Biotic Replacement and Mass Extinction of the Ediacara Biota

Total Page:16

File Type:pdf, Size:1020Kb

Biotic Replacement and Mass Extinction of the Ediacara Biota Downloaded from http://rspb.royalsocietypublishing.org/ on September 9, 2015 Biotic replacement and mass extinction of rspb.royalsocietypublishing.org the Ediacara biota Simon A. F. Darroch1,2, Erik A. Sperling3,4, Thomas H. Boag5, Rachel A. Racicot6, Sara J. Mason5, Alex S. Morgan3, Sarah Tweedt1,7, Research Paul Myrow8, David T. Johnston3, Douglas H. Erwin1 and Marc Laflamme5 1 Cite this article: Darroch SAF et al. 2015 Smithsonian Institution, PO Box 37012, MRC 121, Washington, DC 20013-7012, USA 2Department of Earth and Environmental Sciences, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Biotic replacement and mass extinction of the TN 37235-1805, USA Ediacara biota. Proc. R. Soc. B 282: 20151003. 3Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA http://dx.doi.org/10.1098/rspb.2015.1003 4Department of Geological Sciences, Stanford University, 450 Serra Mall Bldg. 320, Stanford, CA 94305, USA 5Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3356 Mississauga Road, Ontario, Canada L5 L 1C6 6Department of Biology, Howard University, 415 College Street NW, Washington, DC 20059, USA 7Department of Behavior, Ecology, Evolution & Systematics, University of Maryland, College Park, Received: 28 April 2015 MD 20742, USA Accepted: 4 August 2015 8Geology Department, Colorado College, 14 E. Cache La Poudre, Colorado Springs, CO 80903, USA The latest Neoproterozoic extinction of the Ediacara biota has been variously attributed to catastrophic removal by perturbations to global geochemical cycles, ‘biotic replacement’ by Cambrian-type ecosystem engineers, and a tapho- Subject Areas: nomic artefact. We perform the first critical test of the ‘biotic replacement’ ecology, evolution, palaeontology hypothesis using combined palaeoecological and geochemical data collected from the youngest Ediacaran strata in southern Namibia. We find that, even Keywords: after accounting for a variety of potential sampling and taphonomic biases, the Ediacaran, Cambrian, extinction, ecology, Ediacaran assemblage preserved at Farm Swartpunt has significantly lower diversity, ecosystem engineers genus richness than older assemblages. Geochemical and sedimentological ana- lyses confirm an oxygenated and non-restricted palaeoenvironment for fossil- bearing sediments, thus suggesting that oxygen stress and/or hypersalinity are unlikely to be responsible for the low diversity of communities preserved at Author for correspondence: Swartpunt. These combined analyses suggest depauperate communities charac- Simon A. F. Darroch terized the latest Ediacaran and provide the first quantitative support for the biotic e-mail: [email protected] replacement model for the end of the Ediacara biota. Although more sites (especially those recording different palaeoenvironments) are undoubtedly needed, this study provides the first quantitative palaeoecological evidence to suggest that evolutionary innovation, ecosystem engineering and biological inter- actions may have ultimately caused the first mass extinction of complex life. 1. Introduction The terminal Neoproterozoic (Ediacaran: 635–541 Ma) Ediacara biota was an enigmatic assemblage of large, morphologically complex eukaryotes that rep- resent the first major radiation of multicellular life. The biological affinities of these organisms have been much debated, but recent work suggests they rep- resent a mixture of stem- and crown-group animals, as well as extinct higher order clades with no modern representatives [1–3]. With the exception of a few isolated occurrences [4,5], Ediacara-type fossils are absent from Cambrian and younger strata. Three competing hypotheses have been proposed to explain their disappearance around the Ediacaran–Cambrian boundary [6]: (1) a ‘cata- strophic’ extinction event precipitated by perturbations to global geochemical cycles in the terminal Ediacaran [7–12]; (2) the result of ‘biotic replacement’, whereby members (or precursors) of the Cambrian evolutionary fauna gradually Electronic supplementary material is available outcompeted Ediacaran biotas through ecological engineering of Ediacaran at http://dx.doi.org/10.1098/rspb.2015.1003 or ecosystems [6,13]; and (3) a taphonomic artefact, whereby the conditions requi- red for Ediacaran preservation disappeared at the Ediacaran–Cambrian via http://rspb.royalsocietypublishing.org. boundary [6]. This third model has been convincingly rejected [12], however, & 2015 The Author(s) Published by the Royal Society. All rights reserved. Downloaded from http://rspb.royalsocietypublishing.org/ on September 9, 2015 few studies have attempted to directly test predictions sample-standardization from original field data, as opposed to 2 stemming from the two more plausible models. global compilations of taxa. We therefore undertook an intensive rspb.royalsocietypublishing.org The ‘biotic replacement’ model implies a gradual palaeo- survey of the latest Ediacaran fossil-bearing horizons preserved ecological change through the Ediacaran, and therefore makes on Farm Swartpunt and performed rarefaction analyses to inves- two predictions: (1) latest Ediacaran assemblages should be tigate richness estimates at a range of sampling intensities. We ecologically and taxonomically depauperate when compared recovered 106 individual fossils from the surveyed area, both in to those in older assemblages; and (2) evidence for ecosystem place and as float specimens (from numerous horizons—see elec- engineering, such as bioturbation, should be more abundant tronic supplementary material, S2 and S3), 79 of which were in terminal Ediacaran sections. In this model, the extinction readily attributable to known Ediacaran taxa (complete dataset event is protracted and begins earlier in the Ediacaran with given in electronic supplementary material, S4). In addition to the first appearance of metazoan ecosystem engineers. Abun- Swartpuntia and Pteridinium,werecoverednumerousAspidella, dant evidence supporting the second prediction of the ‘biotic an erniettomorph taxon provisionally assigned to Ernietta,and Proc. R. Soc. B replacement’ model is provided by the relatively high diversity a rangeomorph form provisionally assigned to Bradgatia (elec- of metazoan traces in the uppermost Ediacaran and lowermost tronic supplementary material, S5). At least one of our Aspidella Cambrian rocks [6,14–16], however, the first prediction of this specimens preserves the trace of a segmented stem structure model has yet to be critically examined. In this study, we test readily attributable to Swartpuntia (electronic supplementary 282 the first prediction of the ‘biotic replacement’ model. We per- material, S5). Of the 79 identifiable fossil specimens, 28 were form palaeoecological analyses of the latest Ediacaran (‘Nama’ found in place on the top surface of one stratigraphic horizon : 20151003 assemblage: approx. 545–542 Ma) fossil localities preserved in (‘Bed 1’—see electronic supplementary material, S2), allowing Farm Swartpunt, southern Namibia, and compare the resulting single bed comparisons with other datasets. diversity indices with older Ediacaran assemblages worldwide, In order to test whether these latest Ediacaran assemblages which form a time series through the Mid- to End-Ediacaran. are relatively depauperate, we performed the same analyses Discovery of lower species richness and evenness in terminal on three older Ediacaran assemblages, from Mistaken Point, Ediacara fossil assemblages would support the predictions of Newfoundland (‘Avalon’ assemblage, dating between approx. the ‘biotic replacement’ hypothesis. Alternatively, finding 579 and approx. 565 Ma and comprising eight fossiliferous sur- equivalent richness and diversity metrics relative to older faces, using data from [30]), Nilpena, South Australia (‘White assemblages would instead support the ‘catastrophe’ hypo- Sea’ assemblage, between approx. 555–550 Ma, comprising thesis and suggest that Edicaran ecosystems suffered abrupt five facies associations, using data from [31]), and the White extinction at the Ediacaran–Cambrian boundary. Sea, Russia (‘White Sea’ assemblage, using data from [32]). The fossil-bearing horizons at Farm Swartpunt are part of Locality summaries are given in electronic supplementary the latest Ediacaran Nama Group, Urusis Formation (Spits- material, S6. Richness estimates from fossil data can be heavily kopf Member), of southern Namibia (figure 1). The Nama influenced by stratigraphic (i.e. counted from in situ populations Group records mixed siliciclastic–carbonate sedimentation on a single bedding plane, versus collected from loose material into a foreland basin related to convergence along the and therefore likely aggregated over several fossiliferous hor- Damara and Gariep deformational belts and was deposited izons), and taphonomic (i.e. two-dimensional versus three- into two sub-basins separated by the palaeo-topographic dimensional preservation) contexts. We therefore performed high of the Osis Arch [17,19–21]. Farm Swartpunt belongs additional comparisons after adjusting the Mistaken Point, Nil- to the southernmost of these two basins—the Witputs sub- pena and White Sea datasets to account for these differences, basin—and preserves rocks that regionally dip approximately and thus form more realistic comparisons with our dataset 18 to the west. An ash bed in the lower carbonate package of from Swartpunt. In terms of stratigraphic context, we aggregated the Urusis Formation has been
