Molecular Biology of Disease Resistance in Rice

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Biology of Disease Resistance in Rice Physiological and Molecular Plant Pathology (2001) 59, 1±11 doi:10.1006/pmpp.2001.0353, available online at http://www.idealibrary.com on MINI-REVIEW Molecular biology of disease resistance in rice FENGMING SONG1,2 and ROBERT M. GOODMAN1* 1Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, U.S.A. and 2Department of Plant Protection, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310029, P.R. China (Accepted for publication 13 August 2001) Rice is one of the most important staple foods for the understanding the molecular biology of disease resistance increasing world population, especially in Asia. Diseases in rice is a prerequisite. are among the most important limiting factors that aect In recent years, rice has been recognized as a genetic rice production, causing annual yield loss conservatively model for molecular biology research aimed toward estimated at 5 %. More than 70 diseases caused by fungi, understanding mechanisms for growth, development and bacteria, viruses or nematodes have been recorded on rice stress tolerance as well as disease resistance [34]. Rice as a [68], among which rice blast (Magnaporthe grisea), model crop is a fortuitous situation since it is also a crop of bacterial leaf blight (Xanthomonas oryzae pv. oryzae) and world signi®cance. Rice is an attractive model for plant sheath blight (Rhizoctonia solani) are the most serious genetics and genomics because it has a relatively small constraints on high productivity [68]. Resistant cultivars genome. Considerable progress has been made in rice and application of pesticides have been used for disease towards cloning and identi®cation of disease resistance control. However, the useful life-span of many resistant genes, characterization of defense responses, and elucida- cultivars is only a few years, due to the breakdown of the tion of signal transduction leading to activation of defense resistance in the face of high pathogenic variability of the responses [93]. The results of this work provide new pathogen population. Use of pesticides is costly as well as insights into the molecular basis of disease resistance in environmentally undesirable. Thus, there is a need to rice. In this review, the focus is on the progress towards develop strategies providing durable resistance, giving the understanding of the molecular biology of disease protection for a long time and over a broad geographic resistance in rice against blast, bacterial leaf blight and area. Among such new strategies, systemic acquired sheath blight. resistance (SAR) is an example of a defense mechanism oering long-lasting disease resistance against a broad- spectrum of pathogens, and is promising for sustainable rice production in the future. New information and DISEASE RESISTANCE GENES IN RICE knowledge gained from research on the molecular biology of SAR as well as disease resistance gene-mediated The inheritance of resistance against blast and bacterial defense responses will undoubtedly provide new insights leaf blight diseases of rice has been extensively studied. into the nature of rice disease resistance, which in turn Major genes from various resistant donors have been oers opportunities for creating new rice varieties with identi®ed and to date more than 30 loci conditioning high resistance against multiple diseases. To this end, resistance against blast and 25 against bacterial leaf blight have been found [33, 43]. Some of these resistance * To whom all correspondence should be addressed. E-mail: genes or loci have been widely used in rice breeding [email protected] programs, and some of them have been mapped to their Abbreviations used in the text: AFLP, ampli®ed fragment length polymorphism; BTH, ben zothiadiazole; INA, dichlor- chromosomal locations and are subject to cloning eorts. oisonicotinic acid; LOX, lipoxygenase; LRD, leucine-rich To date, four resistance genes, Xa21 and Xa1 to bacterial domain; LRR, leucine rich repeats; MAP kinase, mitogen- leaf blight, and Pib and Pi-ta to blast, have been cloned activated protein kinase; PLD, Phospholipase D; PR, patho- and studied in detail at the molecular level [7, 86, 97, genesis-related; QTL, quantitative trait loci; RFLP, restriction 108]. Genetic variability for high levels of resistance fragment length polymorphism; RGA, resistance gene analogues; ROI, reactive oxygen intermediates; SA, salicylic against sheath blight is lacking in both cultivated rice and acid; SAR, systemic acquired resistance; Xoo, X.oryzae pv. its wild relatives [6]; therefore cloning of genes for sheath oryzae. blight resistance is lagging. 