Istanbul Technical University Graduate School Of

Total Page:16

File Type:pdf, Size:1020Kb

Istanbul Technical University Graduate School Of ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE ENGINEERING AND TECHNOLOGY FOOD MATRIX EFFECT ON BIOAVAILABILITY OF PHENOLICS AND ANTHOCYANINS IN SOUR CHERRY M.Sc. THESIS Tuğba ÖKSÜZ Department of Food Engineering Food Engineering Programme Anabilim Dalı : Herhangi Mühendislik, Bilim Programı : Herhangi Program JUNE 2013 ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE ENGINEERING AND TECHNOLOGY FOOD MATRIX EFFECT ON BIOAVAILABILITY OF PHENOLICS AND ANTHOCYANINS IN SOUR CHERRY M.Sc. THESIS Tuğba ÖKSÜZ (506111523) Department of Food Engineering Food Engineering Programme Thesis Advisor: Assist. Prof. Dilara NİLÜFER-ERDİL Anabilim Dalı : Herhangi Mühendislik, Bilim Programı : Herhangi Program JUNE 2013 İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ VİŞNEDE BULUNAN FENOLİK BİLEŞENLERİN VE ANTOSİYANİNLERİN BİYOYARARLILIĞINA GIDA MATRİSİ VE BİLEŞENLERİN ETKİSİ YÜKSEK LİSANS TEZİ Tuğba ÖKSÜZ (506111523) Gıda Mühendisliği Anabilim Dalı Gıda Mühendisliği Programı Tez Danışmanı: Yrd. Doç. Dr. Dilara NİLÜFER-ERDİL Anabilim Dalı : Herhangi Mühendislik, Bilim Programı : Herhangi Program HAZİRAN 2013 Tuğba ÖKSÜZ, a M.Sc. student of ITU Graduate School of Food Engineering student ID 506111523, successfully defended the thesis entitled “Food matrix effect on bioavailability of phenolics and anthocyanins in sour cherry”, which she prepared after fulfilling the requirements specified in the associated legislations, before the jury whose signatures are below. Thesis Advisor : Assist. Prof. Dilara NİLÜFER-ERDİL .............................. İstanbul Technical University Jury Members : Assist. Prof. Neşe ŞAHİN-YEŞİLÇUBUK ............................ İstanbul Technical University Assist. Prof. Murat TAŞAN .............................. Namık Kemal University Date of Submission : 03 May 2013 Date of Defense : 05 June 2013 v vi To my family, vii viii FOREWORD Sour cherry is one of the special fruits for Turkey who is in the leader producer position in the world. The objective of this study is evaluating food matrix effect on phenolic compounds, anthocyanins and their antioxidant activity during sour cherry bioavailability. In the literature less research was performed on food matrices effect on bioavailability as well as sour cherry bioactive compounds. I hope this study will contribute to limited literature. First of all, I gratefully acknowledge the financial support for this project from EU 7th Framework Project ATHENA (Anthocyanin and Polyphenol Bioactives for Health Enhancement through Nutritional Advancement). I would like to express my special thanks and gratitude to my dear supervisor, Assist. Prof. Dilara NİLÜFER-ERDİL for her guidance, encouragement and support throughout my study. I express my gratitude and acknowledge to Prof. Dr. Dilek BOYACIOĞLU and Assist. Prof. Esra ÇAPANOĞLU-GÜVEN for their support, concern and help. I also would like to thank Zeynep TACER-CABA, Gamze TOYDEMİR, Ece SÜREK, Hafizenur ŞENGÜL, Senem KAMİLOĞLU, Aynur ÇETİN, Tayfun YAMAN and all my friends who helped and encouraged me during this study. I would like to thank my cousin Derya KAYA and her family for their support during my M.Sc period. Finally, I would like to dedicate this study to my dear parents Nuray, Ahmet and also my brother Enes and thank to them becauce of their endless support, love, patience and help. May 2013 Tuğba ÖKSÜZ (Food Engineer) ix x TABLE OF CONTENTS Page FOREWORD ............................................................................................................. ix TABLE OF CONTENTS ......................................................................................... xi ABBREVIATIONS ................................................................................................. xiii LIST OF TABLES ................................................................................................... xv LIST OF FIGURES ............................................................................................... xvii SUMMARY ............................................................................................................. xxi ÖZET ....................................................................................................................... xxv 1. INTRODUCTION .................................................................................................. 1 2. LITERATURE REWIEV ...................................................................................... 