Recommended publications
  • Discovery of Bilaterian-Type Through-Guts in Cloudinomorphs from the Terminal Ediacaran Period
    ARTICLE https://doi.org/10.1038/s41467-019-13882-z OPEN Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period James D. Schiffbauer 1,2*, Tara Selly 1,2*, Sarah M. Jacquet 1, Rachel A. Merz3, Lyle L. Nelson4, Michael A. Strange5, Yaoping Cai6 & Emily F. Smith 4 The fossil record of the terminal Ediacaran Period is typified by the iconic index fossil Cloudina and its relatives. These tube-dwellers are presumed to be primitive metazoans, but resolving 1234567890():,; their phylogenetic identity has remained a point of contention. The root of the problem is a lack of diagnostic features; that is, phylogenetic interpretations have largely centered on the only available source of information—their external tubes. Here, using tomographic analyses of fossils from the Wood Canyon Formation (Nevada, USA), we report evidence of recog- nizable soft tissues within their external tubes. Although alternative interpretations are plausible, these internal cylindrical structures may be most appropriately interpreted as digestive tracts, which would be, to date, the earliest-known occurrence of such features in the fossil record. If this interpretation is correct, their nature as one-way through-guts not only provides evidence for establishing these fossils as definitive bilaterians but also has implications for the long-debated phylogenetic position of the broader cloudinomorphs. 1 Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA. 2 X-ray Microanalysis Core, University of Missouri, Columbia, MO 65211, USA. 3 Biology Department, Swarthmore College, Swarthmore, PA 19081, USA. 4 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
    [Show full text]
  • Ediacaran) of Earth – Nature’S Experiments
    The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E.
    [Show full text]
  • Contributions to the Neoproterozoic Geobiology
    Contributions to the Neoproterozoic Geobiology Bing Shen Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Department of Geosciences Shuhai Xiao (Chair) Robert Bodnar Michal Kowalewski J. Fred Read November 29, 2007 Blacksburg, Virginia Key words: Neoproterozoic, Ediacaran, Ediacara fossils, China, Disparity, Sulfur isotope, Carbon isotope Copyright 2007, Bing Shen Contributions to the Neoproterozoic Geobiology Bing Shen Abstract This thesis makes several contributions to improve our understanding of the Neoproterozoic Paleobiology. In chapter 1, a comprehensive quantitative analysis of the Ediacara fossils indicates that the oldest Ediacara assemblage—the Avalon assemblage— already encompassed the full range of Ediacara morphospace. A comparable morphospace range was occupied by the subsequent White Sea and Nama assemblages, although it was populated differently. In contrast, taxonomic richness increased in the White Sea assemblage and declined in the Nama assemblage. The Avalon morphospace expansion mirrors the Cambrian explosion, and both may reflect similar underlying mechanisms. Chapter 2 describes problematic macrofossils collected from the Neoproterozoic slate of the upper Zhengmuguan Formation in North China and sandstone of the Zhoujieshan Formation in Chaidam. Some of these fossils were previously interpreted as animal traces. Our study of these fossils recognizes four genera and five species. None of these taxa can be interpreted as animal traces. Instead, they are problematic body fossils of unresolved phylogenetic affinities. Chapter 3 reports stable isotopes of the Zhamoketi cap dolostone atop the Tereeken diamictite in the Quruqtagh area, eastern Chinese Tianshan. Our new data indicate that carbonate associated sulfate (CAS) abundance decreases rapidly in the basal 34 cap dolostone and δ SCAS composition varies between +9‰ and +15‰ in the lower 2.5 34 m.