0885-5765/01/070001+11 $35.00/00 *c 2001 Academic Press 2 F. Song and R. M. Goodman Xa21 was transferred to the rice cultivar IR24 from the L6. The Xa1 protein contains two motifs of NBS in the wild species Oryza longistaminata and was found to confer amino-terminal half and an LRR domain in the resistance against many known X. oryzae pv. oryzae (Xoo) carboxyl-terminal half of the molecule. The LRR races in India and the Philippines [39]. Xa21 was cloned domain is composed of six almost perfect repeats, each by a map-based cloning strategy and found to encode a 93 amino acids long, with 62±99 % simple homology to receptor kinase-like protein carrying leucine-rich repeats each other at the amino acid level. Expression of Xa1 is (LRR) in the putative extracellular domain, a single induced upon wounding and infection by both compa- transmembrane domain and a serine/threonine kinase tible and incompatible strains of Xoo [108]. intracellular domain [86]. Compared with the proteins The dominant gene Pib confers high resistance to most encoded by other cloned plant disease-resistance genes, Japanese races of M. grisea, the causal agent of blast the structure of Xa21 protein is unique because it disease. Pib is located at the distal end of the long arm of contains the extracellular receptor LRR domain and chromosome 2. The Pib gene was cloned recently and the intracellular kinase domain. Xa21-mediated resistance found to encode a polypeptide of 1251 amino acids [97]. increases progressively from the susceptible juvenile two- The deduced protein encoded by Pib contains an NBS leaf stage through later stages, with 100 % resistance at region and C-terminal LRRs but no distinct transmem- the adult leaf 9/10 stage. Expression of Xa21 is inde- brane domain; thus, the Pib gene belongs to the NBS± pendent of plant developmental stage, infection with Xoo, LRR class of plant disease resistance genes. Interestingly, or wounding. These results suggest that Xa21-mediated the Pib protein contains an N-terminal duplication of the resistance is controlled by development either post- conserved kinase 1a (P-loop), 2 and 3a domains of NBS transcriptionally or by other factors [11]. Transgenic region and eight cysteine residues clustered in LRR 7 and rice plants expressing the cloned Xa21 showed the same 8. The signi®cance of the duplication and the clustered spectrum of resistance as did that of the donor line cysteine is unknown. Expression of Pib is induced by [88, 89, 93]. infection with both incompatible and compatible strains Xa21 is a member of a small multigene family of M. grisea and altered environmental conditions such as containing seven members; these members can be temperature and darkness [97]. grouped into two classes based on sequence similarity The Pi-ta gene sequence predicts a 928 amino acid [85]. The Xa21 class contains members Xa21, D and F; protein that is cytoplasmic and contains an NBS and a and class A2 contains A1, A2, C and E. The identity of leucine-rich carboxyl terminus [7]. The leucine-rich nucleotide sequence within each class is very high (98 % domain (LRD) in the predicted Pi-ta protein contains for Xa21 class and 95.2 % for A2 class), but only 63.5% an irregular highly imperfect repeating structure with the of the identity was observed between the two classes [85]. consensus LxxLxxL. Sequence analysis of 11 alleles of One member of the Xa21 family, Xa21D, encodes a Pi-ta from resistant, intermediate, and susceptible varie- receptor-like protein carrying LRR motifs in the pre- ties showed that the Pi-ta proteins in susceptible varieties sumed extracellular domain but lacks the transmembrane have one amino acid substitution compared with that in and cytoplasmic kinase domains [94]. In transgenic rice the resistant varieties. More than 40 % of the transgenic plants, Xa21D conferred partial resistance to Xoo at an plants biolistically transformed with the cloned Pi-ta gene intermediate level compared with that of Xa21 but or cDNA conferred resistance or intermediate resistance showed the same spectrum of resistance as Xa21. against blast, con®rming the identity of the cloned Pi-ta. However, other members (A1, A2, C, E and F) did not Interestingly, an R gene-like gene, RPR1, was cloned by confer any observable resistance in transgenic plants [94]. dierential display from probenazole-treated rice plants These results suggest that the extracellular LRR domain and was found to encode an NBS±LRR protein, sharing of Xa21D is involved in pathogen recognition. Moreover, structural similarity with the NBS±LRR class of R genes a highly conserved 233-bp sequence was identi®ed among [72]. RPR1 was mapped to a region close to the location of all seven Xa21 family members [85] and 15 transposon- Pi-ta on chromosome 11. These features suggested that like elements were found within the gene cluster [84], RPR1 might act as a resistance gene. The expression suggesting that these elements may play a role in the of RPR1 in rice can be induced by both treatments with diversi®cation of the Xa21 family members, probably by SAR inducers such as salicylic acid (SA) or benzothia- duplication, recombination and transposition. diazole (BTH) and by infection with M. grisea. Xa1 confers a high level of speci®c resistance to race 1 In addition to these cloned disease resistance genes strains of Xoo in Japan.
