64Th Palaeontological Association Annual Meeting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symmoriiform Sharks from the Pennsylvanian of Nebraska
Acta Geologica Polonica, Vol. 68 (2018), No. 3, pp. 391–401 DOI: 10.1515/agp-2018-0009 Symmoriiform sharks from the Pennsylvanian of Nebraska MICHAŁ GINTER University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland. E-mail: [email protected] ABSTRACT: Ginter, M. 2018. Symmoriiform sharks from the Pennsylvanian of Nebraska. Acta Geologica Polonica, 68 (3), 391–401. Warszawa. The Indian Cave Sandstone (Upper Pennsylvanian, Gzhelian) from the area of Peru, Nebraska, USA, has yielded numerous isolated chondrichthyan remains and among them teeth and dermal denticles of the Symmoriiformes Zangerl, 1981. Two tooth-based taxa were identified: a falcatid Denaea saltsmani Ginter and Hansen, 2010, and a new species of Stethacanthus Newberry, 1889, S. concavus sp. nov. In addition, there occur a few long, monocuspid tooth-like denticles, similar to those observed in Cobelodus Zangerl, 1973, probably represent- ing the head cover or the spine-brush complex. A review of the available information on the fossil record of Symmoriiformes has revealed that the group existed from the Late Devonian (Famennian) till the end of the Middle Permian (Capitanian). Key words: Symmoriiformes; Microfossils; Carboniferous; Indian Cave Sandstone; USA Midcontinent. INTRODUCTION size and shape is concerned [compare the thick me- dian cusp, almost a centimetre long, in Stethacanthus The Symmoriiformes (Symmoriida sensu Zan- neilsoni (Traquair, 1898), and the minute, 0.5 mm gerl 1981) are a group of Palaeozoic cladodont sharks wide, multicuspid, comb-like tooth of Denaea wangi sharing several common characters: relatively short Wang, Jin and Wang, 2004; Ginter et al. 2010, figs skulls, large eyes, terminal mouth, epicercal but ex- 58A–C and 61, respectively]. -
The Pharynx of the Stem-Chondrichthyan Ptomacanthus and the Early Evolution of the Gnathostome Gill Skeleton
ARTICLE https://doi.org/10.1038/s41467-019-10032-3 OPEN The pharynx of the stem-chondrichthyan Ptomacanthus and the early evolution of the gnathostome gill skeleton Richard P. Dearden 1, Christopher Stockey1,2 & Martin D. Brazeau1,3 The gill apparatus of gnathostomes (jawed vertebrates) is fundamental to feeding and ventilation and a focal point of classic hypotheses on the origin of jaws and paired appen- 1234567890():,; dages. The gill skeletons of chondrichthyans (sharks, batoids, chimaeras) have often been assumed to reflect ancestral states. However, only a handful of early chondrichthyan gill skeletons are known and palaeontological work is increasingly challenging other pre- supposed shark-like aspects of ancestral gnathostomes. Here we use computed tomography scanning to image the three-dimensionally preserved branchial apparatus in Ptomacanthus,a 415 million year old stem-chondrichthyan. Ptomacanthus had an osteichthyan-like compact pharynx with a bony operculum helping constrain the origin of an elongate elasmobranch-like pharynx to the chondrichthyan stem-group, rather than it representing an ancestral condition of the crown-group. A mixture of chondrichthyan-like and plesiomorphic pharyngeal pat- terning in Ptomacanthus challenges the idea that the ancestral gnathostome pharynx con- formed to a morphologically complete ancestral type. 1 Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. 2 Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK. 3 Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK. Correspondence and requests for materials should be addressed to M.D.B. -
A Rich Ediacaran Assemblage from Eastern Avalonia: Evidence of Early