    [Show full text]
  • Lessons from the Fossil Record: the Ediacaran Radiation, the Cambrian Radiation, and the End-Permian Mass Extinction
    OUP CORRECTED PROOF – FINAL, 06/21/12, SPi CHAPTER 5 Lessons from the fossil record: the Ediacaran radiation, the Cambrian radiation, and the end-Permian mass extinction S tephen Q . D ornbos, M atthew E . C lapham, M argaret L . F raiser, and M arc L afl amme 5.1 Introduction and altering substrate consistency ( Thayer 1979 ; Seilacher and Pfl üger 1994 ). In addition, burrowing Ecologists studying modern communities and eco- organisms play a crucial role in modifying decom- systems are well aware of the relationship between position and enhancing nutrient cycling ( Solan et al. biodiversity and aspects of ecosystem functioning 2008 ). such as productivity (e.g. Tilman 1982 ; Rosenzweig Increased species richness often enhances ecosys- and Abramsky 1993 ; Mittelbach et al. 2001 ; Chase tem functioning, but a simple increase in diversity and Leibold 2002 ; Worm et al. 2002 ), but the pre- may not be the actual underlying driving mecha- dominant directionality of that relationship, nism; instead an increase in functional diversity, the whether biodiversity is a consequence of productiv- number of ecological roles present in a community, ity or vice versa, is a matter of debate ( Aarssen 1997 ; may be the proximal cause of enhanced functioning Tilman et al. 1997 ; Worm and Duffy 2003 ; van ( Tilman et al. 1997 ; Naeem 2002 ; Petchey and Gaston, Ruijven and Berendse 2005 ). Increased species rich- 2002 ). The relationship between species richness ness could result in increased productivity through (diversity) and functional diversity has important 1) interspecies facilitation and complementary implications for ecosystem functioning during resource use, 2) sampling effects such as a greater times of diversity loss, such as mass extinctions, chance of including a highly productive species in a because species with overlapping ecological roles diverse assemblage, or 3) a combination of biologi- can provide functional redundancy to maintain cal and stochastic factors ( Tilman et al.
    [Show full text]
  • New High‐Resolution Age Data from the Ediacaran–Cambrian Boundary Indicate Rapid, Ecologically Driven Onset of the Cambrian Explosion
    Received: 14 June 2018 | Revised: 6 October 2018 | Accepted: 19 October 2018 DOI: 10.1111/ter.12368 PAPER New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion Ulf Linnemann1 | Maria Ovtcharova2 | Urs Schaltegger2 | Andreas Gärtner1 | Michael Hautmann3 | Gerd Geyer4 | Patricia Vickers-Rich5,6,7 | Tom Rich6 | Birgit Plessen8 | Mandy Hofmann1 | Johannes Zieger1 | Rita Krause1 | Les Kriesfeld7 | Jeff Smith7 1Senckenberg Collections of Natural History Dresden, Museum of Mineralogy Abstract and Geology, Dresden, Germany The replacement of the late Precambrian Ediacaran biota by morphologically disparate 2Département des Sciences de la Terre, animals at the beginning of the Phanerozoic was a key event in the history of life on University of Geneva, Genève, Switzerland ‐ 3Paläontologisches Institut und Museum, Earth, the mechanisms and the time scales of which are not entirely understood. A Zürich, Switzerland composite section in Namibia providing biostratigraphic and chemostratigraphic data 4 Bayerische Julius-Maximilians-Universität, bracketed by radiometric dating constrains the Ediacaran–Cambrian boundary to Lehrstuhl für Geodynamik und Geomaterialforschung, Würzburg, Germany 538.6–538.8 Ma, more than 2 Ma younger than previously assumed. The U–Pb‐CA‐ID 5Department of Chemistry and TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran Biotechnology, Swinburne University of Technology, Melbourne (Hawthorne), biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fos- Victoria, Australia sils to a 410 ka time window of 538.99 ± 0.21 Ma to 538.58 ± 0.19 Ma. The extre- 6 Museums Victoria, Melbourne, Victoria, mely short duration of the faunal transition from Ediacaran to Cambrian biota within Australia less than 410 ka supports models of ecological cascades that followed the evolution- 7School of Earth, Atmosphere and Environment, Monash University, ary breakthrough of increased mobility at the beginning of the Phanerozoic.