Recommended publications
  • Investigating the Roles of Diterpenoids in Rice-Xanthomonas Oryzae Interactions" (2015)
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2015 Investigating the roles of diterpenoids in rice- Xanthomonas oryzae interactions Xuan Lu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Plant Sciences Commons Recommended Citation Lu, Xuan, "Investigating the roles of diterpenoids in rice-Xanthomonas oryzae interactions" (2015). Graduate Theses and Dissertations. 14912. https://lib.dr.iastate.edu/etd/14912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Investigating the roles of diterpenoids in rice-Xanthomonas oryzae interactions by Xuan Lu A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Biology Program of Study Committee: Reuben J. Peters, Major Professor Gwyn Beattie Gustavo MacIntosh Alan Myers Bing Yang Iowa State University Ames, Iowa 2015 Copyright © Xuan Lu, 2015. All rights reserved. ii TABLE OF CONTENTS Page ABSTRACT ............................................................................................................... iv CHAPTER 1 GENERAL INTRODUCTION ......................................................
    [Show full text]
  • Phytoalexins: Current and Possible Future Applications in Human Health and Diseases Control
    International Journal of Molecular Biology: Open Access Review Article Open Access Phytoalexins: Current and possible future applications in human health and diseases control Abstract Volume 3 Issue 3 - 2018 Plants are prone to diseases and infections following their obvious exposure to microbes Anthony Cemaluk C Egbuonu,1 Juliet C and attendant microbial attacks. Plants control diseases and infections by using their 2 secondary metabolites known collectively as phytoalexins. These phytoalexins, usually Eneogwe 1 synthesized in plants in response to diseases and infections, have enormous chemical Department of Biochemistry, Michael Okpara University of Agriculture, Nigeria diversity and biologic roles but are essentially non biodegradable owing to their stable 2Department of Biochemistry, Michael Okpara University of structures hence could bio-accumulate with sustained effect once synthesized. Thus, Agriculture, Nigeria this reviewed current and possible future applications of phytoalexins in human health and diseases control using relevant search words and search engines. The review noted Correspondence: Anthony Cemaluk C Egbuonu, Department that resveratrol, a representative of, and an extensively studied, phytoalexins was of Biochemistry, Michael Okpara University of Agriculture, variously implicated in the management of human health, including in the prevention Umudike, Abia State, Nigeria, Tel +23480.3636-6565, of cardiovascular disease and cancers. Resveratrol acts via mechanisms essentially Email [email protected] related to its capacity to ameliorate oxidative stress perhaps by significantly enhancing the synthesis of nitric oxide, NO, which could act as an antioxidant. Received: October 30, 2017 | Published: May 10, 2018 Increased oxidative stress has been implicated in human diseases and efforts aimed at mitigating (or preventing the onset of) oxidative stress have been the underlying approach to human disease management and control.
    [Show full text]
  • Investigation of Rice Diterpenoid Phytoalexin Biosynthesis Benjamin C
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 Investigation of rice diterpenoid phytoalexin biosynthesis Benjamin C. Brown Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry Commons Recommended Citation Brown, Benjamin C., "Investigation of rice diterpenoid phytoalexin biosynthesis" (2017). Graduate Theses and Dissertations. 16322. https://lib.dr.iastate.edu/etd/16322 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Investigation of rice diterpenoid phytoalexin biosynthesis by Benjamin C. Brown A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Major: Biochemistry Program of Study Committee: Reuben J. Peters, Major Professor Gustavo MacIntosh Bing Yang The student author and the program of study committee are solely responsible for the content of this thesis. The graduate college will ensure this thesis is globally accessible and will not permit alterations once a degree is conferred. Iowa State University Ames, IA 2018 Copyright © Benjamin C. Brown, 2018. All rights reserved. ii TABLE OF CONTENTS ABSTRACT iv CHAPTER 1. GENERAL INTRODUCTION 1 References 7 Figures 8 CHAPTER 2. MATERIALS AND METHODS 9 Materials 9 CRISPR/Cas9 Vectors 9 Plant Growth 10 Induction and Extraction of Diterpenoids 11 LC-MS/MS Analysis of Diterpenoids 12 References 15 Figures 15 Tables 30 CHAPTER 3.