Publisher: GSA Journal: GEOL: Geology Article ID: G31890 1 A rich Ediacaran assemblage from eastern Avalonia: 2 Evidence of early widespread diversity in the deep ocean 3 [[SU: ok? need a noun]] 4 Philip R. Wilby, John N. Carney, and Michael P.A. Howe 5 British Geological Survey, Keyworth, Nottingham NG12 5GG, UK 6 ABSTRACT 7 The Avalon assemblage (Ediacaran, late Neoproterozoic) constitutes the oldest 8 evidence of diverse macroscopic life and underpins current understanding of the early 9 evolution of epibenthic communities. However, its overall diversity and provincial 10 variability are poorly constrained and are based largely on biotas preserved in 11 Newfoundland, Canada. We report coeval high-diversity biotas from Charnwood Forest, 12 UK, which share at least 60% of their genera in common with those in Newfoundland. 13 This indicates that substantial taxonomic exchange took place between different regions 14 of Avalonia, probably facilitated by ocean currents, and suggests that a diverse deepwater 15 biota that had a probable biogeochemical impact may already have been widespread at 16 the time. Contrasts in the relative abundance of prostrate versus erect taxa record 17 differential sensitivity to physical environmental parameters (hydrodynamic regime, 18 substrate) and highlight their significance in controlling community structure. 19 INTRODUCTION 20 The Ediacaran (late Neoproterozoic) Avalon assemblage (ca. 578.8–560 Ma) 21 preserves the oldest evidence of diverse macroorganisms and is key to elucidating the 22 early radiation of macroscopic life and the assembly of benthic marine communities Page 1 of 15 Publisher: GSA Journal: GEOL: Geology Article ID: G31890 23 (Clapham et al., 2003; Van Kranendonk et al., 2008). -
Of Time and Taphonomy: Preservation in the Ediacaran
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127997 Of time and taphonomy: preservation in the Ediacaran CHAPTER · JANUARY 2014 READS 36 2 AUTHORS, INCLUDING: Charlotte Kenchington University of Cambridge 5 PUBLICATIONS 2 CITATIONS SEE PROFILE Available from: Charlotte Kenchington Retrieved on: 02 October 2015 ! OF TIME AND TAPHONOMY: PRESERVATION IN THE EDIACARAN CHARLOTTE G. KENCHINGTON! 1,2 AND PHILIP R. WILBY2 1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK <[email protected]! > 2British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved. -
Mississippian Chondrichthyan Fishes from the Area of Krzeszowice, Southern Poland
Mississippian chondrichthyan fishes from the area of Krzeszowice, southern Poland MICHAŁ GINTER and MICHAŁ ZŁOTNIK Ginter, M. and Złotnik, M. 2019. Mississippian chondrichthyan fishes from the area of Krzeszowice, southern Poland. Acta Palaeontologica Polonica 64 (3): 549–564. Two new assemblages of Mississippian pelagic chondrichthyan microremains were recovered from the pelagic lime- stone of the area of Krzeszowice, NW of Kraków, Poland. The older assemblage represents the upper Tournaisian of Czatkowice Quarry and the younger one the upper Viséan of the Czernka stream valley at Czerna. The teeth of sym- moriiform Falcatidae are the major component of both collections. A comparison of the taxonomic composition of the assemblage from Czerna (with the falcatids and Thrinacodus as the major components) to the previously published materials from the Holy Cross Mountains (Poland), Muhua (southern China), and Grand Canyon (Northern Arizona, USA) revealed the closest similarity to the first of these, probably deposited in a deeper water environment, relatively far from submarine carbonate platforms. A short review of Mississippian falcatids shows that the late Viséan–Serpukhovian period was the time of the greatest diversity of this group. Key words: Chondrichthyes, Falcatidae, teeth, Carboniferous, Tournaisian, Viséan, Poland, Kraków Upland. Michał Ginter [[email protected]] and Michał Złotnik [[email protected]], Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland. Received 27 March 2019, accepted 30 April 2019, available online 23 August 2019. Copyright © 2019 M. Ginter and M. Złotnik. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unre- stricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
The Morphology and Evolution of Chondrichthyan Cranial Muscles: a Digital Dissection of the Elephantfish Callorhinchus Milii and the Catshark Scyliorhinus Canicula