    [Show full text]
  • E:\Published Issues\Episodes\20
    540 by Shuhai Xiao1, Guy M. Narbonne2, Chuanming Zhou3, Marc Laflamme4, Dmitriy V. Grazhdankin5, Malgorzata Moczydlowska-Vidal6, Huan Cui7 Towards an Ediacaran Time Scale: Problems, Protocols, and Prospects 1 Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA. E-mail: [email protected] 2 Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada 3 Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China 4 University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada 5 Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, prospekt Akademika Koptyuga 3, Novosibirsk 630090, Russia 6 Department of Earth Sciences, Uppsala University, Villavägen 16, SE 752 36 Uppsala, Sweden 7 Department of Geoscience and NASA Astrobiology Institute, University of Wisconsin, Madison, Wisconsin 53706, USA (Received: 23/12/2015; Accepted: 4/9/2016) DOI:10.18814/epiiugs/2016/v39i4/103886 The Ediacaran Period follows the Cryogenian data to constrain the age, duration, and global extent of Period in the wake of a snowball Earth glaciation and the Shuram negative δ13C excursion, to calibrate and precedes the Cambrian Period with its rising tide of correlate Ediacaran acanthomorph biozones, and to animal radiation. It is also the longest among all determine the temporal relationship among the Shuram stratigraphically
    [Show full text]
  • RELATING EDIACARAN FRONDS 1 T. Alexander Dececchi *, Guy M
    1 RELATING EDIACARAN FRONDS 2 T. Alexander Dececchi *, Guy M. Narbonne, Carolyn Greentree, and Marc 3 Laflamme 4 T. Alexander Dececchi* and Guy M. Narbonne, Department of Geological Sciences 5 and Geological Engineering, Kingston, Queen's University, Ontario, K7L 3N6, Canada. 6 E-mail: [email protected], [email protected]. 7 Carolyn Greentree, School of Earth, Atmosphere and Environment, Monash 8 University, Clayton, Victoria, 3800, Australia. Email [email protected]. 9 Marc Laflamme. Department of Chemical and Physical Sciences, University of 10 Toronto, Mississauga, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, 11 Canada. E-mail: [email protected]. 12 13 Abstract 14 Ediacaran fronds are key components of terminal-Proterozoic ecosystems. They 15 represent one of the most widespread and common body forms ranging across all 16 major Ediacaran fossil localities and time slices postdating the Gaskiers glaciation, 17 but uncertainty over their phylogenetic affinities has led to uncertainty over issues 18 of homology and functional morphology between, and within, organisms displaying 19 this ecomorphology. Here we present the first large scale, multi-group cladistic 20 analysis of Ediacaran organisms, sampling 20 ingroup taxa with previously asserted 21 affinities to the Arboreomorpha, Erniettomorpha and Rangeomorpha. Using a newly 22 derived morphological character matrix that incorporates multiple axes of potential 23 phylogenetically informative data, including architectural, developmental, and 24 structural qualities, we seek to illuminate the evolutionary history of these 25 organisms. We find strong support for existing classification schema and devise 26 apomorphy-based definitions for each of the three frondose clades examined here. 27 Through a rigorous cladistics framework it is possible to discern the pattern of 28 evolution within, and between, these clades, including the identification of 29 homoplasies and functional constraints.