    [Show full text]
  • Xanthomonas Oryzae
    EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Xanthomonas oryzae The newly constituted species X. oryzae includes the two non-European rice pathogens pvs oryzae and oryzicola. These present a phytosanitary risk for the EPPO region which can be met by similar measures; they are accordingly treated together in this data sheet. IDENTITY Taxonomic position: Bacteria: Gracilicutes Notes on taxonomy and nomenclature: Swings et al. (1990) has recently transferred the two pathovars covered by this data sheet from Xanthomonas campestris to X. oryzae. • Xanthomonas oryzae pv. oryzae Name:Xanthomonas oryzae pv. oryzae (Ishiyama) Swings et al. Synonyms: Pseudomonas oryzae Ishiyama Xanthomonas campestris pv. oryzae (Ishiyama) Dye Xanthomonas itoana (Tachinai) Dowson Xanthomonas kresek Schure Xanthomonas oryzae (Ishiyama) Dowson Xanthomonas translucens f.sp. oryzae (Ishiyama) Pordesimo (this name has also, incorrectly, been used for pv. oryzicola). Common names: Bacterial leaf blight, Kresek disease, BLB (English) Maladie bactérienne des feuilles du riz (French) Bakterielle Weissfleckenkrankheit, bakterieller Blattbrand (German) Enfermedad bacteriana de las hojas del arroz (Spanish) Bayer computer code: XANTOR EPPO A1 list: No. 2 EU Annex designation: II/A1 - as Xanthomonas campestris pv. oryzae • Xanthomonas oryzae pv. oryzicola Name:Xanthomonas oryzae pv. oryzicola (Fang et al.) Swings et al. Synonyms: Xanthomonas campestris pv. oryzicola (Fang et al.) Dye Xanthomonas oryzicola Fang et al. Xanthomonas translucens f.sp. oryzicola (Fang et al.) Bradbury Common names: Bacterial leaf streak, BLS (English) Brûlure bactérienne, stries bactériennes, du riz (French) Quemaduras bacterianas, estrías bacterianas, del arroz (Spanish) Bayer computer code: XANTTO EPPO A1 list: No.
    [Show full text]
  • Plant Disease Control: Understanding the Roles of Toxins and Phytoalexins in Host-Pathogen Interaction
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Pertanika Journal of Scholarly Research Reviews (PJSRR - Universiti Putra Malaysia,... PJSRR (2018) 4(1): 54-66 eISSN: 2462-2028 © Universiti Putra Malaysia Press Pertanika Journal of Scholarly Research Reviews http://www.pjsrr.upm.edu.my/ Plant Disease Control: Understanding the Roles of Toxins and Phytoalexins in Host-Pathogen Interaction Magaji G USMANa,b, Tijjani AHMADUb, ADAMU Jibrin Nayayab, AISHA M Dodoc aLaboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia bDepartment of Crop Production, Faculty of Agriculture and Agricultural Technology, Abubakar Tafawa Balewa University (ATBU). PMB 0248, Bauchi, Nigeria cCardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom *[email protected] Abstract – Naturally, plant habitats are exposed to several potential effects of biotic and different abiotic environmental challenges. Several types of micro-organisms namely; bacteria, viruses, fungi, nematodes, mites, insects, mammals and other herbivorous animals are found in large amounts in all ecosystems, which lead to considerable reduction in crop productivity. These organisms are agents carrying different diseases that can damage the plants through the secretion of toxic-microbial poisons that can penetrate in the plant tissues. Toxins are injurious substances that act on plant protoplast to influence disease development. In response to the stress effect, plants defend themselves by bearing some substances such as phytoalexins. Production of phytoalexins is one of the complex mechanisms through which plants exhibit disease resistance. Several findings specifically on phytoalexins have widen the understanding in the fields of plant biochemistry and molecular biology.