5 2.1 Sour Cherry ........................................................................................................ 5 2.2 Sour Cherry Production and Consumption ........................................................ 5 2.2.1 Sour cherry production in the world ........................................................... 6 2.2.2 Sour cherry production and consumption in Turkey .................................. 7 2.3 Sour Cherry in Health and Disease .................................................................... 8 2.4 Sour Cherry Products ....................................................................................... 10 2.5 Chemical Composition of Sour Cherry ............................................................ 11 2.6 Important Phenolic Compounds ....................................................................... 12 2.6.1 Phenolic acids ........................................................................................... 12 2.6.1.1 Phenolic acids of sour cherry ............................................................. 13 2.6.2 Anthocyanins ............................................................................................ 14 2.6.2.1 Sour cherry anthocyanins ................................................................... 15 2.7 Antioxidant Activity ......................................................................................... 17 2.7.1 Antioxidant activity of sour cherry ........................................................... 17 2.8 Bioavailability .................................................................................................. 18 2.8.1 Definitions and methods ........................................................................... 18 2.8.2 Bioavailability of sour cherry ................................................................... 20 2.8.3 Bioavailability of anthocyanins and phenolic acids .................................. 20 2.9 Food Matrix Effect on Bioavailability ............................................................. 23 3. MATERIALS AND METHODS ........................................................................ 27 3.1 Materials ........................................................................................................... 27 3.2 Chemicals ......................................................................................................... 27 3.3 Methods ............................................................................................................ 28 3.3.1 Preparation of food compounds and the other food materials .................. 28 3.3.2 Preparation of sour cherry samples ........................................................... 29 3.3.3 Extraction .................................................................................................. 29 3.3.4 In Vitro digestion method ......................................................................... 29 3.3.5 Spectrophotometric Analyses ................................................................... 31 3.3.5.1 Total Phenolic Content ....................................................................... 31 3.3.5.2 Total Anthocyanin Content ................................................................ 31 3.3.5.3 Antioxidant Activity .......................................................................... 32 3.3.6 HPLC analysis of major phenolic compounds and anthocyanins ............. 33 3.4 Statistical Analyses .......................................................................................... 33 4. RESULTS AND DISCUSSION .......................................................................... 35 4.1 Sour Cherry Analyses ....................................................................................... 35 4.1.1 Total phenolic content ............................................................................... 35 4.1.2 Total anthocyanin content ......................................................................... 37 4.2 Antioxidant Capacity ........................................................................................ 38 xi 4.2.1 Antioxidant capacity by DPPH method .................................................... 38 4.2.2 Antioxidant capacity by ABTS method .................................................... 40 4.3 Major Individual Phenolic Compounds ............................................................ 41 4.4 Food Matrix Effect on Sour Cherry Bioavailability ......................................... 44 4.4.1 Total phenolic content ............................................................................... 44 4.4.2 Total anthocyanin content ......................................................................... 47 4.4.3 Total antioxidant activity .......................................................................... 49 4.4.3.1 DPPH method ..................................................................................... 49 4.4.3.2 ABTS method ..................................................................................... 51 4.4.4 Food matrix effect