    [Show full text]
  • A Rich Ediacaran Assemblage from Eastern Avalonia: Evidence of Early
    Publisher: GSA Journal: GEOL: Geology Article ID: G31890 1 A rich Ediacaran assemblage from eastern Avalonia: 2 Evidence of early widespread diversity in the deep ocean 3 [[SU: ok? need a noun]] 4 Philip R. Wilby, John N. Carney, and Michael P.A. Howe 5 British Geological Survey, Keyworth, Nottingham NG12 5GG, UK 6 ABSTRACT 7 The Avalon assemblage (Ediacaran, late Neoproterozoic) constitutes the oldest 8 evidence of diverse macroscopic life and underpins current understanding of the early 9 evolution of epibenthic communities. However, its overall diversity and provincial 10 variability are poorly constrained and are based largely on biotas preserved in 11 Newfoundland, Canada. We report coeval high-diversity biotas from Charnwood Forest, 12 UK, which share at least 60% of their genera in common with those in Newfoundland. 13 This indicates that substantial taxonomic exchange took place between different regions 14 of Avalonia, probably facilitated by ocean currents, and suggests that a diverse deepwater 15 biota that had a probable biogeochemical impact may already have been widespread at 16 the time. Contrasts in the relative abundance of prostrate versus erect taxa record 17 differential sensitivity to physical environmental parameters (hydrodynamic regime, 18 substrate) and highlight their significance in controlling community structure. 19 INTRODUCTION 20 The Ediacaran (late Neoproterozoic) Avalon assemblage (ca. 578.8–560 Ma) 21 preserves the oldest evidence of diverse macroorganisms and is key to elucidating the 22 early radiation of macroscopic life and the assembly of benthic marine communities Page 1 of 15 Publisher: GSA Journal: GEOL: Geology Article ID: G31890 23 (Clapham et al., 2003; Van Kranendonk et al., 2008).
    [Show full text]
  • Retallack 2014 Newfoundland Ediacaran
    Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Geological Society of America Bulletin Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J. Retallack Geological Society of America Bulletin 2014;126, no. 5-6;619-638 doi: 10.1130/B30892.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2014 Geological Society of America Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J.
    [Show full text]
  • Traces of Locomotion of Ediacaran Macroorganisms
    geosciences Article Traces of Locomotion of Ediacaran Macroorganisms Andrey Ivantsov 1,* , Aleksey Nagovitsyn 2 and Maria Zakrevskaya 1 1 Laboratory of the Precambrian Organisms, Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia; [email protected] 2 Arkhangelsk Regional Lore Museum, Arkhangelsk 163000, Russia; [email protected] * Correspondence: [email protected] Received: 21 August 2019; Accepted: 4 September 2019; Published: 11 September 2019 Abstract: We describe traces of macroorganisms in association with the body imprints of trace-producers from Ediacaran (Vendian) deposits of the southeastern White Sea region. They are interpreted as traces of locomotion and are not directly related to a food gathering. The complex remains belong to three species: Kimberella quadrata, Dickinsonia cf. menneri, and Tribrachidium heraldicum. They were found in three different burials. The traces have the form of narrow ridges or wide bands (grooves and linear depressions on natural imprints). In elongated Kimberella and Dickinsonia, the traces are stretched parallel to the longitudinal axis of the body and extend from its posterior end. In the case of the isometric Tribrachidium, the trace is directed away from the margin of the shield. A short length of the traces indicates that they were left by the organisms that were covered with the sediment just before their death. The traces overlaid the microbial mat with no clear signs of deformation under or around the traces. A trace substance, apparently, differed from the material of the bearing layers (i.e., a fine-grained sandstone or siltstone) and was not preserved on the imprints. This suggests that the traces were made with organic material, probably mucus, which was secreted by animals in a stressful situation.