    [Show full text]
  • Phenolic Compounds in Trees and Shrubs of Central Europe
    applied sciences Review Phenolic Compounds in Trees and Shrubs of Central Europe Lidia Szwajkowska-Michałek 1,*, Anna Przybylska-Balcerek 1 , Tomasz Rogozi ´nski 2 and Kinga Stuper-Szablewska 1 1 Department of Chemistry, Faculty of Forestry and Wood Technology, Pozna´nUniversity of Life Sciences ul. Wojska Polskiego 75, 60-625 Pozna´n,Poland; [email protected] (A.P.-B.); [email protected] (K.S.-S.) 2 Department of Furniture Design, Faculty of Forestry and Wood Technology, Pozna´nUniversity of Life Sciences ul. Wojska Polskiego 38/42, 60-627 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-61-848-78-43 Received: 1 September 2020; Accepted: 30 September 2020; Published: 2 October 2020 Abstract: Plants produce specific structures constituting barriers, hindering the penetration of pathogens, while they also produce substances inhibiting pathogen growth. These compounds are secondary metabolites, such as phenolics, terpenoids, sesquiterpenoids, resins, tannins and alkaloids. Bioactive compounds are secondary metabolites from trees and shrubs and are used in medicine, herbal medicine and cosmetology. To date, fruits and flowers of exotic trees and shrubs have been primarily used as sources of bioactive compounds. In turn, the search for new sources of bioactive compounds is currently focused on native plant species due to their availability. The application of such raw materials needs to be based on knowledge of their chemical composition, particularly health-promoting or therapeutic compounds. Research conducted to date on European trees and shrubs has been scarce. This paper presents the results of literature studies conducted to systematise the knowledge on phenolic compounds found in trees and shrubs native to central Europe.
    [Show full text]
  • Bacterial Blight of Rice
    Bacterial blight of rice Xanthomonas oryzae pv. oryzae (ex Ishiyama 1922, Swings et al, 1990) (Bacteria, Xanthomonadaceae) Primary hosts Rice, species of wild rice (Oryza sativa, O. rufipogon, O. australiensis), and graminaceous weeds, Leersia oryzoides and Zizania latifolia in temperate regions and Leptochloa spp. and Cyperus spp. in the tropics. Symptoms Small, green water-soaked spots develop at the tips and margins of fully developed leaves, and then expand along the veins, merge and become chlorotic then necrotic forming opaque, white to grey colored lesions that extend from leaf tip down along the leaf veins and margins. Both bacterial blight and bacterial leaf streak can occur simultaneously and are difficult to distinguish. Life cycle Bacteria enter through hydathodes at the leaf tip or margin, then multiply in intercellular spaces and spread through the xylem. This is different to the invasion and development of X. oryzae.pv. oryzicola which causes Bacterial Leaf Streak of rice. Access into the plant can also occur through wounds and other openings. Bacteria move vertically and laterally along the veins and ooze out from the hydathodes, beading on the leaf surface. Wind and rain disseminate bacteria, monsoon season being the worst time for infection. Contaminated stubble, irrigation water, humans, insects and birds are also sources of infection. Bacteria can survive the winter even in temperate regions in weeds or in stubble. They can survive in soil for 1-3 months. Current geographical distribution Asia, W. Africa, Australia, Latin America, Caribbean in both tropical and temperate areas. Impact in Oregon Negligible. References Gonzalez, C., B. Szurek, C.