Recommended publications
  • Melatonin in Tart Cherries
    4898 J. Agric. Food Chem. 2001, 49, 4898−4902 Detection and Quantification of the Antioxidant Melatonin in Montmorency and Balaton Tart Cherries (Prunus cerasus) Susanne Burkhardt,†,‡ Dun Xian Tan,† Lucien C. Manchester,† Ru¨ diger Hardeland,‡ and Russel J. Reiter*,† Department of Cellular and Structural Biology, University of Texas Health Science Center, Mail Code 7762, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, and Institut fu¨ r Zoologie und Anthropologie, Universita¨t Go¨ttingen, Berliner Strasse 28, D-37073 Go¨ttingen, Germany The antioxidant melatonin was recently identified in a variety of edible plants and seeds in high concentrations. In plants, as in animals, melatonin is believed to function as a free radical scavenger and possibly in photoperiodism. In this study, melatonin was detected and quantified in fresh- frozen Balaton and Montmorency tart cherries (Prunus cerasus) using high-performance liquid chromatography. Both cherry species contain high levels of melatonin compared to the melatonin concentrations in the blood of mammals. Montmorency cherries (13.46 ( 1.10 ng/g) contain ∼6 times more melatonin than do Balaton cherries (2.06 ( 0.17 ng/g). Neither the orchard of origin nor the time of harvest influenced the amount of melatonin in fresh cherries. The implication of the current findings is that consuming cherries could be an important source of dietary melatonin inasmuch as melatonin is readily absorbed when taken orally. Also, previously published data and the results presented here show that melatonin is not only endogenously produced but also present in the diet. Keywords: Melatonin; fruit; Prunus cerasus; Balaton cherry; Montmorency cherry; antioxidant INTRODUCTION ates including the hydroxyl radical (•OH), the peroxy- - 1 nitrite anion (ONOO ), singlet oxygen ( O2), and nitric Epidemiological studies indicate that constituents in • oxide (NO )(12, 13).
    [Show full text]
  • RP HPLC Determination of Some Uncommon Anthocyanins
    360 УДК 543.54:547.814.5 RP HPLC determination of some uncommon anthocyanins Deineka V.I., Vu Thi Ngoc Anh, Deineka L.A. Federal State Autonomous Educational Institution of Higher Professional Education «Belgorod National Research University» RF, Belgorod Received 12.02.2014 Abstract Anthocyanins of Catharanthus roseus petals were found to be composed of pairs (3-galactosides and 3-rhamnosylgalactosides) mainly of 7-methylated anthocyanidins of “dephinidin series” (7-methyldelphinidin, 7-methylpetunidin and hirsutidin); though the same derivatives of “cyanidin series” are present in low concentrations. Flowers of Caesalpinia pulcherrima contain two 3-glucosides: of cyanidin and 5-methylcyanidin. The migration of CH 3-radical from 3’-OH group to 7-OH position results in increase of retention, while for the migration to 5-OH group a decrease of retention was observed. Different position of ring A OH-groups methylation can be predicted also by controversial shift of λmax of the solutes. Keywords: Reversed-phase HPLC, uncommon anthocyanins, 7-OH methylation; 5-OH methylation; regularities of retention alteration, electronic spectra . Установлено , что антоцианы лепестков цветков Catharanthus roseus образованы парами (3-галактозидами и 3-рамнозилгалактазидами ) в-основном антоцианидинами дельфинидинового ряда с метилированием OH-группы в положении 7: 7-метилдельфинидином , 7-метилпетунидином и 7- метилмальвидином ( хирсутидином ); впрочем , аналогичные производные антоцианов цианидинового ряда также присутствуют , но в небольших концентрациях . Антоцианы высушенных цветков Caesalpiniapulcherrima содержат два 3-глюкозида : цианидина и 5-метилцианидина . Перемещение CH 3-радикала из 3’-OH группы к 7-OH группе сказывается в заметном увеличении удерживания , но при аналогичном переносе на ОН -группу в положение 5 наблюдается уменьшение удерживания . Различный тип метилирования ОН -групп кольца А приводит к противоположным смещениям λmax антоцианов .
