungi, nematodes, mites, insects, mammals and other herbivorous animals are found in large amounts in all ecosystems, which lead to considerable reduction in crop productivity. These organisms are agents carrying different diseases that can damage the plants through the secretion of toxic-microbial poisons that can penetrate in the plant tissues. Toxins are injurious substances that act on plant protoplast to influence disease development. In response to the stress effect, plants defend themselves by bearing some substances such as phytoalexins. Production of phytoalexins is one of the complex mechanisms through which plants exhibit disease resistance. Several findings specifically on phytoalexins have widen the understanding in the fields of plant biochemistry and molecular biology. -
Phenolic Compounds in Trees and Shrubs of Central Europe
applied sciences Review Phenolic Compounds in Trees and Shrubs of Central Europe Lidia Szwajkowska-Michałek 1,*, Anna Przybylska-Balcerek 1 , Tomasz Rogozi ´nski 2 and Kinga Stuper-Szablewska 1 1 Department of Chemistry, Faculty of Forestry and Wood Technology, Pozna´nUniversity of Life Sciences ul. Wojska Polskiego 75, 60-625 Pozna´n,Poland; [email protected] (A.P.-B.); [email protected] (K.S.-S.) 2 Department of Furniture Design, Faculty of Forestry and Wood Technology, Pozna´nUniversity of Life Sciences ul. Wojska Polskiego 38/42, 60-627 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-61-848-78-43 Received: 1 September 2020; Accepted: 30 September 2020; Published: 2 October 2020 Abstract: Plants produce specific structures constituting barriers, hindering the penetration of pathogens, while they also produce substances inhibiting pathogen growth. These compounds are secondary metabolites, such as phenolics, terpenoids, sesquiterpenoids, resins, tannins and alkaloids. Bioactive compounds are secondary metabolites from trees and shrubs and are used in medicine, herbal medicine and cosmetology. To date, fruits and flowers of exotic trees and shrubs have been primarily used as sources of bioactive compounds. In turn, the search for new sources of bioactive compounds is currently focused on native plant species due to their availability. The application of such raw materials needs to be based on knowledge of their chemical composition, particularly health-promoting or therapeutic compounds. Research conducted to date on European trees and shrubs has been scarce. This paper presents the results of literature studies conducted to systematise the knowledge on phenolic compounds found in trees and shrubs native to central Europe.