    [Show full text]
  • Xanthomonas Oryzae Pv. Oryzae (Xanthomonadales: Xanthomonadaceae)
    Capítulo 22 Xanthomonas oryzae pv. oryzae (Xanthomonadales: Xanthomonadaceae) Márcio Elias Ferreira, Paulo Hideo Nakano Rangel Identificação da praga Nome científico: • Xanthomonas oryzae pv. oryzae (Ishiyama, 1922) Swings et al. (1990). Posição taxonômica: • Classe: Gammaproteobacteria. • Ordem: Xanthomonodales. • Família: Xanthomonadaceae. Sinonímias: • Pseudomonas oryzae Ishiyama. • Xanthomonas campestris pv. oryzae (Ishiyama) Dye. 368 PRIORIZAÇÃO DE PRAGAS QUARENTENÁRIAS AUSENTES NO BRASIL • Xanthomonas itoana (Tachinai) Dowson. • Xanthomonas kresek Schure. • Xanthomonas oryzae (Ishiyama) Dowson. • Xanthomonas translucens f.sp. oryzae (Ishiyama) Pordesimo. Nome comum: • Crestamento ou murcha bacteriana (Português). • Enfermedad bacteriana de las hojas del arroz (Espanhol). • Bacterial leaf blight (BLB), Kresek disease, bacterial blight (BB) (Inglês). • Maladie bactérienne des feuilles du riz (Francês). Abreviação: Xoo Hospedeiros A principal espécie agrícola infectada por Xanthomonas oryzae pv. oryzae (Xoo) é o arroz (Oryza sativa L.). A bactéria causa doença também em várias outras gramíneas, como Cynodon dactylon, Cyperus spp., Leersia spp., Leptochloa spp., Panicum maximum, Paspalum scrobiculatum, Zizania spp., Zoysia spp., e espécies silvestres de arroz (Oryza spp.) (Ou, 1985; Mew, 1987). Muitas outras gramíneas apresentam compatibilidade com a bactéria quando inoculadas artificialmente (Bradbury, 1970a; 1970b). O nível de suscetibilidade varia bastante entre as espécies submetidas a inoculação. Distribuição geográfica da praga O crestamento bacteriano do arroz é endêmico da Ásia e África Ociden- tal. A doença foi também descrita na Austrália e em vários países da América Latina e do Caribe (Mew et al., 1993). A bactéria foi detectada nas regiões destacadas na Figura 1: CAPÍTULO 22 – XaNTHOMONAS ORYZAE PV. ORYZAE (XANTHOMONADALES: XANTHOMONADACEAE) 369 • América do Norte: México. • América Central e Caribe: Costa Rica, El Salvador, Honduras, Nica- rágua, Panamá.
    [Show full text]
  • Xanthomonas Oryzae
    EuropeanBlackwell Publishing Ltd and Mediterranean Plant Protection Organization PM 7/80 (1) Organisation Européenne et Méditerranéenne pour la Protection des Plantes Diagnostics Diagnostic Xanthomonas oryzae Specific scope Specific approval and amendment This standard describes a diagnostic protocol for Xanthomonas Approved in 2007-09. oryzae pathovars oryzae and oryzicola. in the United States and India (Jones et al., 1989; Gnanamanickam Introduction et al., 1993). The species Xanthomonas oryzae includes two pathovars, Bacterial leaf streak of rice (BLS) is caused by X. oryzae pv. namely, oryzae and oryzicola (Swings et al., 1990). These oryzicola. The disease is present in Tropical Asia, West Africa bacterial pathogens are closely related organisms and were and Australia (OEPP/EPPO, 2006b). X. oryzae pv. oryzicola earlier named as pathovars of Xanthomonas campestris. Rice is has reached epidemic proportions in recent years in China. the main host for both pathogens, which are seed-borne and Other hosts affected by the pathogen are: Oryza spp., Leersia seed-transmitted. spp., Leptochloa filiformis, Paspalum orbiculare, Zizania Bacterial leaf blight of rice (BLB) was first reported in aquatica, Z. palustris and Zoysia japonica. No races have been Fukuoka Prefecture, Japan, during 1884 in rice affected by X. recorded, however, differences in virulence of strains have been oryzae pv. oryzae. This disease is considered one of the most observed in many countries (Vera Cruz et al., 1984; Adhikari & serious rice diseases worldwide although it has declined in Mew, 1985; Saddler, 2002b). incidence in Japan since the mid 1970s. Nevertheless it is still Further information on the biology and ecology of the prevalent worldwide.