    [Show full text]
  • Chemistry and Pharmacology of Kinkéliba (Combretum
    CHEMISTRY AND PHARMACOLOGY OF KINKÉLIBA (COMBRETUM MICRANTHUM), A WEST AFRICAN MEDICINAL PLANT By CARA RENAE WELCH A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Medicinal Chemistry written under the direction of Dr. James E. Simon and approved by ______________________________ ______________________________ ______________________________ ______________________________ New Brunswick, New Jersey January, 2010 ABSTRACT OF THE DISSERTATION Chemistry and Pharmacology of Kinkéliba (Combretum micranthum), a West African Medicinal Plant by CARA RENAE WELCH Dissertation Director: James E. Simon Kinkéliba (Combretum micranthum, Fam. Combretaceae) is an undomesticated shrub species of western Africa and is one of the most popular traditional bush teas of Senegal. The herbal beverage is traditionally used for weight loss, digestion, as a diuretic and mild antibiotic, and to relieve pain. The fresh leaves are used to treat malarial fever. Leaf extracts, the most biologically active plant tissue relative to stem, bark and roots, were screened for antioxidant capacity, measuring the removal of a radical by UV/VIS spectrophotometry, anti-inflammatory activity, measuring inducible nitric oxide synthase (iNOS) in RAW 264.7 macrophage cells, and glucose-lowering activity, measuring phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression in an H4IIE rat hepatoma cell line. Radical oxygen scavenging activity, or antioxidant capacity, was utilized for initially directing the fractionation; highlighted subfractions and isolated compounds were subsequently tested for anti-inflammatory and glucose-lowering activities. The ethyl acetate and n-butanol fractions of the crude leaf extract were fractionated leading to the isolation and identification of a number of polyphenolic ii compounds.
    [Show full text]
  • A Biosystematic Study of Allium Amplectens Torr
    University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1974 A biosystematic study of Allium amplectens Torr Vickie Lynn Cain University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Life Sciences Commons Recommended Citation Cain, Vickie Lynn. (1974). A biosystematic study of Allium amplectens Torr. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/1850 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. A BIOSYSTEMI\'l'IC STUDY OF AlHum amplectens Torr. A 'lliesis Presented to The Faculty of the Department of Biological Sciences University of the Pacific In Partial Fulfillment of the Requirewents for the.Degree Master of Science in Biological Sciences by Vickie Lynn Cain August 1974 This thesis, written and submitted by is approved for recommendation to the Committee on Graduate Studies, University of the Pacific. Department Chairman or Dean: Chairman I; /') Date d c.~ cA; lfli ACKUOlvl.EDGSIV!EN'TS 'l'he author_ wishes to tha.'l.k Dr. B. Tdhelton a.YJ.d Dr. P. Gross for their• inva~i uoble advise and donations of time. l\'Iy appreciation to Dr. McNeal> my advisor. Expert assistance in the library vJEts pro:- vlded by Pr·, i:':I. SshaJit. To Vij c.y KJ12nna and Dolores No::..a.n rny ap-- preciatlon for rwraJ.
    [Show full text]
  • ABSTRACT YUZUAK, SEYIT. Utilizing Metabolomics and Model Systems
    ABSTRACT YUZUAK, SEYIT. Utilizing Metabolomics and Model Systems to Gain Insight into Precursors and Polymerization of Proanthocyanidins in Plants (Under the direction of Dr. De-Yu Xie). Proanthocyanidins (PAs) are oligomers or polymers of flavan-3-ols. In plants, PAs have multiple protective functions against biotic and abiotic stresses. PAs are also important nutraceuticals existing in common beverages and food products to benefit human health. To date, although the biosynthesis of PAs has been intensively studieed and fundamental progress has been made in over the past decades, many questions remain unanswered. For example, its direct precursors of extension units are unknown and their monomer structure diversity are also unclear. These questions about proanthocyanidins result from not having of model systems and effective technologies. Our laboratory has made significant progress in enhancing the understanding of these unknown and unclear points regarding proanthocyanidins. In my dissertation research reported here, I focus on two areas: testing muscadine as a crop system to develop metabolomics for studying precursor diversity and isolating enzymes from a red cell tobacco system to understand the precursors of the extension units of PA. First, I developed a metabolomics protocol to analyze anthocyanidins and anthocyanins in muscadine grape. This study demonstrated that muscadine berries can produce at least six anthocyanidins, revealing the diversity of pathway precursors for PAs. The Journal of Agriculture and Food Chemistry is reviewing this work. Second, I developed a metabolomics protocol of HPLC-qTOF-MS/MS to analyze flavan- 3-ols and dimeric PAs in muscadine grape. This study also demonstrated the high structure diversity of flavan-3-ols, particularly methylated flavan-3-ols.