    [Show full text]
  • Great Canadian Lagerstätten 6. Mistaken Point Ecological Reserve, Southeast Newfoundland Alexander G
    Document generated on 10/01/2021 8:20 a.m. Geoscience Canada Journal of the Geological Association of Canada Journal de l’Association Géologique du Canada Great Canadian Lagerstätten 6. Mistaken Point Ecological Reserve, Southeast Newfoundland Alexander G. Liu and Jack J. Matthews Volume 44, Number 2, 2017 Article abstract Mistaken Point Ecological Reserve (MPER) World Heritage Site, on the URI: https://id.erudit.org/iderudit/1040786ar southeastern coast of Newfoundland, Canada, is one of the foremost global Ediacaran fossil localities. MPER contains some of the oldest known See table of contents assemblages of the softbodied Ediacaran macrobiota, and its fossils have contributed significantly to Ediacaran paleobiological research since their initial discovery in 1967. Preservation of multiple in situ benthic Publisher(s) paleocommunities, some comprising thousands of specimens, has enabled research into Ediacaran paleoecology, ontogeny, taphonomy, taxonomy and The Geological Association of Canada morphology, offering insights into the possible phylogenetic positions of Ediacaran taxa within the tree of life. Meanwhile, a thick and continuous ISSN geological record enables the fossils to be placed within a wellresolved temporal and paleoenvironmental context spanning an interval of at least 10 0315-0941 (print) million years. This article reviews the history of paleontological research at 1911-4850 (digital) MPER, and highlights key discoveries that have shaped global thinking on the Ediacaran macrobiota. Explore this journal Cite this article Liu, A. G. & Matthews, J. J. (2017). Great Canadian Lagerstätten 6. Mistaken Point Ecological Reserve, Southeast Newfoundland. Geoscience Canada, 44(2), 63–76. All Rights Reserved © The Geological Association of Canada, 2017 This document is protected by copyright law.
    [Show full text]
  • Cephalonega, a New Generic Name, and the System of Vendian Proarticulata A
    ISSN 0031-0301, Paleontological Journal, 2019, Vol. 53, No. 5, pp. 447–454. © Pleiades Publishing, Ltd., 2019. Russian Text © The Author(s), 2019, published in Paleontologicheskii Zhurnal, 2019, No. 5, pp. 14–21. Cephalonega, A New Generic Name, and the System of Vendian Proarticulata A. Yu. Ivantsova, *, M. A. Fedonkina, A. L. Nagovitsynb, and M. A. Zakrevskayaa aBorissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117647 Russia bArkhangelsk Office, Russian Geographical Society, Russian Academy of Sciences, Arkhangelsk, 163001 Russia *e-mail:[email protected] Received December 29, 2017; revised November 9, 2018; accepted February 14, 2019 Abstract—Due to homonymy, a new name Cephalonega Fedonkin, nom. nov. was proposed for the genus of Vendian macroorganisms, Onega Fedonkin. The improved diagnosis of this genus and evidence that this genus belongs to Proarticulata, an extinct phylum of Metazoa, are given. A detailed characterization of the phylum and all Proarticulata classes is given for the first time. Keywords: Late Vendian, Ediacaran, Proarticulata, Vendiamorpha, Dipleurozoa, Cephalozoa, Onega, Ceph- alonega DOI: 10.1134/S0031030119050046 INTRODUCTION the genus and the description of the species were mod- In 1972 the first large locality of Ediacaran-type ified. In order to substantiate the systematical position fossils in the Upper Vendian natural outcrops in the of the taxon the refined characteristics of Proarticulata north-west of the East European Platform was discov- and subordinated high-rank taxa were formulated. ered on the Onega Peninsula along the banks of the Syuzma River (Keller et al., 1974). At the early stages DISCUSSION of studying the Syuzma locality, several impressions of a small organism were found and this organism was The phylum Proarticulata was distinguished in the described as the monotypical genus Onega Fedonkin, composition of the Vendian fauna on the basis of 1976 (Keller and Fedonkin, 1976).
    [Show full text]