Received: 29 July 2020 | Revised: 25 September 2020 | Accepted: 29 October 2020 DOI: 10.1111/joa.13362 ORIGINAL PAPER The morphology and evolution of chondrichthyan cranial muscles: A digital dissection of the elephantfish Callorhinchus milii and the catshark Scyliorhinus canicula Richard P. Dearden1 | Rohan Mansuit1,2 | Antoine Cuckovic3 | Anthony Herrel2 | Dominique Didier4 | Paul Tafforeau5 | Alan Pradel1 1CR2P, Centre de Recherche en Paléontologie–Paris, Muséum national Abstract d'Histoire naturelle, Sorbonne Université, The anatomy of sharks, rays, and chimaeras (chondrichthyans) is crucial to under- Centre National de la Recherche Scientifique, Paris cedex 05, France standing the evolution of the cranial system in vertebrates due to their position as 2UMR 7179 (MNHN-CNRS) MECADEV, the sister group to bony fishes (osteichthyans). Strikingly different arrangements of Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, the head in the two constituent chondrichthyan groups—holocephalans and elasmo- Paris, France branchs—have played a pivotal role in the formation of evolutionary hypotheses tar- 3 Université Paris Saclay, Saint-Aubin, geting major cranial structures such as the jaws and pharynx. However, despite the France advent of digital dissections as a means of easily visualizing and sharing the results 4Department of Biology, Millersville University, Millersville, PA, USA of anatomical studies in three dimensions, information on the musculoskeletal sys- 5 European Synchrotron Radiation Facility, tems of the chondrichthyan head remains largely limited to traditional accounts, many Grenoble, France of which are at least a century old. Here, we use synchrotron tomographic data to Correspondence carry out a digital dissection of a holocephalan and an elasmobranch widely used as Richard P. -
The Ediacaran Fossils of Charnwood Forest: Shining New Light on a Major Biological
*Manuscript Click here to view linked References 1 The Ediacaran fossils of Charnwood Forest: shining new light on a major biological 2 revolution 3 Charlotte G. Kenchingtona, Simon J. Harrisb, Philip B. Vixseboxsec, Chris Pickupd, Philip R. 4 Wilbyb 5 aDepartment of Earth Sciences, Memorial University of Newfoundland, Prince Philip Drive, 6 St John’s A1B 3X5, Canada. Present address: Department of Earth Sciences, University of 7 Cambridge, Downing Street, Cambridge CB2 3EQ, UK. [email protected] 8 bBritish Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham 9 NG12 5GG, UK. [email protected] [email protected] 10 cSchool of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, 11 Bristol BS8 1RJ, UK. [email protected] 12 dSchool of Arts & Humanities, Nottingham Trent University, Mary Anne Evans Building, 13 Clifton Campus, Nottingham NG11 8NS, UK. [email protected] 14 Corresponding author: [email protected] 15 16 Keywords 17 Ediacaran; Charnwood Forest; Reflectance Transformation Imaging; Avalon Assemblage 18 19 Abstract 20 Charnwood Forest (UK) hosts some of the oldest and best-preserved macrofossils known 21 from the Ediacaran. It is the counterpoint to the more widely studied fossil sites of south- 22 eastern Newfoundland (Canada), which include the recently-designated UNESCO World 23 Heritage Site of Mistaken Point. Discoveries made in Charnwood Forest since 2008 have the 24 potential to revolutionise our understanding of the evolution of complex macroscopic life 25 and the subsequent development of ‘modern’ (i.e. Phanerozoic) ecosystems. The sites in 26 Charnwood include the holotypes for several iconic Ediacaran taxa, and both the oldest and 27 potentially youngest representatives of the deep-water Avalon Assemblage. -
Of Time and Taphonomy: Preservation in The
1 OF TIME AND TAPHONOMY: PRESERVATION IN THE 2 EDIACARAN 3 Charlotte G. Kenchington1,2 and Philip R. Wilby2 4 1. Department of Earth Sciences, University of Cambridge, Downing Street, 5 Cambridge, CB2 3EQ, UK. [email protected] 6 2. British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK. 7 8 ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the 9 transition from a microbial world to the one we know today. The enigmatic organisms of 10 the Ediacaran hold the key to understanding the early evolution of metazoans and their 11 ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information 12 they divulge is a thorough understanding of their taphonomy: of