    [Show full text]
  • Purple Anthocyanin Colouration on Lower (Abaxial) Leaf Surface of Hemigraphis Colorata (Acanthaceae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NORA - Norwegian Open Research Archives Phytochemistry 105 (2014) 141–146 Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Purple anthocyanin colouration on lower (abaxial) leaf surface of Hemigraphis colorata (Acanthaceae) Irene Skaar a, Christopher Adaku b, Monica Jordheim a, Robert Byamukama b, Bernard Kiremire b, ⇑ Øyvind M. Andersen a, a Department of Chemistry, University of Bergen, Allégt. 41, 5007 Bergen, Norway b Chemistry Department, Makerere University, P.O. Box 7062, Kampala, Uganda article info abstract Article history: The functional significance of anthocyanin colouration of lower (abaxial) leaf surfaces is not clear. Received 1 August 2013 Two anthocyanins, 5-O-methylcyanidin 3-O-(300-(b-glucuronopyranosyl)-b-glucopyranoside) (1) and Received in revised form 19 May 2014 5-O-methylcyanidin 3-O-b-glucopyranoside (2), were isolated from Hemigraphis colorata (Blume) Available online 20 June 2014 (Acanthaceae) leaves with strong purple abaxial colouration (2.2 and 0.6 mg/g fr. wt., respectively). The glycosyl moiety of 1, the disaccharide 300-(b-glucuronopyranosyl)-b-glucopyranoside), has previously Keywords: been reported to occur only in a triterpenoid saponin, lindernioside A. The structural assignment of Hemigraphis colorata the aglycone of 1 and 2 is the first complete characterisation of a natural 7-hydroxy-5-methoxyanthocy- Acanthaceae anidin. Compared to nearly all naturally occurring anthocyanidins, the 5-O-methylation of this anthocy- Abaxial leaf colouration Anthocyanins anidin limits the type of possible quinoidal forms of 1 and 2 to be those forms with keto-function in only 0 5-O-Methylcyanidin their 7- and 4 -positions.
    [Show full text]
  • Ep 3138585 A1
    (19) TZZ¥_¥_T (11) EP 3 138 585 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.03.2017 Bulletin 2017/10 A61L 27/20 (2006.01) A61L 27/54 (2006.01) A61L 27/52 (2006.01) (21) Application number: 16191450.2 (22) Date of filing: 13.01.2011 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Gousse, Cecile GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 74230 Dingy Saint Clair (FR) PL PT RO RS SE SI SK SM TR • Lebreton, Pierre Designated Extension States: 74000 Annecy (FR) BA ME •Prost,Nicloas 69440 Mornant (FR) (30) Priority: 13.01.2010 US 687048 26.02.2010 US 714377 (74) Representative: Hoffmann Eitle 30.11.2010 US 956542 Patent- und Rechtsanwälte PartmbB Arabellastraße 30 (62) Document number(s) of the earlier application(s) in 81925 München (DE) accordance with Art. 76 EPC: 15178823.9 / 2 959 923 Remarks: 11709184.3 / 2 523 701 This application was filed on 29-09-2016 as a divisional application to the application mentioned (71) Applicant: Allergan Industrie, SAS under INID code 62. 74370 Pringy (FR) (54) STABLE HYDROGEL COMPOSITIONS INCLUDING ADDITIVES (57) The present specification generally relates to hydrogel compositions and methods of treating a soft tissue condition using such hydrogel compositions. EP 3 138 585 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 138 585 A1 Description CROSS REFERENCE 5 [0001] This patent application is a continuation-in-part of U.S.