    [Show full text]
  • An Approach on Phytoalexins: Function, Characterization and Biosynthesis in Plants of the Family Poaceae
    Ciência Rural, SantaAn Maria,approach v.46, on n.7,phytoalexins: p.1206-1216, function, jul, 2016 characterization and biosynthesis in http://dx.doi.org/10.1590/0103-8478cr20151164 plants of the family Poaceae. 1206 ISSN 1678-4596 BIOLOGY An approach on phytoalexins: function, characterization and biosynthesis in plants of the family Poaceae Uma abordagem sobre fitoalexinas: função, caracterização e biossíntese em plantas da família Poaceae Rejanne Lima ArrudaI* Andressa Tuane Santana PazI Maria Teresa Freitas BaraI Márcio Vinicius de Carvalho Barros CôrtesII Marta Cristina Corsi de FilippiII Edemilson Cardoso da ConceiçãoI ABSTRACT Palavras-chave: metabólitos, proteção de plantas, sinalização, Oryza sativa. Phytoalexins are compounds that have been studied a few years ago, which present mainly antimicrobial activity. The plants of the family Poaceae are the most geographically INTRODUCTION widespread and stand out for their economic importance, once they are cereals used as staple food. This family stands out for having a variety of phytoalexins, which can be synthesized via the shikimic Phytoalexins are natural products acid (the phenylpropanoids), or mevalonic acid, being considered secreted and accumulated temporarily by plants in terpenoid phytoalexins. The characterization of these compounds response to pathogen attack. They have inhibitory with antimicrobial activity is carried out using chromatographic techniques, and the high-performance liquid chromatography activity against bacteria, fungi, nematodes, insects (HPLC) coupled with mass spectrometry are the most efficient and toxic effects for the animals and for the plant methods in this process. This research aimed to present an itself (BRAGA, 1991). They are mostly lipophilic approach of the function, characterization and biosynthesis of compounds that have the ability to cross the plasma phytoalexins in plants of the family Poaceae.
    [Show full text]
  • T E Role of Hydrogen Peroxide in The
    TEROLE OF HYDROGEN PEROXIDE IN THE RESISTANCE OF TOMATO TO PENETRATION BY COLLETOTRICHUM COCCODES inge Viia Foulds A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Deparment of Botany University of Toronto O Copyright by Inge Vüa Foulds 2000 National Library Bibliothèque nationale I*u of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, rue Wellington OttawaON K1AON4 OttawaON K1AON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence ailowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou copies of this thesis in rnicroform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/filrn, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels rnay be printed or otheMrise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Canada THE ROLE OF HYDROGEN PEROXDE IN THE EESISTANCE OF TOMATO TO PENETRATION BY COLLETOTRICHUM COCCODES Degree of Master of Science. 2000 Inge Viia Foulds Department of Botany University of Toronto AB STRACT The accumulation of reactive oxygen species and subsequent effects were investigated in the interaction between Colletorriclinm coccodes. causai agent of anthracnose.
    [Show full text]
  • Oligosaccharide Signalling for Defence Responses in Plant
    Physiological and Molecular Plant Pathology (2001) 59, 223±233 doi:10.1006/pmpp.2001.0364, available online at http://www.idealibrary.com on MINI-REVIEW Oligosaccharide signalling for defence responses in plant N. SHIBUYA and E. MINAMI Biochemistry Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan (Accepted for publication October 2001) Keywords: elicitor; receptor; OGA; chitin; chitosan; beta-glucan; signal transduction; ion ¯ux; protein phosphorylation; defence response. INTRODUCTION transduction cascades and elicitor-responsive genes. Several reviews [5, 25, 34, 40] have already been Higher plants have the ability to initiate various defence published on these subjects and in this review the authors reactions such as the production of phytoalexins, try to focus mostly on recent progress. antimicrobial proteins, reactive oxygen species, and reinforcement of cell walls when they are infected by pathogens such as fungi, bacteria and viruses. If these reactions occur in a timely manner, the infection will not CHARACTERISTICS OF OLIGOSACCHARIDE proceed further. However, if the defence reactions occur ELICITORS too late or are suppressed, the infection process will proceed successfully [89]. Thus, it is critically important b-glucan oligosaccharides for plants to detect infecting pathogens eectively and Oligosaccharide elicitors derived from the b-glucans of deliver such information intracellularly/intercellularly to pathogenic Oomycetes, such as Phytophthora sojae,have activate their defence machinery. been very well characterized. A doubly-branched hepta- It is believed that the detection of pathogens is b-glucoside that was generated from P. sojae glucan by mediated by chemical substances secreted/generated by partial acid hydrolysis was shown to be a very active the pathogens.
    [Show full text]