what is preserved and 13 how it is preserved, and also of what is not preserved. Fortunately, this Period is also 14 recognized for its abundance of soft-tissue preservation, which is viewed through a wide 15 variety of taphonomic windows. Some of these, such as pyritization and carbonaceous 16 compression, are also present throughout the Phanerozoic, but the abundance and variety 17 of moldic preservation of body fossils in siliclastic settings is unique to the Ediacaran. In 18 rare cases, one organism is preserved in several preservational styles which, in 19 conjunction with our increased understanding of the taphonomic processes involved in 20 each style, allow us to more confidently interpret aspects of the biology and ecology of 21 the organisms preserved. Several groundbreaking advances in this field have been made 22 since the 1990s, and have paved the way for increasingly thorough analyses and elegant 23 interpretations. -
Mistaken Point, with Insets Showing Some of the Diverse Ediacaran Macrofossils Present at Mistake Point (Photo: A
Open File NFLD/3320 GEOLOGICAL ASSOCIATION OF CANADA Newfoundland and Labrador Section 2015 FALL FIELD TRIP The Ediacaran fossils of the Avalon Peninsula Alex G. Liu and James Conliffe with contributions from Liam Herringshaw, Jack Matthews, and Duncan McIlroy September 18–20th, 2015 Cover photo: Overview of the fossil bearing bedding planes at Mistaken Point, with insets showing some of the diverse Ediacaran macrofossils present at Mistake Point (photo: A. Liu) GAC Newfoundland and Labrador Section – 2015 Fall Field Trip Ediacaran macrofossils from the Mistaken Point ‘E’ Surface. 2 GAC Newfoundland and Labrador Section – 2015 Fall Field Trip TABLE OF CONTENTS INTRODUCTION AND OVERVIEW 4 ACKNOWLEDGEMENTS 4 SAFETY INFORMATION 5 MISTAKEN POINT ECOLOGICAL RESERVE (MPER) 7 PART 1: BACKGROUND MATERIAL 9 INTRODUCTION 9 Introduction to the Neoproterozoic‒Phanerozoic Transition 9 Stratigraphy, Structural Geology, and Depositional Environment of the Avalon Peninsula 13 EDICARAN PALEONTOLOGY OF THE AVALON PENINSULA 16 Preservation of Ediacaran macrofossils 16 The Avalon Assemblage 18 Current research into the Mistaken Point Ediacaran Fossils 21 PART 2: FIELD TRIP ITINERARY 24 Day One – Harbour Main and Spaniard’s Bay 25 Day Two – Mistaken Point Ecological Reserve 31 Day Three – Mistaken Point Ecological Reserve and Ferryland 46 INVENTORY OF TAXA IN MISTAKEN POINT ECOLOGICAL RESERVE 53 REFERENCES 54 3 GAC Newfoundland and Labrador Section – 2015 Fall Field Trip INTRODUCTION AND OVERVIEW The Mistaken Point Ecological Reserve (Fig. 1) is home to the some of the world’s most impressive Ediacaran fossil assemblages. Large bedding planes covered in thousands of exceptionally preserved specimens can be found in situ throughout a continuous ~2 km succession of sedimentary strata. -
Cryptic Disc Structures Resembling Ediacaran Discoidal Fossils from the Lower Silurian Hellefjord Schist, Arctic Norway
RESEARCH ARTICLE Cryptic Disc Structures Resembling Ediacaran Discoidal Fossils from the Lower Silurian Hellefjord Schist, Arctic Norway Christopher L. Kirkland1*, BreandaÂn A. MacGabhann2, Brian L. Kirkland3, J. Stephen Daly4 1 Department of Applied Geology, (Centre for Exploration Targeting ± Curtin Node and Core to Crust Fluid Centre), Curtin University, Perth, Australia, 2 Department of Geography, Edge Hill University, Ormskirk, Lancashire, England, 3 Independent Researcher, Coleraine, N. Ireland, 4 UCD School of Earth Sciences and UCD Earth Institute, University College Dublin, Dublin, Ireland a11111 * [email protected] Abstract The Hellefjord Schist, a volcaniclastic psammite-pelite formation in the Caledonides of Arc- OPEN ACCESS tic Norway contains discoidal impressions and apparent tube casts that share morphologi- Citation: Kirkland CL, MacGabhann BA, Kirkland cal and taphonomic similarities to Neoproterozoic stem-holdfast forms. U-Pb zircon BL, Daly JS (2016) Cryptic Disc Structures geochronology on the host metasediment indicates it was deposited between 437 ± 2 and Resembling Ediacaran Discoidal Fossils from the Lower Silurian Hellefjord Schist, Arctic Norway. 