    [Show full text]
  • ABSTRACT ZENG, HAINIAN. Development
    ABSTRACT ZENG, HAINIAN. Development-dependent Formation and Metabolism of Anthocyanins and Proanthocyanidins in Acer Species. (Under the direction of David Danehower, William Hoffmann, Jenny Xiang and De-yu Xie). Anthocyanins are one of the richest pigments, which belong to flavonoid compounds in plant kingdom. They have many biological and ecological functions. Over the past many years, numerous efforts have been made to determine the biosynthetic pathway of anthocyanins and also to identify several regulatory proteins mainly in flowers and fruits of model plants and crop plants. However, many questions concerning the metabolism of anthocyanins in foliage remains unsolved. One example is “How can developmental processes impact on accumulation patterns of anthocyanins in leaves”. In this study, we choose several cultivars from one of the most popular ornamental plants Acer palmatum Thunb. to understand the mechanism of developmental changes of pigmentation in leaf. Several other maple species were also analyzed. We propose that the metabolism of anthocyanins play an essential role in such changes. We use an integrated approach of phytochemistry and metabolic profiling to determine the biosynthesis and metabolism of anthocyanins and their impacts on foliage color. Proanthocyanidin analysis was carried out as well to determine their relationship to both anthocyanin production and foliar coloration. We have found that even for green leaves with no/trace amount of detectable anthocyanins, the biosynthetic pathway of anthocyanidin/proanthocyanidin
    [Show full text]
  • Anthocyanin Pigments: Beyond Aesthetics
    molecules Review Anthocyanin Pigments: Beyond Aesthetics , Bindhu Alappat * y and Jayaraj Alappat y Warde Academic Center, St. Xavier University, 3700 W 103rd St, Chicago, IL 60655, USA; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Academic Editor: Pasquale Crupi Received: 29 September 2020; Accepted: 19 November 2020; Published: 24 November 2020 Abstract: Anthocyanins are polyphenol compounds that render various hues of pink, red, purple, and blue in flowers, vegetables, and fruits. Anthocyanins also play significant roles in plant propagation, ecophysiology, and plant defense mechanisms. Structurally, anthocyanins are anthocyanidins modified by sugars and acyl acids. Anthocyanin colors are susceptible to pH, light, temperatures, and metal ions. The stability of anthocyanins is controlled by various factors, including inter and intramolecular complexations. Chromatographic and spectrometric methods have been extensively used for the extraction, isolation, and identification of anthocyanins. Anthocyanins play a major role in the pharmaceutical; nutraceutical; and food coloring, flavoring, and preserving industries. Research in these areas has not satisfied the urge for natural and sustainable colors and supplemental products. The lability of anthocyanins under various formulated conditions is the primary reason for this delay. New gene editing technologies to modify anthocyanin structures in vivo and the structural modification of anthocyanin via semi-synthetic methods offer new opportunities in this area. This review focusses on the biogenetics of anthocyanins; their colors, structural modifications, and stability; their various applications in human health and welfare; and advances in the field. Keywords: anthocyanins; anthocyanidins; biogenetics; polyphenols; flavonoids; plant pigments; anthocyanin bioactivities 1. Introduction Anthocyanins are water soluble pigments that occur in most vascular plants.
    [Show full text]
  • Wo 2009/063333 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 22 May 2009 (22.05.2009) PCT WO 2009/063333 A2 (51) International Patent Classification: Not classified (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, PCT/IB2008/003890 CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, (22) International Filing Date: IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, 14 November 2008 (14.1 1.2008) LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, (25) Filing Language: English RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 60/987,866 14 November 2007 (14.1 1.2007) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, 61/037,191 17 March 2008 (17.03.2008) US ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 12/270,23 1 13 November 2008 (13.11.2008) US European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, (71) Applicant (for all designated States except US): OMNICA NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, GMBH [DE/DE]; Plan 5, 20095 Hamburg (DE).
    [Show full text]
  • Untersuchungen Zum Metabolismus, Zur Bioverfügbarkeit Und Zur Antioxidativen Wirkung Von Anthocyanen
    Untersuchungen zum Metabolismus, zur Bioverfügbarkeit und zur antioxidativen Wirkung von Anthocyanen Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH) vorgelegte DISSERTATION von Diplom-Lebensmittelchemiker Jens Fleschhut aus Heilbronn Dekan: Prof. Dr. Manfred M. Kappes Referent: Prof. Dr. Sabine E. Kulling Korreferent: Prof. Dr. Stefan Bräse Tag der mündlichen Prüfung: 25. Oktober 2004 Die vorliegende Arbeit wurde zwischen Juli 2001 und September 2004 im Institut für Ernährungsphysiologie der Bundesforschungsanstalt für Ernährung, Karlsruhe angefertigt. Frau Prof. Dr. Sabine E. Kulling danke ich für die Überlassung des interessanten Themas, ihre sehr wohlwollende und allzeit freundliche Unterstützung sowie für die großzügig gewährten Freiräume bei der Durchführung dieser Arbeit. Für meinen Opa INHALTSVERZEICHNIS Inhaltsverzeichnis 1 Einleitung und theoretische Grundlagen 1 1.1 Allgemeines . 1 1.2 Die Familie der Flavonoide . 1 1.3 Chemische Eigenschaften der Anthocyane . 2 1.3.1 Chemische Struktur . 2 1.3.2 Strukturelle Veränderungen in Abhängigkeit vom pH-Wert . 4 1.3.3 Zerfall der Anthocyanidine . 5 1.3.4 Bildung von Metallkomplexen . 6 1.4 Physikalische Eigenschaften der Anthocyane . 7 1.4.1 Absorptions-Spektren der Anthocyane . 7 1.4.2 Copigmentierung von Anthocyanen . 7 1.5 Natürliches Vorkommen der Anthocyane und Gehalte in Lebensmitteln . 8 1.6 Physiologische Eigenschaften der Anthocyane . 10 1.6.1 Antioxidative Eigenschaften . 11 1.6.2 Schutz vor koronaren Herzerkrankungen . 13 1.6.3 Schutz vor Krebserkrankungen . 15 1.6.4 Antibakterielle und antivirale Wirkung, Verbesserung der Nachtsicht und sonstige Effekte . 17 1.7 Bisherige Erkenntnisse zur Bioverfügbarkeit und zum Metabolismus der An- thocyane .
    [Show full text]
  • The PLANT PHENOLIC COMPOUNDS Introduction & the Flavonoids the Plant Phenolic Compounds - 8,000 Phenolic Structures Known
    The PLANT PHENOLIC COMPOUNDS Introduction & The Flavonoids The plant phenolic compounds - 8,000 Phenolic structures known - Account for 40% of organic carbon circulating in the biosphere - Evolution of vascular plants: in cell wall structures, plant defense, features of woods and barks, flower color, flavors The plant phenolic compounds They can be: Simple, low molecular weight, single aromatic ringed compounds TO- Large and complex- polyphenols The Plant phenolic compounds The plant phenolic compounds - Primarily derived from the: Phenylpropanoid pathway and acetate pathway (and related pathways) Phenylpropanoid pathway and phenylpropanoid- acetate pathway Precursors for plant phenolic compounds The phenylpropanoids: products of the shikimic acid pathway The phenylpropanoids: products of the shikimic acid pathway (phe and tyr) THE PHENYLPROPANOIDS: PRODUCTS OF THE SHIKIMIC ACID PATHWAY (phe & tyr) The shikimate pathway The plant phenolic compounds - As in other cases of SMs, branches of pathway leading to biosynthesis of phenols are found or amplified only in specific plant families - Commonly found conjugated to sugars and organic acids The plant phenolic compounds Phenolics can be classified into 2 groups: 1. The FLAVONOIDS 2. The NON-FLAVONOIDS The plant phenolic compounds THE FLAVONOIDS - Polyphenolic compounds - Comprise: 15 carbons + 2 aromatic rings connected with a 3 carbon bridge The Flavane Nucleus THE FLAVONOIDS - Largest group of phenols: 4500 - Major role in plants: color, pathogens, light stress - Very often in epidermis of leaves and fruit skin - Potential health promoting compounds- antioxidants - A large number of genes known THE Flavonoids- classes Lepiniec et al., 2006 THE Flavonoids - The basic flavonoid skeleton can have a large number of substitutions on it: - Hydroxyl groups - Sugars - e.g.
    [Show full text]