439 ± 3 Ma, but also indicates that an inferred basal conglomerate to this formation must be PLoS ONE 11(10): e0164071. doi:10.1371/journal. part of an older stratigraphic element, as it is cross-cut by a 546 ± 4 Ma pegmatite. These pone.0164071 results confirm that the Hellefjord Schist is separated from underlying older Proterozoic Editor: Roberto Macchiarelli, Universite de Poitiers, rocks by a thrust. It has previously been argued that the Cambrian Substrate Revolution FRANCE destroyed the ecological niches that the Neoproterozoic frond-holdfasts organisms occu- Received: June 27, 2016 pied. However, the discovery of these fossils in Silurian rocks demonstrates that the envi- Accepted: September 19, 2016 ronment and substrate must have been similar enough to Neoproterozoic settings that frond-holdfast bodyplans were still ecologically viable some hundred million years later. -
High Lineage Survivorship Across the End-Devonian Mass Extinction Suggested by a Remarkable New Late Devonian Actinopterygian
bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458676; this version posted September 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. High lineage survivorship across the end-Devonian Mass Extinction suggested by a remarkable new Late Devonian actinopterygian Sam Gilesa,b,*, Kara Feilichc, Stephanie Pierced, Matt Friedmanb,e aSchool of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; bDepartment of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; cOrganismal Biology and Anatomy, University of Chicago, 1027 E 57th St, Chicago, IL 60637, USA; dMuseum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; eMuseum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA. *Corresponding author: [email protected] Keywords: mass extinction; ray-finned fishes; diversification; CT scanning; Devonian; Carboniferous. Abstract Actinopterygian (ray-finned) fishes represent the principal vertebrate group in aquatic settings. This dominance is often attributed to their apparent success in the aftermath of the end-Devonian extinction. Increases in taxonomic and morphological diversity in the early Carboniferous, coupled with phylogenetic hypotheses implying the survival of few Devonian lineages, contribute to a model of explosive post- extinction radiation. However, most actinopterygian fossils from within a ca. 20 Myr window surrounding the end-Devonian extinction remain poorly known, contributing to uncertainty about these patterns. -
Holocephali; Chondrichthyes)
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.222737; this version posted July 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Mineralisation of the Callorhinchus vertebral column 2 (Holocephali; Chondrichthyes) 3 4 Running title: Mineralisation of the Callorhinchus vertebral column 5 6 Jacob Pears1, Zerina Johanson2*, Kate Trinajstic1, Mason Dean3, Catherine 7 Boisvert1 8 1School of Molecular and Life Sciences, Curtin University, Perth, Australia. Email: 9 [email protected]; [email protected]; 10 [email protected] 11 2Department of Earth Sciences, Natural History Museum, London, UK. Email: 12 [email protected] 13 14 3Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am 15 Muehlenberg 1, 14476 Potsdam, Germany. Email: [email protected] 16 17 *Correspondence: 18 Zerina Johanson: [email protected] 19 20 Keywords: Holocephali, Callorhinchus, tesserae, mineralisation, evolution, stem 21 group Holocephali 22 23 Abstract 24 Chondrichthyes (Elasmobranchii and Holocephali) are distinguished by their largely 25 cartilaginous endoskeleton that comprises an uncalcified core overlain by a mineralised layer; 26 in the Elasmobranchii (sharks, skates, rays) this mineralisation takes the form of calcified 27 polygonal tiles known as tesserae. In recent years, these skeletal tissues have been described 28 in ever increasing detail in sharks and rays but those of Holocephali (chimaeroids) have been 29 less well-described, with conflicting accounts as to whether or not tesserae are present. 30 During embryonic ontogeny in holocephalans, cervical vertebrae fuse to form a structure 31 called the synarcual.